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Summary
Background Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death worldwide, driven primarily
by coronary artery disease (CAD). ASCVD risk estimators such as the pooled cohort equations (PCE) facilitate risk
stratification and primary prevention of ASCVD but their accuracy is still suboptimal.

Methods Using deep electronic health record data from 7,116,209 patients seen at 70+ hospitals and clinics across 5
states in the USA, we developed an artificial intelligence-based electrocardiogram analysis tool (ECG-AI) to detect
CAD and assessed the additive value of ECG-AI-based ASCVD risk stratification to the PCE. We created
independent ECG-AI models using separate neural networks including subjects without known history of
ASCVD, to identify coronary artery calcium (CAC) score ≥300 Agatston units by computed tomography,
obstructive CAD by angiography or procedural intervention, and regional left ventricular akinesis in ≥1 segment
by echocardiogram, as a reflection of possible prior myocardial infarction (MI). These were used to assess the
utility of ECG-AI-based ASCVD risk stratification in a retrospective observational study consisting of patients with
PCE scores and no prior ASCVD. The study period covered all available digitized EHR data, with the first
available ECG in 1987 and the last in February 2023.

Findings ECG-AI for identifying CAC ≥300, obstructive CAD, and regional akinesis achieved area under the receiver
operating characteristic (AUROC) values of 0.88, 0.85, and 0.94, respectively. An ensembled ECG-AI identified 3, 5,
and 10-year risk for acute coronary events and mortality independently and additively to PCE. Hazard ratios for acute
coronary events over 3-years in patients without ASCVD that tested positive on 1, 2, or 3 versus 0 disease-specific
ECG-AI models at cohort entry were 2.41 (2.14–2.71), 4.23 (3.74–4.78), and 11.75 (10.2–13.52), respectively.
Similar stratification was observed in cohorts stratified by PCE or age.

Interpretation ECG-AI has potential to address unmet need for accessible risk stratification in patients in whom PCE
under, over, or insufficiently estimates ASCVD risk, and in whom risk assessment over time periods shorter than 10
years is desired.

Funding Anumana.

Copyright© 2023 Mayo Clinic Foundation. Published by Elsevier Ltd. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).
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Introduction
Atherosclerotic cardiovascular disease (ASCVD) is the
leading cause of mortality worldwide. In the United
States alone, someone will have a myocardial infarction
*Corresponding author.
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every 40 s.1 Evidence-based ASCVD risk estimators have
been developed to facilitate the initiation of measures
for the primary prevention of ASCVD, including lipid-
lowering therapy. The most widely adopted of these
1
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Research in context

Evidence before this study
Atherosclerotic cardiovascular disease (ASCVD) is the leading
cause of death worldwide, and coronary disease is the primary
driver of those mortality rates. Artificial intelligence-enabled
ECG analysis (ECG-AI) has been used successfully to
discriminate conditions like elevated coronary artery calcium
(CAC) scores or angiographically confirmed stenosis. However,
these algorithms each capture one part of the spectrum of
coronary artery disease (CAD), which ranges from coronary
atherosclerosis to obstructive coronary disease to having
already had a myocardial infarction (MI).

Added value of this study
We demonstrate that three independent and performant
ECG-AI models designed to detect elevated CAC score,
obstructive CAD, and regional left ventricular akinesis (as an

indicator of possible prior MI) function together to identify
CAD and risk-stratify patients without known ASCVD. We
show that ECG-AI can identify patients that are at risk for
acute coronary events due to underlying CAD over
timeframes as short as 3 years, even when these patients are
pre-stratified by their 10-year risk for ASCVD as derived from
the pooled cohort equations (PCE).

Implications of all the available evidence
The ECG-AI tool described here, designed to detect CAD,
supports and informs clinical decision making by adding a
new dimension of readily obtainable point-of-care data to
ASCVD risk assessments. The tool may enable providers to
titrate the strength or speed of subsequent intervention
accordingly.
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are the pooled cohort equations (PCE), which estimate
the 10-year risk of ASCVD events (death due to coronary
heart disease, nonfatal myocardial infarction, as well as
fatal or nonfatal ischemic stroke) based on clinical and
demographic information.2 The PCE and other risk es-
timators have known limitations, including the over- or
under-estimation of risk in groups with known risk
modifiers that are not included in the calculators.3–6

Coronary artery calcium (CAC) scoring can provide
additional value by reclassifying the estimated risk of
some patients when the decision about whether to
initiate therapy is unclear.3 However, robust evidence
regarding when to obtain CAC scoring is still evolving.7

As such, CAC scoring remains poorly covered by health
insurance plans and therefore underutilized despite
widespread appreciation for its clinical utility8,9 and po-
tential clinical impact10 were it to be supported.

Approaches that leverage artificial intelligence-
enabled analysis of electrocardiograms (ECG-AI) to
predict when a patient has an elevated CAC score have
been developed and shown to have good discriminatory
capacity. The area under the receiver operating charac-
teristics (AUROC) for published CAC ECG-AI models
have ranged from 0.75 to 0.77–0.80 for discriminating a
CAC score ≥100 and a CAC score ≥300–400, respec-
tively.11,12 Additionally, a recently published study
demonstrated separability of ECGs coming from pa-
tients with angiographically proven severe stenosis from
those of patients without CAD with an AUROC of
0.87.13 These ECG-AI approaches offer promise in
enabling widely accessible and affordable risk stratifi-
cation prior to CAC scoring.

One recent study14 reported that a machine learning
algorithm that leverages ECG parameters in conjunction
with CAC score and clinical factors outperforms either
modality alone (ECG parameters, CAC score, or clinical
factors) at predicting risk for a major adverse
cardiovascular event. The study results suggest that the
ECG offers additional, independent and untapped value
for cardiovascular risk assessment.

