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Abstract
There has been rising interest in using model-informed precision dosing to pro-
vide personalized medicine to patients at the bedside. This methodology utilizes 
population pharmacokinetic models, measured drug concentrations from individ-
ual patients, pharmacodynamic biomarkers, and Bayesian estimation to estimate 
pharmacokinetic parameters and predict concentration-time profiles in individ-
ual patients. Using these individualized parameter estimates and simulated drug 
exposure, dosing recommendations can be generated to maximize target attain-
ment to improve beneficial effect and minimize toxicity. However, the accuracy 
of the output from this evaluation is highly dependent on the population phar-
macokinetic model selected. This tutorial provides a comprehensive approach to 
evaluating, selecting, and validating a model for input and implementation into a 
model-informed precision dosing program. A step-by-step outline to validate suc-
cessful implementation into a precision dosing tool is described using the clinical 
software platforms Edsim++ and MwPharm++ as examples.
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INTRODUCTION TO MODEL-
INFORMED PRECISION DOSING

In 2015, President Barack Obama launched the Precision 
Medicine Initiative that outlined efforts to move beyond 
the “one-size-fits-all” approach of modern medicine 
and into the realm of individualized, tailored dosing.1,2 
Precision medicine is the concept of designing therapeutic 
recommendations for an individual patient based on their 
demographics, clinical variables, and desired therapeutic 
outcomes.1–4

Model-informed precision dosing (MIPD) has been 
defined as a “state-of-the-art” science that falls under the 
umbrella of precision medicine.5,6 The goal of MIPD is to 
improve drug treatment outcomes in patients by achieving 
the optimal balance between beneficial effect and toxicity 
for the individual patient.3–7 This goal is achieved by lever-
aging available clinical data with dedicated pharmacomet-
ric software capable of applying mathematical models to 
recommend a personalized dose.3–7 These mathematical 
models are often developed with population pharmaco-
kinetic (PopPK) modeling using various methodologies 
that include but are not limited to nonlinear mixed effects 
modeling (NONMEM, NLME),8 nonparametric adaptive 
grid (Pmetrics)9 approaches, regression models, decision 
trees, and other algorithms.5 These models can be inte-
grated into precision-dosing software that can use the 
Bayesian estimation to facilitate MIPD. Bayesian estima-
tion is a statistical method that leverages prior knowledge 
(a priori information; i.e., a PopPK model) and observed 
information (a posteriori information; i.e., individual pa-
tient data) to determine the individual's pharmacokinetic 
(PK) parameters and relative uncertainty that best de-
scribes the patient's data. Once obtained, one can forecast 
a drug's concentration at a specific time (i.e., estimating 
a patient's concentration-time profile) or optimize a dos-
ing regimen to improve the target attainment for the given 
drug.10–13

PopPK modeling is a well-established, quantitative 
method to describe the PKs (and pharmacodynamics 
[PD], if applicable) of a drug at the population level.3,14,15 
The goal of PopPK modeling is to describe the PK prop-
erties of the given drug and identify intrinsic and extrin-
sic sources of variability that affect a drug's PK.3,14 This 
type of modeling provides us with a basic understanding 
of how the “average” or “typical” patient will behave, in 
addition to interpatient variability in drug disposition 
and parameter distributions. PopPK modeling entails sev-
eral components, including: (1) a dataset; (2) a structural 
model, often a compartmental model, describing the typi-
cal concentration-time profile within the population; (3) a 
covariate model quantifying the impact of patient-specific 
covariates on a drug's PK; and (4) error models delineating 

the between-subjects (interindividual) variability (BSV), 
between-occasion variability (BOV), and residual unex-
plained variability (RUV).6,16–18

Tutorials detailing the workflow for PopPK modeling 
have been previously discussed and are not within the 
scope of this tutorial.10,15,17–20 Rather, this tutorial will (1) 
highlight the importance of model selection for MIPD, (2) 
demonstrate how to select a model for MIPD, and (3) pro-
vide a step-by-step process to translate and validate input 
of a selected model into a precision dosing software prior 
to clinical implementation. This tutorial is intended to 
help clinicians and pharmacometricians understand how 
to critically analyze models for the implementation into 
clinical care or MIPD program. We will use the clinical  
PK/PD modeling software, Edsim++,21 and its preci-
sion dosing plugin, MwPharm++22 (Mediware, Czech 
Republic), as an example application for this tutorial. 
However, the framework in this paper outlines the steps to 
evaluate published models for use in any MIPD program, 
including but not limited to DoseMeRx,23 InsightRX 
Nova,24 and PrecisePK.7,25 A roadmap for incorporating 
an MIPD program into clinical care will be provided in a 
separate tutorial.

WHY MODEL SELECTION IS 
IMPORTANT

For MIPD to be used for decision making in the clinical 
world, dosing recommendations must ensure that thera-
peutic targets are accurately achieved in a timely fash-
ion, while also minimizing possible harm from toxicities. 
Concentrations that are too high or too low can have a 
critical impact on patient safety, outcomes, and therapeu-
tic decision making. The key to appropriate MIPD is using 
the right model for the right patient at the right time. 
Lessons learned from vancomycin PopPK modeling in the 
recent past highlight this concept.

Vancomycin is a commonly used antibiotic that plays 
a critical role in treating severe infections with Gram pos-
itive bacteria, especially methicillin-resistant organisms. 
It also has well known and clinically significant risk of 
causing kidney injury.26 The most recent consensus is 
that effectiveness of vancomycin is dependent on the area 
under the concentration-curve (AUC) to minimum inhib-
itory concentration ratio (AUC/MIC).27 Practice recom-
mendations have recently shifted from using trough-only 
dosing guidance to model driven Bayesian estimation of 
AUC.27,28 Whereas consensus recommendations suggest 
an “[…] approach to monitor AUC involv[ing] the use of 
Bayesian software programs, embedded with a PK model 
based on richly sampled vancomycin data […]”27 guidance 
on which model to use is less readily available.
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There are dozens of published PopPK models for van-
comycin, that greatly differ from one another in terms 
of patient population and clinical scenario in which the 
PK data were collected. Broeker et al.29 recently showed 
that for intermittent vancomycin dosing, there was sig-
nificant variability in the outputs of 31 different PopPK 
models for both a priori model prediction and a posteri-
ori Bayesian forecasting utilizing observed vancomycin 
concentrations from patients. The authors emphasize 
that each of these models were derived from data col-
lected from different patient populations, used different 
structural models, and had varying degrees of optimal 
study designs.

As PopPK models are increasingly being developed 
for many drugs, and practice is shifting toward the use of 
MIPD, this tutorial seeks to help clinicians, clinical phar-
macologists, pharmacists, and all members of a clinical 
team to choose the right model(s) to give the most accu-
rate predictions for their specific target patient population. 
This tutorial will provide a systematic method to evaluate 
a model that may be considered for use in a precision dos-
ing software for clinical use.

HOW TO SELECT A MODEL

What is the ideal model for MIPD?

