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Abstract
Since a 25% mortality rate occurred in critical Coronavirus disease 2019 (COVID‐19)
patients, investigating the potential drivers remains to be important. Here, the authors
applied Weighted Gene Co‐expression Network Analysis to identify the potential drivers
in the blood samples of multiple COVID‐19 expression profiles. The authors found that
the darkslateblue module was significantly correlated with critical COVID‐19, and Gene
Ontology analysis indicated terms associated with the inflammation pathway and
apoptotic process. The authors intersected differentially expressed genes, Maximal Clique
Centrality calculated hub genes, and COVID‐19 related genes in the Genecards dataset,
and two genes, toll‐like receptor 5 (TLR5) and acyl‐CoA synthetase long chain family
member 1 (ACSL1), were screened out. The Gene Set Enrichment Analysis further
supports their core role in the inflammatory pathway. Furthermore, the cell‐type iden-
tification by estimating relative subsets of RNA transcript demonstrated that TLR5 and
ACSL1 were associated with neutrophil enrichment in critical COVID‐19 patients.
Collectively, the aurthors identified two hub genes that were strongly correlated with
critical COVID‐19. These may help clarify the pathogenesis and assist the immuno-
therapy development.
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1 | INTRODUCTION

Coronavirus disease 2019 (COVID‐19) is a severe infectious
disease that has strained healthcare systems all over the world.
Over 439 million confirmed COVID‐19 cases, leading to over
5.98 million deaths, which was released by the World Health
Organization on 01 March 2022 (https://www.worldometers.
info/coronavirus/). Upon infection, patients presented with
heterogeneous clinical manifestations with differential disease
severity: severe, moderate, mild, and asymptomatic [1, 2]. The
severe patients account for a small proportion of COVID‐19

while the mortality rate of severe patients is 25.7% on
average and even 37.7% in China [3]. Thus, access to explored
pathogenesis and improved therapies remains an unmet need
for severe COVID‐19 patients.

Research on critical COVID‐19 were mainly focused on
the inflammation and immune dysregulation. Elevated levels of
C‐reactive protein and inflammatory cytokines, such as inter-
leukin (IL)‐2, 5, 6, 7, 10, 13 and TNF‐α level etc., were found in
severe COVID‐19 patients [4–6]. Anti‐IL‐6 receptor inhibitor
tocilizumab could attenuate COVID‐19‐related acute respira-
tory distress syndrome, and anti‐IL‐13 treatment could
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significantly alleviate the mortality and disease severity of
SARS‐CoV‐2‐infected mice models [7, 8]. Immune dysregu-
lation was also significantly correlated with COVID‐19
severity. Decreased CD4þ T cells and CD8þ T cells, natural
killer (NK) cells [4, 9], hyperactivated neutrophils [2, 10] etc.
were also found to be a hallmark of disease severity. Despite
the increased understanding of critical COVID‐19, the lack of
effective hub genes for therapy limits the prevention and
treatment.

Weighted gene co‐expression network analysis (WGCNA)
is a powerful method to explore the correlation of gene
expression patterns from large heterogeneous mRNA expres-
sion data sets [11–13]. According to the similarity of expression
pattern, WGCNA can transform gene expression data into
potentially biologically associated modules and reveal the po-
tential relationships between the modules and clinical traits
[14]. This method is of great importance in identifying the
potential hub genes or therapeutic targets for diseases.

Here, we apply WGCNA to construct a gene co‐expression
network and identify the significant modules using the data
from GSE172114 [2], intending to dig out more potential hub
genes and therapeutic targets for the critical COVID‐19
patients.