Coronary artery disease (CAD) is a spectrum that
includes risk factors, non-obstructive atherosclerosis,
obstructive atherosclerosis, and myocardial infarction
(which may be silent). ECG-AI designed to detect only
one part of this spectrum may underperform at detect-
ing undiagnosed CAD across the spectrum. Conversely,
ECG-AI designed to detect too heterogeneous of a dis-
ease state may underperform due to impairment of the
AI’s ability to learn specific pathophysiological features
of high importance. We hypothesized that an ensemble
of ECG-AI models trained using different stages of the
CAD spectrum may perform better at identifying pa-
tients at risk for acute coronary events due to underlying
CAD than a single model, when applied to patients
without known ASCVD. Furthermore, we hypothesized
that ECG-AI designed to detect CAD would enable the
prediction of acute coronary events with greater tem-
poral resolution than a 10-year timeframe, possibly due
to the detection of subclinical or microvascular disease.
Together, these advancements could enable ECG-AI to
bridge the current gap between PCE-based risk estima-
tion and non-invasive, imaging-based evaluation of
CAD.
Methods
Data source
A deidentified,15 privacy-preserving database consisting
of digital electronic health records (EHR) from
7,116,209 patients seen at over 70 Mayo Clinic hospitals
and clinics across Arizona, Florida, Iowa, Minnesota,
and Wisconsin, including 3 major health systems, were
leveraged for model development and retrospective
analysis. Data was obtained using the nference Analytics
www.thelancet.com Vol 65 November, 2023
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Platform, which converts raw EHR data from health
systems into an anonymized and semi-structured data-
base. From this database, we included all patients ≥18
years old with at least one digital 10-s, 12-lead ECG on
record.

Cohort definitions
Coronary artery calcium
CAC scores were extracted using regular expressions
from the EHRs of approximately 98,684 patients that
underwent an ECG-gated cardiac CT scan for CAC
detection and scoring and had an ECG on record
within 1 year of the CT scan, with no acute coronary
syndrome (ACS) up to 7 days following the scan
(Fig. 1A). A disease cohort was defined as adults with a
CAC score ≥300. Controls were defined as patients
who have undergone a Coronary CT with no observed
coronary artery calcium (CAC score of 0 or its syno-
nyms) and no ACS documented within the next 3
years.

Obstructive CAD
Disease cases were defined as adult patients that met at
least one of the following criteria (Fig. 1B):

1. Underwent coronary artery bypass graft surgery
(CABG) for the first time without evidence of an
acute or prior ACS or prior percutaneous coronary
intervention (PCI) in structured data and had an
outpatient ECG within 90 days before CABG.

2. Underwent PCI for the first time without evidence
of an acute or prior ACS or prior CABG in struc-
tured data and had an outpatient ECG within 90
days before PCI.

3. Underwent coronary angiography and were found
to have severe stenosis and had an outpatient ECG
within 30 days of angiography, with no prior PCI/
CABG/ACS in structured data. Severe stenosis was
defined as:

a. ≥ 50% occlusion of left main coronary artery or
b. ≥ 70% occlusion, including complete occlusion,

of any of the other coronary arteries.
4. Underwent coronary CT angiography and were

found to have severe stenosis and had an outpatient
ECG within 30 days of CT angiography, with no
prior PCI/CABG/ACS. Severe stenosis was defined
as:
a. Coronary Artery Disease Reporting and Data

System (CAD-RADS) score of 4A, 4B or 5 in CT
Coronary Angiography (CTCA).

Control cohort was defined as patients who satisfied
the following criteria:

1. Underwent coronary angiography and were found
to have no/minimal stenosis and had an outpatient
ECG within 30 days of angiography, with no PCI/
www.thelancet.com Vol 65 November, 2023
CABG before angiography or no ACS in structured
data (diagnosis codes) up to 3 years after angiog-
raphy. No/minimal stenosis is defined as:
a. ≤ 25% obstruction in all coronary arteries.

2. Underwent coronary CT angiography and were
found to have no/minimal stenosis and had an
outpatient ECG within 30 days of CT angiography,
with no PCI/CABG before CTCA or no ACS in
structured data (diagnosis codes) up to 3 years after
CTCA. No/minimal stenosis is defined as:
a. CAD-RADS score of 0 or 1 on CTCA.

Regional left ventricular (LV) akinesis as possible prior MI
A disease cohort was defined as any adult patient with
≥1 left ventricular akinetic segment found during
echocardiographic assessment of regional wall motion
abnormalities (RWMA), and an ECG on record within
30 days of echocardiography (Fig. 1C). Patients are
excluded from this cohort if they have diagnosis codes
indicating occurrence of ACS within 180 days of echo-
cardiography or LBBB up to 30 days after
echocardiography.

A control cohort was defined as any adult patient
with zero akinetic, hypokinetic, dyskinetic, or aneu-
rysmal segments, ever, on echocardiographic RWMA
assessment as well an ECG on record within 30 days of
echocardiography. In addition, patients were excluded if
they had a history of ACS anywhere in their lifetime, or
if they had left bundle branch block (LBBB) detected up
to 30 days after echocardiography.

Cohort characteristics are detailed in Table 1. Data
definitions for cohort identification and curation,
including the calculation of PCE scores, are detailed in
the supplement. Upon implementing cohort definitions,
there was natural overlap between positive cohorts
(Supplementary Table S1). At the ECG level, the largest
overlap was between Obstructive CAD and Regional LV
Akinesis positive cohorts, with 1850 ECGs shared be-
tween cohorts (6.85% of Obstructive CAD cohort, 1.26%
of Regional LV Akinesis cohort).