An ideal model to use for precision dosing software is one 
that was developed in a similar population to the popu-
lation in which one intends to perform precision dosing. 
Dosing regimens and indications would also be similar. 
Ideally, the sampling strategy used to obtain data would 
yield both a large quantity and high quality of samples 
using assays that can be replicated at one's own institu-
tion. The published model would have a well-developed 
population modeling analysis plan described by the phar-
macometricians so that one can evaluate the structural 
model, error model, and covariates. In the following sub-
sections, we provide more details on what should be con-
sidered in the selection of a model.

Selecting the model based on the 
target population

One primary aspect to consider when evaluating a 
model for an MIPD program is the target patient popu-
lation that provided the data for the model. Ideally, one 
should select a population model that recapitulates the 
intended population in which precision dosing will be 
implemented. That is, the modeled populations have 
received care in a similar clinical care environment, 

have similar demographics, are of equal diversity, and 
are receiving the same dosing regimens via the same 
route of administration used for the same indication. 
However, given the heterogeneity in real-world patient 
populations, it is unlikely a published model will match 
perfectly with the intended population. Therefore, one 
needs to consider the generalizability and translatabil-
ity of the model toward the population of interest. If 
the selected model contrasts (i.e., published model de-
scribes adults, but intended population is in pediatrics) 
from the population of interest, one should use caution 
when implementing the model or should confirm that 
the model is suitable for their use by assessing its use on 
example data.

When considering whether the modeled population 
can serve to describe the intended population, one should 
consider the following30:

Distribution of ages in the population

•	 Age-specific physiology can lead to substantial dif-
ferences in PKs and PDs. The rapid physical growth, 
organ maturation, and ontogenesis (study of an organ-
ism's development) experienced early in life is physio-
logically unique to younger patients.31–33 Conversely, 
the physiology in mid- to late-stages of life can be 
impacted by comorbidities (polypharmacy), epigen-
etic effects, and slowed organ function34–36. These 
differences are often accounted for through allome-
try (weight) and age (e.g., postmenstrual age, organ 
maturation/deterioration, and ontogeny profiles) to 
account for differences in body size and organ func-
tion (maturation effect).37

•	 Even if the selected model does not exactly recapit-
ulate the population of interest, one can confirm 
the model's appropriateness by evaluating its perfor-
mance using example data from the intended popu-
lation then alter the model's equations to describe the 
data as needed.

Ethnicity and race of the population

•	 Although it is recognized that self-reported race is a so-
cial construct, it is important to consider the potential 
effect of ancestry and probability of genetic polymor-
phisms, which can lead to variations in PKs.38–40

•	 Depending on a drug's elimination pathway, the effects 
of race and ethnicity may be marginal, and a model that 
does not describe the effects of self-reported race or 
ethnicity could be fit-for-purpose. Conversely, race and 
ethnicity could predispose genetic polymorphisms that 



1830  |      TAYLOR et al.

alter a drug's elimination. If the selected model fails to 
include these effects for these select races and ethnici-
ties, then it is not fit-for-purpose in the intended popu-
lation. One could test the selected model's performance 
on example data from the desired population to confirm 
it is fit-for-purpose.

Dose amount, number of courses, route of 
administration, infusion duration, and time of 
administration, if applicable

•	 Differences in treatment strategies can result in altered 
PKs and PDs that limits the translatability to the in-
tended population.

○	 For intravenously administrated drugs: (1) Is the in-
fusion an intermittent infusion or a continuous infu-
sion? (2) Are there start/stop times recorded for the 
infusion? Are there differences in the infusion dura-
tion? (3) Is there a loading dose being administered 
prior to the maintenance dose? (4) What type of fluid 
(solvent) is being administered with the drug?

○	 It is important to consider the time of day that the 
treatment is administered. Depending on the drug's 
metabolic pathway, the PKs and PDs might be im-
pacted by the diurnal variation of various metabolic 
enzymes and transporters.41,42

•	 For enterally administered drugs: (1) How does the 
model describe any delay observed in absorption, if 
any? (2) Is food effect considered?43 Is the food status 
(fed or fasted) consistent among subjects included in 
the study? (3). Did the study use the formulation of in-
terest? Many drugs have various formulations, includ-
ing extended-release versus standard-release, and pill 
versus capsule versus liquid. (4) Did they use the same 
route of administration? Enteric tubes (e.g., nasogas-
tric tube and gastrostomy tube) may affect variability in 
absorption.

•	 If the selected model does not align with these various 
factors, then one should reconsider the applicability of 
the selected model as it may not be fit-for-purpose.

Indication being treated

•	 Disease state can affect PKs and PDs (i.e., critical illness 
vs. healthy volunteers).

•	 Different indications (e.g., osteomyelitis or meningi-
tis) can result in different dosing strategies and target 
exposures.

•	 If the selected model does not align with these various 
factors, then one should reconsider the applicability of 
the selected model as it may not be fit-for-purpose.

Comorbidities

•	 Certain comorbidities, like obesity, diabetes, and heart 
disease, have been shown to influence classes of medi-
cations, by either affecting the clearance (CL) or volume 
of distribution (V).

•	 Polypharmacy increases the likelihood of drug–drug in-
teractions (DDIs).

○	 Inducers
■	 Medications that induce, or increase, the activity 

of a given metabolic enzyme or transporter, which 
results in an increase in the metabolism or elimi-
nation of the drug.

○	 Inhibitors
■	 Medications that inhibit the activity of a met-

abolic enzyme or transporter, resulting in the 
delayed metabolism or elimination of the given 
drug.

•	 Organ dysfunction, particularly liver or kidney disease, 
may have significant effects on drug metabolism and 
CL, especially when extracorporeal support devices are 
required for CL.

•	 It is unlikely that the population for the selected 
model will share an identical list of comorbidities 
with the intended population. Therefore, it is im-
portant to be aware of these differences and how they 
may affect a patient's PKs, PDs, and interpretation 
of results when modeling patient data for an MIPD 
program.

It is likely that no model will represent the patient pop-
ulation of interest on all the aforementioned factors, so it 
is important to judge which factors are the most likely to 
affect PK and PD variability and most important to take 
into account.

Sampling strategy

After determining that the population of a model is 
an appropriate representation for the intended popu-
lation, one must also consider the study's sampling 
strategy.

Was the study retrospective or prospective in 
nature?

•	 PopPK models that are constructed via retrospec-
tive studies use clinical data that were likely not 
collected with the intention to describe the drug's 
behavior. With this potential limitation in mind, one 
should consider the sample size of the retrospective 
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population and the sampling strategy used. The origi-
nal sampling strategy may not have collected enough 
samples across the concentration-time interval for the 
given drug and therefore does not provide the optimal 
quality nor quantity to adequately describe the de-
sired PK parameters (see Sample size and D-optimal 
design below). Additionally, clinical data captured 
in this nature may have inaccurate times docu-
mented for the administered dose or collected sam-
ples due to busy clinical activities, resulting in biased 
concentration-time profiles. Collection of samples in 
retrospective studies may also be subject to errors of 
samples being drawn off the same line that the drug is 
infused or inadequate wasted blood, leading to higher 
concentrations.

•	 Retrospective studies may not demonstrate the same 
exclusion criteria that a prospective study would im-
plement. This design increases the likelihood of comor-
bidities and polypharmacy confounding the PK results. 
However, these variables can be explored during covari-
ate modeling.

