Breast cancer |
HER-2 Positive breast cancer cell lines |
2–100 μM |
NFκB ↓ Unique anticancer agent MAPK or ERK 1/2 phosphorylation × |
(
Sehdev, Lai and Bhushan, 2009) |
MCF-7 human breast carcinoma cells |
10–50 μM |
Cell cycle apoptotis + DMBA × |
(
Han
et al., 2006) |
Human granular luteal cells |
10–100 nm |
Cyp19 enzyme ↓ Have role in aromatase activity |
(
Rice, Mason and Whitehead, 2006) |
MCF-7 breast cancer cell lines |
500 nm |
Anti-oestrogenic property |
(
Collins, McLachlan and Arnold, 1997) |
CTLL-2 cells (Murine IL-2 dependent T cell clone |
5–50 μM |
Topoisomerase II × |
(
Azuma
et al., 1995) |
Prostate cancer |
LNCaP cell lines |
0.5–50 μM |
testosterone-UDPGT ↑ PSA ↓ Androgen metabolism × |
(
Sun
et al., 1998) |
PC-3 (p53 mutant) and LNCaP (p53 wild type) |
100 μM |
p21 ↑ PLK-1 ↓ Cell apoptosis + |
(
Seo
et al., 2011) |
DU-145 and LNCaP |
8.0 μg/mL for LNCaP 9.0 μg/mL for DU-145 cells |
EGF-stimulated growth × tyrosine kinase events × |
(
Peterson and Barnes, 1993) |
Red clover diet Model (Isoflavones constitute 1.26% of the diet) |
Biochanin-A 5.74 mg isoflavone/g pellet |
ER-β and E-cadherin levels ↑ Cancer formation × |
(
Slater, Brown and Husband, 2002) |
LNCaP cells Athymic mice with LNCaP flank tumors |
10 μg/mL 400 μg for animal xenographs model |
DNA fragmentation ↑ p21 and cyclin B ↓ Tumor size and incidence ↓ |
(
Rice
et al., 2002) |
Fibroblast cell |
100 μg/mL |
5 α-reductase isozymes × hormone-dependent tumours ↓ |
(
Evans, Griffiths and Morton, 1995) |
LNCaP cells and DU145 cells, |
20–100 μM |
TRAIL-associated cell death NF-κB × |
(
Szliszka
et al., 2013) |
PC-3, LnCaP, and DU145 |
100 μmol/L |
Cell proliferation × Growth and metabolism × |
(
Hempstock, Kavanagh and George, 1998) |
Lung cancer |
95D and A549 cancer cells injected to male nude mice |
Biochanin-A IP 15,60 mg/kg group of A549 18,75 mg/kg group of 95D |
Cell proliferation of lung cancer cells × |
(
Li
et al., 2018). |
Human lung adenocarcinoma cell line(A427),Human monocyte leukaemia cell line (AML-193) |
5, 20, 40 μM |
Hinderes proinflammatory effects triggered from leukaemia |
(
Wang
et al., 2018
|
New born mouse model |
65 mg/kg |
Carcinogenesis × |
(
Lee
et al., 1991) |
Non-small cell lung cancer |
Soy red clover isoflavones |
Isoflavones combined with EGFR inhibitors improve NSCLC cell growth |
(
Ambrosio
et al., 2016) |
Pancreatic cancer |
Panc/AsPC-1 |
5 mg/mL |
Cell proliferation × Apoptosis + |
(
Bhardwaj
et al., 2014) |
Colon cancer |
Caco-2,HCT-116 cell lines |
34 μM |
Biochanin-A combination with 5 FU promotes management of colon cancer |
(
Mahmoud
et al., 2017) |
HT29cells |
1–100 μM |
Biochanin-A increases radiotoxicity |
(
Puthli, Tiwari and Mishra, 2013) |
HCT-116 Sw-480 cell lines |
2.5–100 μM |
Biochanin-A enhances genotoxYangiharaic effects and antitumor mechanism |
Yanagihara
et al., 1993) |
320 DM cell line |
20 μM |
Biochanin-A is a promising target for cancer |
(
Kohen
et al., 2007) |
Glioblastoma multiforme |
U87MG |
50 μM |
MMP 2 and MMP 9 ↓ |
(
Puli, Lai and Bhushan, 2006) |
Rat brain tumour (C6) Murine brain endothelial (bEnd.3) cells Ex-vivo chick chorioallantoic membrane model |
5, 35, and 70 μmol/L |
Anti-angiogenic properties through ERK/AKT/mTOR dephosphorylation |
(
Jain, Lai and Bhushan, 2015) |
U-87 MG, and T98 G |
70 μM |
EGFR, p-ERK, p-AKT, c-myc, and MT-MMP1 activation ↓ cell survival * Synergism to anti-cancer ability of Temozolomide |
(
Desai
et al., 2019) |
U-87 human glioblastoma cell line |
20 μM and 70 μM |
p-EGFR, p-ERK, uPAR, MMP-2 ↓ |
(
Jain, Lai and Bhushan, 2011) |
Osteosarcoma |
MG63 and U2OS Cells |
20±0.3 μg/mL |
Bax: Bcl-2/Bcl-XL ratio ↑ caspase 9 & 3 + MMP ↓ |
(
Hsu
et al., 2018) |
MG63 and U2OS Cells |
40 μM |
Apoptosis + caspase-3 ↑ Cell proliferation and invasion × |
(
Zhao
et al., 2018b) |
Leukaemia |
JCS |
|
Monocytic differentiation to macrophages + Phagocytic activity ↑ |
(
Fung
et al., 1997) |