Calculation of 10-year ASCVD risk. The pooled cohort
equation (PCE) was used to compute 10-year ASCVD
risk at the time of ECG. For quantitative variables, such
as high density lipoprotein level, total cholesterol level,
and systolic blood pressure, etc., the nearest datapoint to
the ECG within 2 years prior to 1 year after an ECG was
used. For diagnosis data and smoking status, both
structured and unstructured data were leveraged as
described above. Race/Ethnicity information was ob-
tained directly from deidentified electronic health record
(EHR). Age at the time of ECG acquisition was used.
Treatment for hypertension was identified by requiring
a diagnosis for hypertension and the presence of a
prescription of an antihypertensive on record. The
calculation of 10-year ASCVD risk using the PCE was
implemented in Python.
3
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Fig. 1: Cohort definition schematics for the three ECG-AI models developed herein, which are further detailed in the Methods section. A)
Coronary artery calcium scoring from coronary CTs. B) Obstructive coronary artery diseases from coronary angiography, angioplasty and bypass
grafting. C) Resting left ventricular akinesis identified via echocardiography. ACS: acute coronary syndrome; CABG: coronary artery bypass graft
surgery, CAD-RADS: coronary artery disease reporting and data system, CT: computed tomography, ECG: electrocardiogram; LBBB: left bundle
branch block.
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Elevated CAC Score Obstructive CAD Regional LV Akinesis

Disease Control Disease Control Disease Control

Patients

Train 3752 6752 11,590 5888 35,220 54,123

Validate 314 529 964 478 2952 4590

Test 2190 3917 6809 3301 20,347 31,826

Total 6256 11,198 19,363 9667 58,519 90,539

ECGs

Train 8583 8873 14,694 8288 86,357 73,844

Validate 707 687 1255 655 7246 6289

Test 5038 5221 8415 4731 50,343 43,841

Total 14,328 14,781 24,364 13,674 143,946 123,974

Demographics

Age [median (IQR)] 65 (58–73) 54 (49–59) 69 (60–75) 58 (48–67) 70 (62–78) 61 (51–70)

Female 20.41% 47.2% 28.95% 52.47% 28.71% 51.16%

White 90.05% 79.68% 85.34% 87.97% 87.93% 85.95%

Black/African American 1.14% 2.73% 1.16% 3% 2.26% 4.22%

Other 0.78% 1.07% 0.93% 1.7% 1.22% 1.51%

Asian 0.41% 0.49% 0.51% 0.64% 0.46% 0.88%

Choose not to disclose 0.78% 1.84% 0.62% 1% 0.53% 0.85%

Native American/Pacific Islander 0.09% 0.2% 0.44% 0.55% 0.63% 0.5%

Unknown 6.3% 13.22% 10.44% 3.85% 6.47% 5%

Hispanic/Latino 3.06% 4.95% 1.12% 2.97% 1.82% 2.89%

Clinical characteristics at cohort entry

Chronic IHD 55.96% 5.14% 85.13% 33.57% 79.91% 17.77%

LDL-C, mean (mg/dL) (% data availability) 104.22 (73.66%) 117.94 (60.81%) 102.48 (75.87%) 105.12 (76.42%) 92.71 (77.11%) 107.31 (78.91%)

Lp(a), mean (mg/dL) (% data availability) 39.87 (18.16%) 30.73 (17.02%) 48.61 (4.3%) 36.11 (4.37%) 49.77 (3.63%) 36.88 (4.72%)

10-year ASCVD risk (%) (% data availability) 17.63 (12.16%) 6.54 (2.64%) 23.61 (21.33%) 10.35 (26.9%) 23.74 (18.82%) 13.85 (21.12%)

ASCVD: atherosclerotic cardiovascular disease; CAC: coronary artery calcium score; CAD: coronary artery disease; IHD: ischemic heart disease; LDL-C: low density lipoprotein–calculated; LV: left ventricular;
Lp(a): lipoprotein a.

Table 1: Characteristics of development cohorts.

Articles
Determination of occurrence of first ACS/CABG/PCI or death
in EHR. For analyses in which a composite event
representing acute coronary disease (ACS, CABG, or
PCI) or mortality were used as outcomes, first com-
posite event was defined as the first occurrence of a
clinical diagnosis of ACS or the first occurrence of
CABG/PCI in a patient’s structured and unstructured
EHR using the definitions provided in Appendix A. All-
cause mortality was determined from the EHR; gov-
ernment registries were not queried for death data
because this would require the reidentification of hu-
man subjects.

Model development
We trained separate convolutional neural networks
(CNNs) to detect CAC, Obstructive CAD, and regional
LV akinesis. The choice of architecture and training
methods are based upon previously described successful
applications of CNN architectures in the ECG-AI
literature.16–18 Each of cohorts are split into training
(60%), validation (5%), and testing (35%) datasets. To
ensure data integrity, the datasets are split at the patient
level, meaning each patient’s ECGs are exclusively
www.thelancet.com Vol 65 November, 2023
assigned to either the training, validation, or testing sets.
For the training process, models are trained using the
training dataset, while the validation dataset is utilized
for hyperparameter tuning.

The input data expected by the algorithm consists of
a 10-s signal with 12 leads, where each lead contains
5000 samples (sampled at 500Hz). Each CNN is struc-
tured with an input layer, followed by repeated blocks of
convolutional layers, an adaptive pooling layer, fully
connected layers, and a Softmax layer. Within each
block, a Batch Normalization (BN) layer is applied
before passing the data through the Rectified Linear
Unit (ReLU) activation function. We used strided con-
volutional layers to gradually reduce the input size while
simultaneously increasing the number of filters during
progression through the blocks, facilitating the extrac-
tion of meaningful features. Following the final con-
volutional block, the output is flattened using an
adaptive average pooling layer. The data then proceeds
through the dense, fully connected (FC) layers. Finally,
the output of the last dense layer is passed through a
Softmax activation function, producing the final vector
of output probabilities.
5
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During the training process, we use the AdamW
optimizer,19 setting the learning rate to 2e-5. Each model
is initialized with pre-trained weights derived from an
independently trained self-supervised learning (SSL)
model; the objective of this SSL model was to learn a
generic contextual representation of ECGs, and it was
trained on a dataset consisting of 6 million ECGs.20

Model analysis
The testing dataset, which consists of ECGs from the
35% of patients not in the training or validation datasets,
was used to assess the ability of ECG-AI to detect the
target condition. Because patients could contribute
multiple ECGs to the dataset, a bootstrapping approach
was employed to compute the receiver operating char-
acteristic curve and subsequent performance metrics
(AUROC, sensitivity, specificity). In this approach, per-
formance metrics are repeatedly computed during 50
rounds. For each round, a single ECG is randomly
selected for each patient, analyzed by ECG-AI, and
compared to ground truth. Performance metrics
computed from these results are averaged across rounds
to obtain a patient level metric.