•	 Conversely, prospective studies are often optimally de-
signed to collect appropriate PK samples. Furthermore, 
attention is often given when recording the times for 
dose administration and sample collection. It is im-
portant to note that some prospective PK studies are 
performed in healthy subjects, especially in early drug 
development. Depending on the nature of the intended 
disease state, PKs in healthy subjects may be different 
from that in the intended population.

•	 If prospective studies were performed using scavenged 
opportunistic sampling44,45 to limit blood draws in vul-
nerable populations (e.g., neonates, young children, 
and critically ill children), it is important to consider if 
the sample size and timing of sample collection were 
adequate to capture the entire concentration-time pro-
file and the variability.

•	 Sample size: Did the authors perform a power analy-
sis to determine the appropriate number of patients, 
doses, and samples needed to construct a reliable 
model? Did they incorporate an optimal sampling 
strategy over an appropriate time course to reliably 
address the specific PK parameters of interest?14 One 
should review the sample size justification in the 
original PopPK papers and determine if the quantity 
of samples per patient is adequate based on rich or 
sparse sampling when using the US Food and Drug 
Administration (FDA) guidance as a resource. If un-
able to determine the sample size, they should con-
tact the authors for more details. Additional guidance 
has been provided specifically for pediatric studies by 
the FDA.46,47

What is the PK parameter(s) or metric(s) of 
interest being investigated? Does the sampling 
strategy provide optimal design to accurately 
estimate the PK parameter(s) or metric(s) of 
interest?

•	 Are the authors interested in the maximum concentra-
tion (Cmax) and/or describing the absorption phase? If 
so, does the sampling strategy provide sufficient quality 
and quantity of samples to describe this process for a 
non-parenteral administered drug? Is concurrent in-
travenous data available to estimate absolute bioavail-
ability and evaluate for potential flip-flop kinetics?14,19 
These are helpful data, but not always available.

•	 Are the authors interested in the AUC for exposure-
response relationships, describing CL, or finding time to 
elimination threshold? If so, was an optimal sampling 
strategy used to optimally establish the exposure metric 
while limiting the number of samples?48

•	 Determinant optimal (D-optimal) design: Optimization 
of sample strategy can be used to determine the ideal 
number and timing of sample collection that accurately 
determines the PK profile of the drug.49 The D-optimal 
design is the most used criterion for optimization.50 
More information regarding the maximization of the 
determinant of the population Fisher information 
matrix and minimization of the variance–covariance 
matrix of estimation,49,51 as well as software for D-
optimal design,50 can be found elsewhere. In short, the 
D-optimal design can identify the timepoints that will 
provide the most information about the drug's PKs and 
help to minimize the number of samples needed for 
the study.

Data handling

It is important to evaluate how the authors handled the 
data before creating the model. Did the authors use all rel-
evant and available data? If the authors state an omission 
of data, is the rationale for the omission appropriate? Do 
patients with omitted data differ from remaining patients? 
Omitted data are often a result of being classified as an out-
lier.14 PopPK outliers often take two forms: (1) a true em-
pirical outlier and (2) a statistical outlier. A true empirical 
outlier typically results from an error in the data collec-
tion process. This can occur when the time of the admin-
istered dose or collected sample are incorrectly reported 
in the electronic health record, as a result of assay error 
producing drug concentrations that are not clinically fea-
sible, or inappropriately drawn samples (i.e., drawn from 
same line without adequate waste). Empirical outliers are 
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often omitted from the PopPK analysis to refrain from im-
pacting the PK parameter estimates. Statistical outliers are 
often visually identified during the review of goodness-of-
fit (GOF) plots and residuals. Great consideration needs 
to be given when determining if a statistical outlier should 
be omitted from the PopPK analysis15; typical omission 
results from a normalized weighted residual greater than 
five.14 Statistical outliers can result from empirical error 
or simply represent variability in the population, which 
needs to be explored. However, removing statistical outli-
ers for the sole purpose of improving the model's perfor-
mance is poor practice and would call into question the 
technical adequacy of the model.

Measured drug

Three details that need to be considered are (1) whether 
the PopPK model under review measured the amount of 
drug in the serum, plasma, or whole blood (some papers 
may use the terms plasma and serum interchangeably, 
which can lead to another source of variability52), (2) 
whether total concentrations unbound drug concentra-
tions were measured, and (3) whether the same type of 
assay is accessible at one's institution. Subtle differences 
in the type of sample analyzed, type of assay, and assay 
variability can result in differences in the measured 
drug. Therefore, when one attempts to incorporate the 
given model in an institution's MIPD program, there 
will be an increase in uncertainty when interpreting the 
results.

Structural model

The structural model, or compartmental model, is 
the first element of the model output that one needs 
to evaluate when reviewing a proposed model for an 
MIPD program. The structural model defines the typi-
cal concentration-time profile of the given drug and out-
lines the differential equations to provide estimates for 
each of the desired PK parameters.19,20 This fundamen-
tal step in the modeling process serves as the foundation 
for all succeeding steps – a misspecification or incorrect 
assumption at this stage can bias the findings from the 
model. When reviewing a structural model, one needs to 
consider the following:

What type of structural model was used?

•	 Were various structural models considered? Was justi-
fication provided for why the authors decided on the 

specific model they ultimately published?
•	 Does the selected model adequately describe the popu-

lation data?
○	 This step is evaluated visually by interpreting GOF 

plots. See Evaluation of model performance for addi-
tional information.

•	 Are there previously available data to support the use of 
this structural model?

•	 If the structural model is novel, do the authors provide 
statistical (and possibly physiological) rationale that 
supports this approach?

Covariate modeling

The covariate modeling process attempts to define the 
relationship between the PK parameters and patient-
specific variables.19 These covariates attempt to improve 
the description of the population by explaining ad-
ditional BSV in the PK parameters. The covariates in-
vestigated during this step in the modeling process are 
often outlined during the experimental design and can 
comprise both intrinsic and extrinsic sources of vari-
ability.19 Intrinsic sources of variability are those innate 
to the patient and can include age, sex, race, ethnicity, 
body size, and genetics.53 Variation in body size is often 
described using body weight and indexes parameters 
to a 70 kg patient. The principle of allometric scaling is 
often applied to body weight to capture the body size 
variations in the developing population of pediatric pa-
tients so appropriate comparisons to adult patients can 
be made. Variations in body size have been described by 
body surface area, which has often been selected for on-
cology drugs or drugs with a high dependence on renal 
function for elimination from the body. The use of either 
body weight or body surface area to describe variation 
in body size and serve as a size scalar for PK parameters 
needs to be empirically justified during the covariate 
modeling process. Extrinsic sources of variability are 
exogenously applied to the patient and can include the 
dose amount, dosing frequency, route of administration, 
concurrent medications, medication history (e.g., medi-
cation failure), and the institution providing the treat-
ment.53 The covariate modeling process is a dynamic 
step in the modeling building process. The identifica-
tion, quantification, and quantitation of meaningful 
covariates can provide key insights into optimizing treat-
ment outcomes and often personifies the “personalized” 
in personalized medicine. However, this step can also 
provide substantial model error if covariates are incor-
rectly incorporated into the model. When reviewing the 
covariate modeling for a prospective MIPD model, one 
should consider the following:
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How did they analyze covariates?