Risk estimation
To understand the potential clinical utility of the ECG-
AI models, we examined several cohorts of patients.
We started from all patients in the EHR database with
at least one digital ECG waveform available (only
outpatient ECGs were used for these analyses),
excluded those that were part of the training or vali-
dation sets for model development, and identified the
following sub-cohorts:

1. Patients with evidence of primary care at Mayo
Clinic, including all of the following:

a. Residence in a state with Mayo primary care

presence.
b. Evidence of primary care in the EHR within 2

years of or during the observation window,
including one of the following:
i. Appointments with primary care, family

medicine, or general internal medicine.
ii. Clinical notes or ICD codes indicating a

wellness or annual exam.
iii. Evidence of primary care interventions,

including vaccines on the Centers for Dis-
ease Control and Prevention adult immuni-
zation schedule or standard of care
screening exams, within 2 years of or during
the observation window.

c. Patients were excluded if they had any of the
following indicators of ASCVD: ACS, peripheral
arterial disease, stroke, PCI, CABG, or carotid
artery intervention–before cohort entry.

2. A sub-cohort of #1 aged 40–79 and with sufficient
clinical data available within 2 years before to 1 year
after cohort entry to calculate ASCVD risk using the
PCE.2

3. A sub-cohort of #1 aged 18–39 with a data avail-
ability requirement identical to #2.

Event survival (acute coronary event and all-cause
death) analyses were conducted on cohorts 1–3. An
acute coronary event was defined as a composite
occurrence of ACS, CABG or PCI. Patients that did not
have a death date documented within the analysis time
period or did not have follow-up until or beyond the
time period were assumed to be lost to follow-up and
were censored from survival analyses at the time of last
encounter.

Comparison of clinical characteristics in risk-
modified patients
To understand the drivers of differences between ECG-
AI-based risk classification and the calculated PCE-
based risk, we compared clinical diagnoses and lab
test results on record around the time of ECG-AI
assessment of Cohort #2 above. For each ECG-AI
model, sub-cohorts were defined:

A. Patients with low (<5%), borderline (5% ≤ risk <
7.5%), or intermediate risk by PCE (7.5% ≤ risk
<20%) that are classified as CAD positive by ECG-
AI

B. Patients with intermediate (7.5% ≤ risk < 20%) or
high (≥20%) risk by PCE that are classified as CAD
negative by ECG-AI

We then identified co-morbidities enriched in cohort
A versus B in the 5 years prior to 1 month after ECG
acquisition date, using structured data. We computed a
rate ratio and chi square statistic to characterize the
difference of co-morbidity prevalence between cohorts.
Similarly, for lab results within ± 1 month with over
50% coverage of the cohorts, we computed the median
and interquartile range for each lab test in each cohort
and quantified the difference of the distribution of re-
sults between cohorts using Cohen’s D.21 For diagnoses,
we rank by the chi square statistic. For lab test results,
we limit to Cohen’s D ≥ 0.1.

Statistics
In general, for ECG-AI model development and anal-
ysis, patient assignment to the training, validation, or
testing datasets was random. To gauge effect size dif-
ferences for quantitative results, Cohen’s D21 was used.
Cohen’s D is a metric use to describe the effect size of
two distributions of data. It is computed by dividing the
difference between the group means of two distribu-
tions and dividing the result by the pooled standard
deviation the groups. Conventionally, a Cohen’s D of 0.2
marks a small effect size, 0.5 a medium effect size, 0.8 a
large effect size, and 1.3 a very large effect size. To
www.thelancet.com Vol 65 November, 2023
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compare the effect of ECG-AI classification on event
survival, including first acute coronary event or mortal-
ity, Cox proportional hazards modeling was used. For all
analyses, sample sizes were not pre-determined; rather,
all patients meeting the cohort definitions described
above were studied. Cohort sizes are detailed in Table 1
and Fig. 3.

Ethics
This research study involving deidentified EHR data of
patients was conducted in strict accordance with the
Health Insurance Portability and Accountability Act
(HIPAA) Privacy Rule. As the study involved only dei-
dentified data and did not involve human subjects or
require identifiable information, Institutional Review
Board (IRB) approval specific to this study was not
required and informed consent specific to this study was
not obtained. Patients that have opted out of use of EHR
data for research were not included in the study. No
personally identifiable information was used in the
study.

Role of the funding source
The funder was involved in the design and conduct of
the study and data management. All the authors had
access to the deidentified EHR records used for model
development and analysis.
Results
Individual model performance
Coronary artery calcium
The ECG-AI model was trained to discriminate pa-
tients with CAC ≥ 300 from those with zero coronary
calcification based on an ECG waveform alone and
achieved an AUROC of 0.88 in a test set consisting of
ECGs of previously unseen patients. At a threshold
selected by optimizing the difference between the true
positive rate and false positive rate (Youden’s J), the
sensitivity and specificity were 78.7% and 81.6%,
respectively. We also investigated the ability of the CAC
ECG-AI to discriminate lower levels of atherosclerotic
plaque burden. We computed the AUROC with the
disease label defined as CAC ≥ 1, CAC ≥ 10, or CAC ≥
100; the control label was kept as CAC = 0. The model
achieved AUROCs of 0.79, 0.80 and 0.84 respectively.
As expected, ECG-AI model scores and binary classi-
fications were correlated with elevated calcium scores
even in those patients with CACS between 0 and 300
(Fig. 2A).

Obstructive CAD
The ECG-AI model trained to discriminate patients with
obstructive CAD from a control group achieved an
AUROC of 0.85 as well as a sensitivity and specificity of
70% and 81.8% in the test dataset, respectively, at a
threshold that maximizes Youden’s J. ECG-AI model
www.thelancet.com Vol 65 November, 2023
scores and binary classifications were correlated with
the extent of occlusion as measured by CTCA (Fig. 2B).

Regional left ventricular akinesis as possible prior MI
The ECG-AI model trained to discriminate patients in
the test dataset with ≥1 akinetic segment from patients
with no akinetic, dyskinetic, hypokinetic, or aneurysmal
segments, ever, achieved an AUROC of 0.94 as well as a
sensitivity and specificity of 82.2% and 92.1%, respec-
tively, at a threshold that maximizes Youden’s J. ECG-AI
model scores and binary classifications were correlated
with the number of akinetic segments identified on
echocardiography (Fig. 2C). Within the excluded group
of patients with LBBB, the model achieves an AUROC,
sensitivity, and specificity of 0.90, 0.93, and 0.63,
respectively.

All results above are for patient-level classification, as
described in the Methods section. AUROC curves for
ECG-level classification are displayed in Supplementary
Fig. S1. Sensitivity analyses in Normal Sinus Rhythm
ECGs and ECGs interpreted as Normal are displayed in
Table 2, and sensitivity analyses in age/sex strata are
shown in Supplementary Table S2.

Relationship between model classification and ASCVD risk
factors
We examined the relationship between ECG-AI model
classification and known clinical risk factors for ASCVD,
including low density lipoprotein-cholesterol (LDL-C),
Lipoprotein(a) (Lp(a)), and the PCE score, across a broad
population by identifying all ECGs with paired risk
factor data points within −2 years to +1 year of ECG
acquisition for PCE score and −2 to +2 years for LCL-C
and Lp(a). Only the first ECG-risk factor pair was used
for analysis and patients that were members of the
training or validation datasets were excluded from
analysis. We used Cohen’s D to gauge the magnitude of
the difference between ECG-AI positive and negative
cohorts. A small effect size (Cohen’s D = −0.32) was
observed for the Regional LV Akinesis model, indicating
lower LDL-C in akinesis positive versus negative pa-
tients. Conversely, a small effect size (Cohen’s D = 0.19)
indicated slightly higher Lp(a) in Regional LV Akinesis
model positive versus negative patients. Across all
models, the PCE-score was considerably higher in ECG-
AI positive versus negative cohorts (Cohen’s D = 0.91,
0.96, 0.68 for CAC, Obstructive CAD, and Regional LV
Akinesis ECG-AI, respectively), an effect that held upon
age stratification (Supplementary Figs. S2 and S3).

ECG-AI false positive classifications have higher
cardiovascular disease burden
In order to understand what clinical features may have
driven positive classifications during incorrect pre-
dictions, we compared rates of co-morbidities and
medication prescriptions between the false positive and
true negative classifications of each ECG-AI model.
7
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Fig. 2: A) CAC ECG-AI model output correlates with CAC score and demonstrates an ability to discriminate elevated CAC scores. B) ObCAD
model output correlates with CAD-RADS score and displays and ability to discriminate elevated CAD-RADS scores. C) Regional LV Akinesis model
output correlates with number of akinetic segments and displays an ability to discriminate zero akinetic segments versus ≥1 akinetic segments.
CAC: coronary artery calcium, CAD: coronary artery disease, CAD-RADS: coronary artery disease reporting and data system; LV: left ventricular.
For box and whisker plots, the boxes represent the 25th through 75th percentile with the 50th percentile marked by the narrowing in between,
whereas the whiskers represent the 2.5th through 97.5th percentile.
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CAC model false positives, when compared to CAC
model true negatives, had higher mean age (58.6 versus
52.9) and were predominantly male (rate ratio,
RR = 1.6). In the minus 1 month to +3 month time
period around ECG-AI prediction, false positives were
enriched for aortic valve stenosis (RR = 11.2), morbid
obesity (RR = 5.2), atrial fibrillation (RR = 3.1), conges-
tive heart failure (RR = 6.9) and essential hypertension
(RR = 1.9). In the 3 months following ECG-AI predic-
tion, false positives had higher rates of prescription for
aspirin (RR = 1.6), losartan (RR = 2.8) and atorvastatin
(RR = 1.3). In the 3 months following ECG-AI
www.thelancet.com Vol 65 November, 2023
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Fig. 3: Event survival curves and hazard ratios for acute coronary events (ACS, CABG, or PCI) within a 3-year observation period in patients with
no prior ASCVD (acute coronary syndrome, peripheral arterial disease, stroke, PCI, CABG, or carotid artery intervention) and low (A), borderline
(B), intermediate (C), or high (D) ASCVD risk as determined by the pooled cohort equations (PCE). These results suggest an ability of ECG-AI to
risk stratify patients independently of the PCE and over shorter time periods. Risk stratification is also observed in patients under the age of 40
(E). Patients were censored upon loss to follow-up if there was no EHR evidence of survival beyond the observation period or death during the
observation period. For Hazard Ratios, the number in parentheses represents the 95% confidence interval. All patients were required to have
evidence of primary care at Mayo Clinic. “ECG-AI score” is defined as the number of positive results on the three disease-specific models.
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Coronary artery
calcium

Obstructive
CAD

Regional LV
Akinesis

AUROC 0.88 0.85 0.94
aYouden’s J threshold

Sensitivity 0.79 0.70 0.82

Specificity 0.82 0.82 0.92
a90% Sensitivity threshold

Sensitivity 0.93 0.90 0.90

Specificity 0.67 0.58 0.83
a90% Specificity threshold

Sensitivity 0.74 0.57 0.85

Specificity 0.89 0.90 0.90
bConventional ECG marker performance

Sensitivity 0.06 0.05 0.15

Specificity 0.97 0.92 0.96

Sensitivity analyses for ECG-AI

Normal sinus rhythm ECGs (by final interpretation)

Sensitivity 0.82 0.69 0.82

Specificity 0.81 0.85 0.93

Normal ECGs (by final interpretation)

Sensitivity 0.74 0.66 0.37

Specificity 0.87 0.84 0.98

AUROC: area under the receiver operating characteristic; CAC: coronary artery calcium score; CAD: coronary
artery disease; ECG: electrocardiogram; LV: left ventricular. aThresholds are calculated on validation datasets and
evaluated on testing datasets. bConventional ECG Markers: if any one of ST depression, ST elevation, Q wave, or
T wave inversion is identified in the signed ECG interpretation, the ECG is considered positive, otherwise it is
considered negative.