•	 How did they select the covariates for analysis? Was 
there a predefined analysis plan?

○	 The lack of a predefined analysis plan can introduce 
selection bias for the covariate analysis.

•	 Did they use a stepwise covariate approach19,20 or a full 
covariate modeling approach?19,20 If they used the least 
absolute shrinkage and selection operator (LASSO) ap-
proach, then do they demonstrate reproducibility?54 Is 
there sufficient power to quantify the effects of the se-
lected covariates?

○	 Although there is generally no preference in the 
method used to analyze covariates, the method 
should be explained and justified in accordance with 
good modeling practice.55

•	 Was co-linearity of covariates on PK parameters 
explored?19

•	 Were covariates tested on all PK parameters? Do they 
provide rationale if the covariates were tested on a spe-
cific PK parameter?

○	 Rationale can include objective values (Evaluation of 
model performance) or a support (predefined) analy-
sis plan.

Which covariates does the model include?

•	 Did they highlight the number of patients with 
the covariate? Is the covariate considered rare or 
common?

○	 It limits the generalizability and translatability of 
the given model if their equations for each PK pa-
rameter include a rare covariate that was measured 
in only a small percentage of patients included in 
the model.

•	 Which type of covariate: continuous versus categorical?19

○	 If continuous, is there good spread of the data?
■	 Does sampling provide a wide range of the covari-

ate? Or are variable values narrow, with limited 
range?

■	 Are there differences in the assay used to measure 
the continuous variable? Different assays, institu-
tions, or patient ages can create differences that 
alter the categorization of variables. For example, 
the below limit of quantification may be different 
between institutions and lead to different cutoff 
points for categorization of variables.

○	 If categorical, are there sufficient patients/samples 
in each group?
■	 Did they convert a continuous variable into a cate-

gorical variable? If so, is the categorization appro-
priate or clinically meaningful?

•	 Covariate significance
○	 Individual covariates are often added in a forward 

stepwise approach if the covariate reached the sta-
tistical significance criteria defined by the change in 
objective function value (∆OFV)19 of:
■	 1 degree of freedom:

•	 p < 0.05: ΔOFV of at least −3.841
•	 p < 0.01: ΔOFV of at least −6.635

■	 2 degrees of freedom:
•	 p < 0.05: ΔOFV of at least −5.99
•	 p < 0.01: ΔOFV of at least −9.21

○	 Although the inclusion of a significant covariate im-
proves the model's description of the data, it is im-
portant to determine whether the covariate carries 
a significant clinical impact. Discussing the results 
with a clinical team can help determine if a statisti-
cally significant finding is clinically meaningful.19,56

•	 Did they provide information on how they handled 
covariate data that was missing or below the limit of 
quantitation?

○	 Details on how to handle missingness can be found 
elsewhere.15,19,20

■	 Options include omitting observations with any 
missing data, imputing based on mean/median/
mode, regression imputation, or encoding miss-
ing data as their own variable in the model.

○	 If there are missing data, do their methods of han-
dling missing data make sense in accordance with 
the type of missing data (e.g., missing at random, 
missing completely at random, and missing not at 
random).57

•	 Are the covariates incorporated in the model readily 
collected at the study institution or does the institution 
have the infrastructure to collect them?

○	 If the covariates are not readily available at one's in-
stitution, do the covariates improve the model sig-
nificantly to justify the clinical cost to outsource the 
measurement of these covariates or to develop an in-
house method to measure the covariate?

•	 Does the model over-parameterize?
○	 Model over-parameterization occurs when a model 

incorporates too many model parameters to describe 
the population. The addition of several model param-
eters may improve the performance, but it also in-
creases the risk of over-fitting the data with a model 
that is too complex for its fit-for-purpose. This limits 
the model's generalizability and increases the pro-
spective variance surrounding parameter estimates. 
In brief, standard error less than 30% for fixed effects 
and less than 50% for random effects is considered 
acceptable.19

○	 The use of Akaike's information criterion (AIC) 
and Bayesian information criterion (BIC) can help 
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inform whether the inclusion of the covariate over-
parameterizes the model by penalizing the model for 
each added parameter.19,58

Are the covariates incorporated into the model 
in a reasonable manner?

•	 If included as a time-varying covariate, multiple sam-
ples over the entire time-course need to be collected in 
order make appropriate estimations.

•	 Does the model use a mechanistic approach to incorpo-
rate the covariate into the model, rather than relying on 
specific “reference” values for certain covariates (e.g., 
renal function)?

•	 If the model includes a covariate that uses a population 
reference value, how does that reference value compare 
to the population of interest?

○	 Example: Serum creatinine in high dose metho-
trexate (MTX): In one specific NONMEM model, 
the population reference value that adjusted clear-
ance based on the time-varying for serum creatinine 
corresponded to a typical value for a 4-year-old pa-
tient.59 However, adult patients usually have higher 
serum creatinine60—therefore, the model, without 
the use of Bayesian estimation, would have a ten-
dency to provide negative residuals, that is, slower 
CL and higher predicted concentrations than what is 
actually being observed due to the bias created by a 
low reference value.

Error modeling

Another key aspect in the model building process is the 
incorporation of an error model. There are two forms of 
“explained” variability: (1) BSV and (2) BOV. The BSV 
represents the degree of variability observed between pa-
tients and is added to the model's equations to describe 
the variability across patients.19 The BOV represents the 
degree of variability within a patient, but across multi-
ple occasions or drug courses/administrations and is in-
cluded in the model's equations to describe the variability 
in a patient's drug absorption, metabolism, and elimina-
tion across multiple administrations of a drug.19,61 The 
quantification of BOV is not as commonly investigated 
due to the quantity of sampling during each occasion and 
the longitudinal nature of these studies, but should be in-
cluded, if available, to improve the Bayesian estimates of 
PK parameters. How to incorporate BOV for MIPD has 
been previously addressed.61

Last, the RUV represents the PK variability within pa-
tients that cannot be explained by either the structural 

or covariate models.19 RUV can be incorporated into the 
model-building process via several different equations. 
Mould and Upton describe these models in detail,19 but, 
in brief, RUV can be applied as an additive error, propor-
tional error, exponential error or a combination of these 
error models. Although each of these applications have 
their advantages and disadvantages, often, the descrip-
tion of the population's RUV is empirically determined.19 
The importance of the error model cannot be understated. 
Therefore, one should consider the following when re-
viewing a prospective model's error model:

What type of error models were used?19

•	 How did the author's incorporate BSV?
•	 Did the model include BOV? If so, was the sampling 

strategy optimized to adequately characterize this 
variability?

•	 How did the author's incorporate RUV into the model?
○	 Did they use an additive, proportional, a combined 

approach, or an exponential model?
■	 Additive and proportional error typically viewed 

as a constant form of error into the model and 
often represents assay error.10,19

■	 Exponential error models are like propor-
tional error models but evaluate error on log-
transformed data. Exponential error models 
are also prone to the same over-weighting of 
higher concentrations like proportional error 
models. A way to address this over-weighting 
is to perform the log-transformed both sides 
approach.10,19

○	 Were different residual error models explored?
○	 Did the authors provide rationale for the used error 

models?
○	 How large are these error values?