Table 2: ECG-AI model performance and comparison to conventional ECG markers of CAD.
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prediction, significantly more CT coronary angiogra-
phies (RR = 1.7), echocardiograms (RR = 1.3) and cor-
onary angiograms (RR = 7.7) were done in false
positives compared to true negatives.

Obstructive CAD model false positives, when
compared to Obstructive CAD model true negatives had
higher mean age (64.8 versus 55.8 years) and were
predominantly male (RR = 1.3). In the minus 1 month
to +3 month time period around ECG-AI prediction,
false positives were enriched for atrial fibrillation
(RR = 1.6), essential hypertension (RR = 1.4), aortic
stenosis (RR = 2.4), congestive heart failure (RR = 1.7)
and coronary atherosclerosis (RR = 1.8). In the 3 months
following ECG-AI prediction, false positives had higher
rates of prescription for hydralazine (RR = 2.4), clopi-
dogrel (RR = 1.1) and warfarin (RR = 1.3). In the 3
months following ECG-AI prediction, significantly more
echocardiograms (RR = 1.2) were conducted in false
positives compared to true negatives.

Regional LV Akinesis model false positives, when
compared to Regional LV Akinesis model true negatives
had higher mean age (67.1 versus 59.6) and were pre-
dominantly male (RR = 1.3). In the minus 1 month to +3
month time period around ECG-AI prediction, false
positives were enriched for coronary atherosclerosis
(RR = 2.2), atrial fibrillation (RR = 3.9), congestive heart
failure (RR = 7.5) and essential hypertension (RR = 1.3).
In the 3 months following ECG-AI prediction, false
positives had higher prescription rates for aspirin
(RR = 1.6), amiodarone (RR = 15.3), metoprolol
(RR = 2.1) and digoxin (RR = 6.1). In the 3 months
following ECG-AI prediction, significantly more CABG
(RR = 6.3), PCI (RR = 1.9) and coronary angiograms
(RR = 2.1) were completed in Regional LV Akinesis
model false positives compared to true negatives.

Ensemble ECG-AI classification identifies additional
risk for acute coronary events beyond the pooled
cohort equations
We assessed the ability of the ECG-AI models to identify
1) acute coronary events, which are defined as the
composite of ACS, CABG, or PCI; and 2) all-cause
mortality. To start, we identified patients that had evi-
dence of primary care at Mayo Clinic (Methods). Within
this cohort, we examined occurrence of composite event
and all-cause death over 3, 5, or 10-year observation
periods following the index ECG. Patients that did not
have a death date documented within the analysis time
period or did not have follow-up beyond the time period
were assumed to be lost to follow-up and were censored
from survival analyses at the time of last encounter. In
this broad cohort, which includes patients that may have
substantial disease burden but no known ASCVD, we
found that ECG-AI additively predicted composite event
and mortality (Supplementary Fig. S4): patients that
tested positive on 0, 1, 2, or 3 of the ECG-AI models had
sequentially higher rates of acute coronary events or
death. As expected, there was overlap between positive
classifications of the different ECG-AI models. Of the
Regional LV Akinesis positive ECGs, 95.6% were also
positive on the CAC model and 55.3% were positive on
the Obstructive CAD model (55.1% were positive on all
3 models). Of the Obstructive CAD positive ECGs,
97.7% were positive on the CAC model and 19.8% were
positive on the Regional LV Akinesis model (19.7% were
positive on all 3 models). Of the CAC positive ECGs,
32.4% were positive on the Obstructive CAD model and
11.3% were positive on the Regional LV Akinesis model
(6.5% were positive on all 3 models).

We next asked if the risk identified by ECG-AI has
clinical utility for the prediction of acute coronary events
in patients without known coronary disease, beyond
what is already offered by the PCE. We identified a
subset of patients in whom the PCE applies: patients
aged 40–79 with no prior ASCVD (ACS, PAD, stroke,
CABG, PCI, or carotid artery interventions) and strati-
fied this cohort by PCE score at cohort entry. We
examined occurrence of acute coronary events over 3, 5,
and 10-year observation periods, censoring patients as
described above (N = 72,278, 58,799, and 25,337 patients
remained uncensored for 3, 5, and 10-year periods,
respectively). In the full cohort, prior to stratification by
PCE score, hazard ratios for new acute coronary events
www.thelancet.com Vol 65 November, 2023
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in patients that tested positive on 1, 2, or 3 ECG-AI
models versus 0 models were:

• 3-year: 2.41 (2.14–2.71), 4.23 (3.74–4.78), 11.75
(10.2–13.52).

• 5-year: 2.25 (2.02–2.5), 4.09 (3.66–4.56), 9.79
(8.57–11.18).

• 10-year: 2.13 (1.89–2.39), 3.67 (3.26–4.14), 8.54
(7.39–9.87).

When the cohorts were stratified by the 10-year risk
for an ASCVD event as determined by the PCE, the
ability to risk-stratify by ECG-AI remained strongly
intact (Fig. 3A–D and Supplementary Figs. S5–S7).
Similar results were observed in a cohort of patients
under age 39 (Fig. 3E) and in cohorts stratified only by
age (Supplementary Figs. S8).

Comparison to standard of care evaluation for CAD
Within a cohort of patients that have evidence of pri-
mary care at Mayo Clinic, an LDL-C with blood pressure
recorded within −2 to +1 years of LDL-C, and no known
ASCVD prior to LDL-C, we examined the frequency of
standard-of-care testing for CAD, including ECG, stress
testing, and CTCA following their first qualifying LDL-C
result. As expected, ECG was ordered far more
frequently than either stress testing or CTCA
(Supplementary Table S3). Starting from the time of
cohort entry, we observed that ECGs were ordered in
36.3%, 47.7%, and 71.6% of patients over 3, 5, and 10-
year observation periods, respectively. Conversely,
stress testing was ordered for 9.3%, 13.4%, and 24.7%
of patients and CTCA was ordered for 0.4%, 0.6%, and
1.54% of patients. When examining the subset of pa-
tients that later had an acute coronary event within the
specified timeframe, patients received an ECG prior to
the acute coronary event in 57.6%, 61.8%, and 74.3% of
patients for the 3, 5, and 10-year observation periods,
respectively. Stress testing and CTCA were obtained
much less frequently prior to acute coronary event
(stress test: 22.2%, 26.2%, and 34.5%, and CTCA: 2.1%,
1.8%, 2.5%). Of the patients with ECGs available prior to
coronary event, over 60% tested positive on two or more
of the ECG-AI algorithms described herein and over
88% tested positive on at least one. Conversely, only
13.1%, 15.0%, and 18.0% of ECGs in the 3-, 5-, and 10-
year cohorts, respectively, were positive for one or more
conventional ECG markers of coronary disease (T wave
inversion, Q waves, ST depression, ST elevation).

Clinical characteristics of risk-modified patients
The ability of CAD ECG-AI algorithms to stratify a pa-
tient’s risk in an additive fashion raises the question of
what clinical factors are associated with ECG-AI-based
risk modification. We subset patients with a paired
ECG and PCE score into two groups: (A) Low or Inde-
terminate risk for ASCVD (<20%) but ECG-AI positive,
www.thelancet.com Vol 65 November, 2023
and (B) Indeterminate or High risk for ASCVD (>7.5%)
but ECG-AI negative. We compared diagnostic histories
in the 5 years before to 30 days after cohort entry in
cohort A versus cohort B for each of the 3 models
(Table 3), as well as laboratory results in the 30 days
prior to 30 days after cohort entry (Supplementary
Table S4).

Notable correlates of positive risk modification by
ECG-AI included atrioventricular block and obstructive
sleep apnea for the CAC model; congestive heart failure,
atrial fibrillation, valvular heart disease, and LBBB for
both the CAC and Regional LV Akinesis models; and
tobacco use disorder and impotence for obstructive
CAD.

Notable correlates of negative risk modification by
ECG-AI included post-menopausal state, hypercalcemia,
diverticulosis, and type 2 diabetes for Obstructive CAD.

Discussion
In this study, we developed three ECG-AI models to
identify CAD, including elevated CAC score, Obstruc-
tive CAD, and Regional LV Akinesis as a possible indi-
cator of a prior MI. The individual models had excellent
performance and good correlation with known clinical
and laboratory risk factors for ASCVD. We found that
the three models, when ensembled into a single model,
combined to provide additive information to a patient’s
standard-of-care PCE-based cardiovascular risk assess-
ment using a routine and affordable ECG test. Most
strikingly, ECG-AI identified patients with elevated
acute coronary event risk over timeframes as short as 3
years, even within cohorts already stratified by 10-year
ASCVD risk. We hypothesize that the underlying neu-
ral networks are identifying complex patterns associated
with CAD that enable the ECG-AI to detect microvas-
cular and subclinical or silent coronary disease that may
be present despite no prior ASCVD diagnosis on record.

The PCE is a foundational component of the current
clinical practice guidelines for primary prevention of
ASCVD.22 PCE is based on patient factors such as age,
sex, race, blood pressure, cholesterol, diabetes and
smoking history2 and is used in primary prevention to
stratify patients based on predicted 10-year risk for
ASCVD-related acute events. It informs patient-provider
discussions on risk prevention in patients between 40
and 79 years of age without a history of ASCVD. Statin
therapy is often recommended based on the results of
the PCE and ensuing patient-provider risk discussion
and shared decision making. For patients in the Inter-
mediate Risk category, CAC testing can also help
decision-making for initiating statins.22 PCE-based esti-
mations of 10-year ASCVD risk were significantly
higher in ECG-AI positive versus negative patients
across all models (Supplementary Figs. S2 and S3)
suggesting that the ECG-AI models may be used as
adjuncts to existing PCE-based estimations of risk in the
clinical setting. Furthermore, when examining
11
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Coronary artery calcium