■	 Large error values suggest that the model descrip-
tion of the data need improvement or the data 
have a lot of noise.

■	 If used in clinical practice, it is critical to recog-
nize that high variability will provide dosing rec-
ommendations or forecasted concentrations with 
a large confidence interval – therefore, lacking the 
possible precision needed for successful clinical 
use.

■	 If residual unexplained variability is large (i.e., 
>30%), the impact of observed concentrations is 
relatively low. When using the model for Bayesian 
estimation, a certain degree of intrinsic error 
should be assumed in observed concentrations, 
which is reflective of the validation of the assay. 
The assay variability is typically less than 15% at 
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most concentrations and less than 20% at the low-
est measurable concentrations.62

Shrinkage19

•	 Individual parameters that tend to shrink toward the 
population averages are typically seen in patients with 
sparse sampling.

•	 When the shrinkage is high (>20%–30%), individual 
data become less informative (individual predicted con-
centrations [IPREDs] and individual weighted residuals 
[IWRES]) and individual analyses need to be carefully 
considered.19 Instead, “simulation-based, diagnostic 
plots are not affected by shrinkage in a similar manner 
and can be more informative for diagnostic purposes 
when shrinkage is high.”19

Evaluation of model performance

The Structural model, Covariate modeling, and Error 
model sections all outlined important aspects to con-
sider when evaluating a model for an MIPD program. 
This final section will cover how to critically assess 
the prospective model's descriptive performance of the 
given population by evaluating the standard assess-
ments (e.g., GOF plots), simulation-based diagnostics, 
bootstrap analysis, and external validation. These as-
pects of model performance will provide confirmation 
that the developed model is reliable.

GOF plots

•	 GOF plots (Figure 1) illustrate how the model describes 
the data and is a visual method of assessing model bias 
and model misspecification19,63

•	 There are four typical GOF plots that evaluate a model's 
performance:

○	 IPRED (model predicted concentrations based on 
individual covariates and accounts for unexplained 
variability) versus observed concentrations.

○	 Population predicted concentrations (PREDs; model 
predicted concentrations based on individual covari-
ates but still contains unexplained variability) versus 
observed concentrations.

○	 Conditional weighted residuals (CWRES; a measure 
of difference between individual data and model pre-
dicted data) versus PREDs.

○	 CWRES versus time (time after last dose).
•	 Model Bias19,63,64

○	 Does the IPRED and PRED display good linearity 
with the dependent variable (DV)?
■	 Are the predicted versus observed concentrations 

in good agreement with the line of identity?
■	 Ideally, the relationship between predicted and 

observed should display linearity across all 
concentrations.

■	 If significant deviation from the line of identity 
is observed, then the model displays bias toward 
those concentrations.

○	 Does the CWRES display a zero-slope across PRED 
and time?

F I G U R E  1   Visuals of GOF plots and what biases may be elucidated on these plots. The left plot illustrates interpretations from the 
visual evaluation of a (population or individual) predicted concentration versus observed concentration GOF plot. Data that fall above 
the line of identity (yellow region) will generate a residual greater than zero, implying that the observed concentration is greater than 
the predicted concentration. This means that the model provided an overestimation of clearance or an underestimation of the predicted 
concentration. Data that fall below the line of identify (blue region) will generate a residual less than zero, implying that the observed 
concentration is less than the predicted concentration. This means that the model provided an underestimation of clearance or an 
overestimation of concentration. These colors and their implications are consistent when reviewing the right plot, which displays a graph 
that evaluates the concentration versus CWRES. CWRES, conditioned weighted residuals; DV, dependent variable; GOF, goodness of fit.
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■	 The plot of the CWRES versus population pre-
dicted and CWRES versus time should result 
in a line of best fit with a slope close to zero. 
A significant, non-zero slope suggests that the 
model displays bias for certain concentrations/
time.

•	 Model misspecification63,64

○	 Similar to model bias, except this refers to a sys-
tematic error in the model building process that 
results in nonlinearity of the GOF plots. Plots that 
display a sigmoidal or parabolic-like relationship 
with the line of best fit suggest a misspecification 
within the structural, covariate, or error models 
used.

Simulation-based diagnostics63

•	 Do the authors provide a simulation-based diagnostic 
plot of their model?

•	 Simulation-based diagnostics are used to confirm the 
parameter estimates and include posterior predictive 
checks (PPCs), visual predictive checks (VPCs), numer-
ical (numeric) predictive checks (NPCs) and normal-
ized predictive distribution error (NPDE).19,63

•	 The process entails simulating new data sets using 
the selected database design. Prediction intervals 
(usually 95%) are constructed from simulated con-
centration time profiles and compared with observed 
data.63 Visual comparisons between the simulated 
data and observed are made. There should be good 
consistency between the simulated data and the ob-
served data.

•	 VPCs can ensure that simulated data are consistent 
with observed data.19

•	 These simulation-based diagnostics are unaffected by 
high individual shrinkage.

Bootstrap analysis63

•	 Do the authors provide the results from a bootstrap 
analysis?

○	 Bootstrap methods are resampling techniques that 
provide an alternative for estimating parameter pre-
cision. They are useful to verify the robustness of 
standard approximations for parameter uncertainty 
in PopPK models19,65 Bootstrapping avoids paramet-
ric assumptions made when computing the lower 
2.5% and the upper 97.5% value of each parameter 
estimate.

•	 Results from the bootstrap analysis should be in good 
agreement with the derived model parameters.

External qualification (commonly called 
external validation)63

•	 Authors may also report the use of external qualifica-
tion, assessing their model's performance using a data-
set that was not included in the model-building process. 
There are prespecified criteria that should be used to 
determine the validity of an external qualification/
validation.

•	 This can either be done by using a split-data file analysis 
(large population datasets can be divided into a devel-
opment dataset and a test dataset – typically considered 
as internal validation) or a true external analysis using 
a dataset from a collaboration.63 It is recognized that ex-
ternal qualification can be difficult if the specific popu-
lation of interest is not very large and would take a long 
period to enroll new patients for validation.

○	 If the authors used a split-data approach, does each 
dataset provide sufficient sample size for model 
building?

○	 Do the authors provide an external qualification? If 
so, how did they select the external dataset? Do they 
provide sufficient materials to review the model's 
performance?

○	 The use of a collaborator's dataset is often an attempt 
at assessing the model's performance on a popula-
tion that differs from the original cohort.
■	 Consider the age, ethnicity, race, and all aspects 

that are relevant when looking at a particular 
model of the external population.

■	 If the model under review does not offer a popu-
lation with good generalizability, but uses a more 
generalizable/relatable external cohort for valida-
tion, this opportunity could lend itself to be a suit-
able model for your clinical needs.

One must consider the individual aspects above when 
critiquing the model's performance of the external dataset.

Considering a model to meet the unmet 
medical need

At this point, one has fully evaluated and critiqued the 
performance of a published PopPK model with the intent 
of integrating it with a precision dosing software for fur-
ther model validation and eventual incorporation into an 
MIPD program. Many of the above questions should be 
answered in the journal publication and should be con-
sidered simultaneously with priority given to certain con-
siderations over others depending on the purpose of using 
the model. If the publication does not provide answers to 
help evaluate the model fully, consider communicating 
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with the authors to obtain answers for key questions to en-
sure the model fits one's needs. Unfortunately, it is not un-
common that the drug of interest has few available PopPK 
models or the quality of the available models are poor. 
Therefore, one may be left wondering, “How do I know 
if an imperfect model is good enough?” or “Should I build 
my own PopPK model to address this medical need?”

An imperfect PopPK model would have to be consid-
ered on a case-by-case basis regarding its use in an MIPD 
program based on the drug, patient population, and avail-
ability of data from actual patients. A model developed 
using sound modeling practice could be performing poorly 
due to a suboptimal sampling strategy or a small popula-
tion in the original study. Models that fall under this cat-
egory could still be considered for model evaluation in a 
precision dosing software, but with caution.30 Imperfect 
models that do not follow good modeling practice should 
not be considered, as fallacies in their underlying assump-
tions can lead to unreliable results.30

Choosing to build one's own PopPK model is also an 
option. If one has access to high quality and a large quan-
tity of PK data within one's institution for a given drug 
and the available PopPK models are scarce or lack desired 
performance, then it might be worth developing a new 
PopPK model, especially because the model will be devel-
oped using PK samples from the intended population of 
the MIPD program. One can also leverage previously pub-
lished PopPK models as frameworks for initial structural 
and error models.19 Once an in-house PopPK model has 
been developed, it is still advised to evaluate the model by 
(1) comparing its performance to an external dataset of 
a published model and (2) using a precision dosing soft-
ware. The former point will encourage collaboration with 
the modeling group of a previously published model and 
allow access to an external dataset that was not used in 
the model. One can compare the two models as discussed 
above in the Evaluation of model performance, but can 
also expand upon those analyses with the inclusion of 
metrics for model bias (mean/median prediction error) 
and model precision (mean/median absolute prediction 
error and root mean squares error).64

MODEL EVALUATION IN A 
PRECISION DOSING SOFTWARE

Implementation and validation 
of pharmacometric models into 
precision-dosing software

Once a model has been evaluated and selected (e.g., a 
previously published PopPK model or a PopPK model 
developed in-house), the model can now be entered into 

an MIPD software. However, several considerations must 
first be made to validate that the parameters are correctly 
entered into the software prior to clinical implementation. 
We outline the following steps to ensure the accurate entry 
of the parameters for the PopPK model into the precision 
dosing software and that the outputs (individualized PK 
parameters and concentration-time profiles) are reliable: 
(1) extract model parameters from the literature, (2) define 
parameters, (3) define residual error, (4) define covariates 
and covariate parameter equations, (5). define the refer-
ence patient, (6) implement covariate models, (7) design 
and execute test scenarios, (8) confirm the plausibility 
of model output, and (9) visually validate concentration-
time profiles. For this tutorial, we use Edsim++21 and 
MwPharm++22 (Mediware, Czech Republic). Edsim++ 
uses an object-oriented graphical user interface to allow 
for users to create PopPK and PK/PD models within the 
program. The defined model can then be imported into 
MwPharm++, an MIPD tool that has a user-friendly in-
terface that is accessible to pharmacometricians and cli-
nicians, for implementation into clinical care. Although 
this paper precludes a complete tutorial on Edsim++ and 
MwPharm++, these steps are applicable to any precision 
dosing software. The Supplementary File outlines each of 
these steps using an intravenous one-compartment linear 
vancomycin model with combined proportional and addi-
tive unknown residual error by Roberts et al.66 This model 
has been previously evaluated against other models and 
performed satisfactorily.67 Further, this Supplementary 
File can serve as a template for validating other PopPK 
models in an Excel spreadsheet for implementation into a 
precision-dosing software.

Extract model parameters 
from the literature

First, we extract the final model parameters of a PopPK 
model of vancomycin from the literature. We find it easi-
est to screenshot the final parameter estimates from the 
paper of interest and embed them into an Excel spread-
sheet, in addition to the reference for the paper. Generally, 
the parameters are often found in a table, along with boot-
strap estimates, as in the vancomycin model.66

Define parameters

The standard PK parameters from the paper should be tab-
ulated into the Excel spreadsheet and can be referred to as 
the Standard Parameter table. For this example, the model 
defines two fixed effects, CL and V, which have THETA 
(or median) values of 4.58 L/h and 1.53 L/kg, respectively. 
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The BOV, represented as the SD; BSV, represented as the 
coefficient of variation (CV%); and units should also be 
calculated or copied from the paper (Table  1). As a re-
minder, SD = CV%/100 * mean because SD may not be 
reported.

Define residual error

The residual error from the model was best explained 
using a combined proportional and additive random error 
component. The additive error and proportional errors 
were 2.4 mg/L and 0.199, respectively, and should be tabu-
lated (Table 2).

Define covariates

Covariates can explain a significant amount of individual 
patient PK variability and are often independently esti-
mated or included in a model as a normalized value on 
the PK parameters of a model. In this example, accounting 
for creatinine clearance normalized to body surface area 
(CLcrN) on CL and body weight (BW) on V improved the 
estimations of the model. Similar to defining the standard 

PK parameters, the covariates should be tabulated in the 
Excel spreadsheet and can be referred to as the Covariate 
table (Table  3). We recommend including a column for 
the individual patient values, which can be adjusted based 
on actual patient values, in addition to the reference pa-
tient values used from the paper and covariate units. For 
this specific case, the CLcrN reference value is 100 mL/
min/1.73 m2, which was determined by noting that the 
value is divided by 100 in the CL equation. Because a refer-
ence BW is not used in any of the covariate equations (i.e., 
BW is not normalized by a certain value), we chose 70 kg, 
which is a standard reference weight for adults (see more 
details see the section “Define the Reference Patient”).

Define parameter equations with  
covariates

All equations that were used to define the final population 
model should be included as formulas in the Excel spread-
sheet for reference. These two equations, as represented in 
Roberts et al.,66 are as follows:

Define the reference patient

Defining the reference patient of a model can often pre-
sent challenges and requires reviewing the parameter 
equations and population demographics. For covariates 
that are normalized to a reference value, one can de-
duce the reference covariate value. In the case of Roberts 
et al.,66 CLcrN is normalized to 100 mL/min/1.73 m2, thus 
the reference patient has a CLcrN of 100 mL/min/1.73 m2 
and has a vancomycin CL of 4.58 L/h. For those covariates 
that are not normalized to a reference value, the next best 
step is to use the median value of the population. If the 
median value is not provided in the demographics’ table 
of the study, it is important to contact the authors of the 
model for this information. Another option, specific to 
weight, is to use a standard value of 70 kg for adults. In our 

CL = 4.58 ×
CLcrN

100

V = 1.53 × BW
T A B L E  1   Final model standard parameter estimates.