Disease Risk increase Risk decrease bRate ratio aChi square

Patient # % Patient # %

First degree atrioventricular block 1397 4.94 67 1.01 4.90 207.45

Obstructive sleep apnea 4873 17.23 677 10.18 1.69 200.57

Atrial fibrillation 2326 8.22 218 3.28 2.51 195.27

Congestive heart failure 1173 4.15 66 0.99 4.18 156.77

Hyperlipidemia 16,677 58.97 4471 67.2 0.88 152.92

morbid obesity 2451 8.67 285 4.28 2.02 143.31

Tobacco use disorder 3615 12.78 556 8.36 1.53 100.30

Mitral valve insufficiency 715 2.53 52 0.78 3.23 76.51

Chronic kidney failure 472 1.67 27 0.41 4.11 61.03

Left bundle branch block 457 1.62 28 0.42 3.84 56.18

Obstructive coronary artery disease

Disease Risk increase Risk decrease Rate ratio Chi square

Patient # % Patient # %

Tobacco use disorder 980 13.84 2047 8.72 1.59 159.81

Coronary atherosclerosis of native coronary artery 299 4.22 435 1.85 2.28 130.30

Type 2 diabetes mellitus 1187 16.76 5362 22.84 0.73 119.32

Colonic diverticulosis 956 13.5 4213 17.95 0.75 76.48

Postmenopausal 127 1.79 902 3.84 0.47 70.17

Hypercalcemia 105 1.48 769 3.28 0.45 62.94

Impotence of organic origin 585 8.26 1343 5.72 1.44 59.41

Regional left ventricular akinesis as possible prior myocardial infarction

Disease Risk increase Risk decrease Rate ratio Chi square

Patient # % Patient # %

Congestive heart failure 632 22.63 730 2.36 9.58 2711.16

Dilated cardiomyopathy 181 6.48 42 0.14 47.67 1567.82

Left bundle branch block 248 8.88 256 0.83 10.71 1126.41

Atrial fibrillation 640 22.91 2362 7.65 3.00 735.59

Tricuspid valve disease 314 11.24 697 2.26 4.98 710.47

Cardiac pacemaker in situ 115 4.12 90 0.29 14.13 619.91

Mitral valve insufficiency 247 8.84 566 1.83 4.83 534.61

Hypertrophic cardiomyopathy 76 2.72 67 0.22 12.55 379.99

Pleural effusion 224 8.02 701 2.27 3.53 317.20

Paroxysmal ventricular tachycardia 92 3.29 153 0.5 6.65 277.86

aShown are the most significant differences (ranked by Chi square) in diagnosis code history within −5 years to +30 days cohort entry between two cohorts: Cohort A, Low
or indeterminate risk for ASCVD (<20%) but ECG-AI positive; and Cohort B, Indeterminate or high risk for ASCVD (>7.5%) but ECG-AI negative. bA rate ratio >1 indicates a
higher rate in Cohort A versus Cohort B.

Table 3: Clinical correlates of ECG-AI classification when discordant with PCE-based ASCVD risk.
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outcomes over 3, 5 and 10 years in patients without
diagnosed ASCVD, ECG-AI positive patients had higher
rates of mortality and MI compared to negative patients,
regardless of the model used (Supplementary Fig. S4).
In cohorts stratified by a clinically applicable PCE score,
in patients aged 18–39, and in cohorts stratified by age
alone, acute coronary event and mortality risk increased
stepwise with the number of positive ECG-AI results
(Fig. 3 A–E and Supplementary Figs. S5–S8). These
results suggest that ECG-AI models designed to identify
CAD can provide additional, previously unavailable in-
formation to a CAD risk assessment and therefore serve
as a powerful tool for MI risk prediction. The ability of
ECG-AI to predict MI risk in timeframes as short as
3-years is especially compelling because it may prompt
more aggressive, collaborative decision making to
definitively diagnose and treat high risk ASCVD.

ECG-AI is uniquely positioned to be implemented
quickly and widely due to the ubiquitous nature of the
12-lead ECG. We examined rates of clinical testing for
CAD in patients that did not have known ASCVD yet
went on to experience an acute coronary event within 3-,
5-, or 10-year timeframes. We found that ECGs were
performed far more frequently than stress testing or
CTCA. Over 88% of those patients tested positive on at
least one of the ECG-AI models described herein and
over 60% tested positive on at least two. Conversely,
fewer than 13–18% had conventional ECG markers of
www.thelancet.com Vol 65 November, 2023
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CAD. These results suggest that ECG-AI offers imme-
diate opportunity for increasing diagnosis rates of life-
threatening CAD.

We also sought to identify ECG characteristics the
models presented here might be using to identify CAD.
While neural networks like these are inherently “black
box”-like, we may gain insight into their function by
examining patterns in the characteristics of ECGs
associated with positive or negative ECG-AI classifica-
tions. These characteristics can be derived from auto-
mated ECG analyses, such as those performed by
manufacturer ECG analysis programs. Using the 3-, 5-,
and 10-year cohorts, we compared the values of 60+
lead-level parameters between ECG-AI positive and
negative classifications for each of the three models. For
the CAC model, ECGs classified as positive tended to
have increased QRS duration, lower T-wave amplitude,
reduced T-wave areas, depressed ST amplitudes, and
lower QRS balance when compared to ECGs classified
as negative (all effects reported had at least small to
medium effect sizes, Cohen’s D ≥ 0.45). For the
Obstructive CAD model, ECGs classified as positive
tended to have lower R-peak amplitude, lower QRS
balance, reduced T-wave area and depressed ST ampli-
tudes when compared to ECGs classified as negative
(effect sizes were smaller, with Cohen’s D ≥ 0.25). For
the Regional LV Akinesis model, ECGs classified as
positive tended to have longer QRS duration, lower QRS
balance, lower T-wave amplitude, depressed ST ampli-
tudes, and reduced T-wave areas (effect sizes were me-
dium or greater, Cohen’s D ≥ 0.5). While these patterns
are known to be associated with CAD, neural networks
are likely able to analyze them, as well as other patterns
not described here, in relation to one another in ways
that the human mind cannot efficiently accomplish.

This work has several limitations. First, the data come
from regions of the US that, though geographically
diverse, do not fully reflect the racial and ethnic diversity
of the US or global population. Further evaluation with
additional datasets are needed to validate the model per-
formance and generalizability of these novel and ensem-
bled ECG-AI models. Additionally certain ECG-AI
algorithms developed using the same dataset have
demonstrated generalizability across race/ethnicity.23 Sec-
ond, all disease and control cohorts had median ages at or
above 60; patients in which primary prevention is most
impactful, those under 55, are underrepresented. Third,
the analyses of the ability of the three ECG-AI models to
identify risk are limited by their retrospective, real-world
nature. The inclusion criteria for each patient in these
analyses was that they were evaluated by ECG and have
one in their EHR; such an encounter represents clinical
decision-making that is itself tied to risk in a patient. This
risk is reflected in the high baseline mortality rates in the
3, 5, and 10-year observational cohorts relative to the
general population. Nevertheless, the ECG-AI demon-
strated an ability to risk stratify within this population.
www.thelancet.com Vol 65 November, 2023
In summary, these data demonstrate that ECG-AI
has discriminant value at multiple points along the
spectrum of coronary disease. ECG-AI developed to
identify 1) elevations in CAC, 2) Obstructive CAD, and
3) Regional LV Akinesis as a marker of possible prior
MI are complementary and identify unique risk profiles.
ECG-AI disease classification corresponds to signifi-
cantly elevated PCE-derived 10-year risk and the indi-
vidual ECG-AI models combine to identify additive risk
for MI or death over timeframes as short as 3 years.
These data suggest that ECG-AI designed to detect CAD
may be able to support and inform clinical decision
making by adding another dimension of easily obtain-
able, point-of-care data to ASCVD risk assessments,
enabling providers to titrate the strength or speed of
subsequent intervention accordingly.
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