Parameter Mean SD CV (%) Unit

CL 4.58 1.782 38.9 L/h

V 1.53 0.572 37.4 L/kg

Note: Adapted with permission from “Vancomycin dosing in critically ill 
patients: robust methods for improved continuous-infusion regimens,” by 
Roberts et al.66

Abbreviations: CL, clearance; CV (%), coefficient of variation; V, volume of 
distribution.

T A B L E  2   Error model parameters.

Parameter Value Unit

Additive 2.4 mg/L

Proportional 0.199 –

Note: Adapted with permission from Roberts et al.,66 volume of distribution. 
Error model parameters are assumed to not be log-transformed.

Covariate
Individual patient 
value

Reference patient 
valuea Unit

CLcrN 100 100 mL/min/1.73 m2

BW 70 70 kg

Note: Adapted with permission from Roberts et al.66

Abbreviations: BW, body weight; CLcrN, creatinine clearance normalized to body surface area.
aSee section on reference patient for more details on reference patient values.

T A B L E  3   Final model covariate 
values.
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example, the BW in the V equation is not normalized by 
a standard BW, so we selected 70 kg as the reference but 
we could have selected the median weight of the popula-
tion found in the manuscript (74.8 kg). Thus, the reference 
patient for our model has a weight of 70 kg with a vanco-
mycin V of 107.1 L.

Implement formulas for covariate effects 
to determine the parameter formulation

After defining all PK and covariate parameters from 
the model of interest, the equations we previously de-
fined from the paper can be implemented to calculate 
the relative effects of each covariate on the CL and 
V. Referencing the population median (THETA) esti-
mates for the PK parameters (Table  1) and covariate 
equations, we can calculate the effect of individual pa-
tient covariate values on the population CL and V. In 
the Excel spreadsheet, two cells corresponding to the 
calculated covariate effect (i.e., the new PK parameter 
value as a result of a specific covariate value's effect) 
can be created under the Standard Parameter table. 
If the value of the covariate is changed relative to the 
reference value in the Covariates table, this change in 
effect in the Standard Parameter table will be calcu-
lated. For example, if a patient has a CLcrN of 120 mL/
min/1.73 m2 and BW of 62.5 kg, the calculated covariate 
effect for CL and V would be 5.496 L/h and 95.625 L, 
respectively (Table 4).

After implementing the formulas to calculate the co-
variate effects, an additional column to calculate the 
overall effect on the population CL and V is available, 
denoted as the “Parameter Modulation Effect” (i.e., the 
fold-increase or -decrease in the PK parameter as a re-
sult of a specific covariate value's effect) in the Standard 
Parameter table. These values are determined by dividing 
the calculated covariate effects by the mean population 
CL and V accordingly. Again, using a patient with a CLcrN 
of 120 mL/min/1.73 m2 and BW of 62.5 kg, the overall pa-
rameter modulation effect for the CL is 1.2 and the V is 
62.5 (Table 4).

Design and execute test scenarios

At this point, we can create and enter the model param-
eters from Roberts et al.66 into Edsim++. Figure 2a shows 
the developed, object-oriented model in Edsim++, along 
with the defined CL (Figure  2b) and V (Figure  2c) pa-
rameters with associated covariates, CLcrN and BW, re-
spectively. In order to validate that the parameters were 
correctly inputted into our precision dosing software (i.e., 
model qualification), we can create test scenarios in the 
Excel spreadsheet that can be compared to the values in 
Edsim++. These test scenarios are provided in the Excel 
spreadsheet and Table 5. Test 1 shows the calculated ef-
fects that correspond to the reference values, which are 
the normalized covariate values for CLcrN (e.g., 100 mL/
min/1.73 m2) and BW (e.g., 70 kg) on the CL and V, re-
spectively. This can serve as a comparator to subsequent 
test scenarios where the individual patient covariate value 
is adjusted to be different from the reference values, as 
shown in tests 2A, 2B, 3A, and 3B. For example, in test 
2A, the CLcrN for the individual patient covariate value 
was kept at 100 mL/min/1.73 m2, whereas the BW was 
changed to 35 kg, resulting in a calculated covariate effect 
for the V to be 53.55 L and a parameter modulation effect 
of 35. Although this scenario is a simple instance of this, 
where there was a 50% reduction in the V, these effects 
can become more complex if the final model parameter 
equations contain multiple covariates. Therefore, we rec-
ommend creating scenarios for each covariate that was 
included in the final model of the paper. The values from 
the Excel spreadsheet can be compared to our developed 
model in Edsim++ to validate that there are no data entry 
errors and the Edsim++ model is performing correctly.

Confirming the plausibility of model  
output

When assessing and testing a model for possible clinical 
use, one must consider the outputs the model generates 
for a patient of interest against what might be reasona-
bly expected for the model “reference” patient. In many 

T A B L E  4   Calculated covariate and parameter modulation effects.

Parameter Mean SD CV (%)
Covariate Applied to 
Parameter

Patient 
covariate value

Calculated 
covariate effect

Parameter 
modulation effect

CL (L/h) 4.58 1.782 38.9 CLcrN (mL/min/1.73 m2) 120 5.496 1.2

V (L/kg) 1.53 0.572 37.4 BW (kg) 62.5 95.625 62.5

Note: Adapted with permission from Roberts et al.66

Of note, this table combines the “Standard Parameter” Table and “Covariates” Table in the Supplementary File Excel Spreadsheet.
Abbreviations: BW, body weight; CL, clearance; CLcrN, creatinine clearance normalized to body surface area; CV (%), coefficient of variation; V, volume of 
distribution.
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F I G U R E  2   (a) Object-oriented diagram of Roberts et al., 201166 intravenous one-compartment linear vancomycin model defined 
in Edsim++. Each object corresponds to various PK, covariate, or miscellaneous components to define the PK parameters for a model 
of interest. The purple circle (“IV”) represents the intravenous vancomycin infusion, the green square (“C01”) represents the central 
compartment and V of the model, and the blue octagon (“RE”) represents the renal CL. The gray person (“P”) contains information about 
the individual and population (reference) patient and is linked to a light blue trapezoid (“CLcrN”) defining the CLcrN covariate. The two, 
light green rhombuses (“REF” and “AUC”), and pink rhombus (“PK”) correspond to additional parameters for the model (e.g., target 
concentration monitoring). (b) Screenshot of model parameters corresponding to object “RE,” with “CLcrN” applied as a covariate on the 
CL. (c) Screenshot of model parameters corresponding to object “C01,” with the covariate BW applied as a scaling function on the V. AUC, 
area under the concentration-curve; BW, body weight; CL, clearance; CLcrN, creatinine clearance normalized to body surface area; PK, 
pharmacokinetic; RECL, renal clearance in L/h; REF, reference model parameters; V, volume of distribution.
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models, the reference patient is a healthy patient of a spe-
cific weight and other covariates, whereas the test patient 
(reflecting the particular target population of interest for 
model use in the clinical world) may have non-mean val-
ues of these covariates due to various clinical reasons (e.g., 
organ dysfunction, sepsis, or comorbid conditions, for ex-
ample). Comparing the PK outputs between the patient of 
interest and reference patient allows a model user to have 
a frame of reference for when a model makes real-world 
sense, versus when there may be an error somewhere 
in how the model was entered or derived. For example, 
a patient with acute kidney injury and creatinine above 
baseline should have lower drug CL and thus higher drug 
concentrations across a dosing interval when compared to 
a reference patient with normal kidney function.

There are two specific considerations to highlight 
when using a model for pediatric purposes: the use of al-
lometric scaling to relate patient size and CL, and the use 
of maturation effect functions describe the impact of de-
velopment in organ functions on CL in infants and young 
children. Ideally, one can select a pediatric-specific model 
that already incorporates allometric scaling and/or matu-
ration effect. However, if such a pediatric-specific model is 
unavailable, extrapolation from an adult model by incor-
porating allometric scaling and maturation function often 
works enough to fit-for-purpose.68 A recent 2016 study 
looked at published models for midazolam, a classically 
hepatically cleared medication, and gentamicin, a classi-
cally renally cleared medication, to see if any of their de-
rived age or maturation parameters performed better than 

standard allometric scaling of CL (allometric weight expo-
nent of 0.75) with sigmoidal maturation function (estimat-
ing time in weeks of postmenstrual age to reach half of the 
mature value), and found that the standard performed just 
as well as models that customized size and maturation as 
parameters.68 As models are entered into MIPD software, 
it can be to the user's advantage to practically add an al-
lometric scale and/or maturation effect function if not al-
ready incorporated into the published model.

Visual validation of concentration-time  
profiles

The Excel spreadsheet provided allows for validation of 
only the covariate model. To further ensure that the all 
the model components implemented within the MIPD 
software are appropriately estimating the drug's con-
centration, we can map the coordinates corresponding 
to the concentration-time profile from the published 
PopPK model (a process known as “digitization”) and 
visually compare these coordinates to what is out-
put by the precision-dosing software. Several publicly 
available programs exist to digitize graph data, such as 
“WebPlotDigitizer”69 or “ScanIt.”70 Using figure  2 from 
Roberts et al.,66 we digitize the concentration-time curves 
for the 5 mg/kg loading dose over 1 h and 40 mg/kg load-
ing dose over 3 h, followed by a 35 mg/kg/day continuous 
infusion. The digitized points should capture the entire 
PK profile to ensure adequate comparison. Then, using 

T A B L E  5   Test scenarios evaluating covariate effects on final model parameters.

Parameter
Covariate applied to 
parameter

Individual patient 
covariate value

Excel calculated 
covariate effect

Parameter 
modulation effect

Test 1 (Reference values)

CL CLcrN 100 4.58 1

V BW 70 107.1 70

Test 2A

CL CLcrN 100 4.58 1

V BW 35a 53.55 35

Test 2B

CL CLcrN 100 4.58 1

V BW 140a 214.2 140

Test 3A

CL CLcrN 50a 2.29 0.5

V BW 70 107.1 70

Test 3B

CL CLcrN 150a 6.87 1.5

V BW 70 107.1 70

Abbreviations: BW, body weight; CL, clearance; CLcrN, creatinine clearance normalized to body surface area; V, volume of distribution.
aIndicates individual patient value differs from the reference patient value.
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the parameters and corresponding loading dose from 
the paper, we simulated the concentration-time curve 
in Edsim++ based on the reference patient (i.e., a pa-
tient with a body weight of 70 kg and CLcrN of 100 mL/
min/1.73 m). The digitized points from the paper and the 
simulated concentration-time curve from Edsim++ can 
then be overlaid to determine whether the implemented 
model reflects the published PopPK model (Figure 3). If 
the concentration-time curve adequately matches the dig-
itized points, we can assume the model was correctly im-
plemented into Edsim++ and is now validated for clinical 
implementation using MwPharm++.

After completing the process of selecting and val-
idating models through the steps we have outlined, it 
is important to note that a model's performance should 
continually be evaluated after implementation. As Ron 
Keizer and colleagues have commented, “We recommend 
evaluation of the predictive ability of the intended model 
for its intended use before applying it in the clinic, and 
to continuously monitor it once deployed.”30 Newly gen-
erated data can be incorporated into existing models for 
better predictions and new models published in the liter-
ature should be evaluated for possible incorporation into 
precision dosing tools.

MIPD APPLICATIONS

Through this tutorial, we hope to have demonstrated how 
to select and validate the input of a PopPK model to be 
implemented for MIPD for a multitude of drugs in various 
clinical scenarios. In our institution, we have used MIPD 
for clinical applications of multiple drugs, including siroli-
mus,71 methotrexate,72 hydroxyurea,73 morphine in neo-
nates,74 and infliximab.75

Challenges of MIPD

Although there are numerous MIPD applications 
that can be realized, there are several barriers to 

implementation. In order to apply MIPD to patients in 
real time, samples must be available for concentration 
measurements. Depending on the drug of interest, as-
says can be quite expensive, time-consuming, or diffi-
cult to access. Some institutions might have the ability 
to run assays in-house, but this also takes time to vali-
date and requires significant financial support. Most 
drug monitoring assays require a blood draw which can 
be limiting due to lack of consent or daily blood draw 
limits based on patient size, particularly in critically ill 
patients who require many blood draws for clinical care. 
Selective sampling strategies, such as scavenged oppor-
tunistic sampling or sparse sampling,44,45 can greatly 
minimize the amount of blood draws needed for inform-
ative therapeutic drug monitoring that can be applied to 
MIPD. The lack of standardization and training in the 
field of MIPD is a challenge preventing widespread ap-
plications. Finally, when considering the use of MIPD in 
pediatric patients, it is important to recognize that the 
majority of the data used to generate the models comes 
from adults which generates for some inherent discrep-
ancies based on differences in physiology.

Solutions to move MIPD forward

Collaborative programs that integrate groups with ad-
vanced training in clinical pharmacology with clinicians 
can bring together individuals to best tailor models for 
effective implementation of MIPD. One such example 
of bringing “bench to bedside” is the PK Consult ser-
vice in place at our institution. This service is accessible 
to clinicians for real-time analysis of individual patient 
PK data and provides recommendations for dose altera-
tions to achieve desired target exposure to ensure ad-
equate beneficial effect while minimizing toxicity. The 
consult service allows for dose optimization of high-risk 
drugs, including immunosuppressive agents in post 
solid organ transplantation or auto-immune disease 
patients, biologic agents, chemotherapeutic drugs, and 
other drugs in patients that may have underlying organ 

F I G U R E  3   Overlay of simulated 
concentration-time curves from 
Edsim++ and digitized points from the 
concentration-time curves for the 5 mg/kg 
loading dose over 1 h and 40 mg/kg  
loading dose over 3 h, followed by a 
35 mg/kg/day continuous infusion from 
Roberts et al.66 to validate accurate input 
of model into Edsim++.
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dysfunction. This consult service will be described in a 
future tutorial.

In conclusion, we have outlined a path to the devel-
opment of robust and dynamic model informed precision 
dosing using Edsim++ and MwPharm++ and as an ex-
ample in efforts to provide personalized care to patients to 
improve outcomes.
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in the Supporting Information section at the end of this 
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