2 | MATERIALS AND METHODS

2.1 | Gene expression dataset processing

The RNA‐seq data of the whole blood RNA samples from 46
Critical and 23 non‐critical COVID‐19 patients were collected
from the Gene Expression Omnibus (GEO) dataset as the
discovery cohort based on the original grouping (GSE172114,
“critical” referred to the group of patients in the intensive care
unit (ICU) under mechanical ventilation and “non‐critical”
referred to the group of patients in a non‐critical care ward)
[15]. The RNA‐seq data of the whole blood RNA samples
from 8 severe forms and 90 moderate forms of COVID‐19
patients were collected to verify the expression of the hub
genes based on the original grouping (GSE178967, “moder-
ate” referred to the patients not requiring hospitalisation and
“severe” referred to the patients hospitalised and requiring
oxygen supplementation/admitted to the ICU and placed on
mechanical ventilation/not considered a candidate for ICU
treatment and with fatal outcome) [16]. Finally, we used the
keyword “COVID‐19” to search the Genecards database
(https://www.genecards.org/) to identify the associated genes.

2.2 | Weighted gene co‐expression network
analysis

The R package WGCNA [14] was used to evaluate the
GSE172114 expression matrix. We exacted the clinical severity
from the original set as the input data for WGCNA analysis. A
soft‐threshold power of 18 was used for the analysis to achieve
approximate scale‐free topology (R2 > 0.8) [17]. Next, the

topological overlap matrix (TOM) and dissimilarity TOM were
created by TOM similarity and dissimilarity modules. The
minimum module size was set to 30, and the dynamic shear
trees were used to identify the modules. Then, we calculated
the association between the module membership values and
gene significance values. |GS| > 0.3 and |MM| > 0.7 was
used to filter hub genes (the script was attached in the Sup-
plementary Materials). Gene pairs with weight >0.1 were put
into the Cytoscape software for the co‐expression network
construction. CytoHubba [18] was used to select the hub genes
in the key module. Top 10 genes with higher maximal clique
centrality (MCC) values were screened [19].

2.3 | Differentially expressed gene analysis

GSE172114 expression matrix was used to analyse the differ-
entially expressed genes (DEGs) via the R limma package
(http://www.bioconductor.org/packages/release/bioc/html/
limma.html) (Smyth, 2004). |Foldchange| > 2 and the False
Discovery Rate < 0.05 were used as the selection criteria [19].
Moreover, the expression of these hub genes between the se-
vere form and moderate form of COVID‐19 patients with
significantly differential expression was further validated in the
GSE178967 expression matrix.

2.4 | Gene ontology and gene set
enrichment analysis

Gene ontology (GO) analysis was performed to identify the
enriched pathway of the selected darkslateblue module. We
conducted a gene set enrichment analysis (GSEA) using hall-
marks (h.all.v7.4.symbols.gmt). The results with |NES| (nor-
malised enrichment score) > 1, p‐value <0.05 were considered
to be significant [20].

2.5 | Evaluation of immune cell abundance

Cell‐type identification by estimating relative subsets of RNA
transcript (https://cibersort.stanford.edu/) [21] is an algo-
rithmic tool based on gene expression profiles to calculate
abundances of member cell types from mixed cell populations.
It was employed to reveal the proportion of 22 types of im-
mune cells in each sample of GSE172114.

3 | RESULTS

3.1 | Weighted gene co‐expression network
analysis to dig potential hub genes of critical
Coronavirus disease 2019 patients

Figure 1 shows the overall study design. The samples in
GSE172114 were divided into two groups (46 critical and 23
non‐critical COVID‐19 patients). To identify the key modules
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and hub genes related to the severe form of COVID‐19, we
conducted WGCNA using the gene expression matrix of
GSE172114. The hierarchical clustering revealed the potential
differences between the critical and non‐critical COVID‐19
patients (Figure 2a). The soft threshold was set to 18 with
the scale‐free topology fitting index reaching 0.84 (Figure 2b,c).
The dynamic shear tree's merged shear height was 0.25, and a
total of 20 modules were identified in our results with the
minimum number of genes in each network module set to 30
(Figure 2d). The most strongly correlated positive module was
darkslateblue for the critical COVID‐19 patients, which was
chosen as the critical module (Figure 2e,f). In this module, we
applied |GS| > 0.3 and |MM| > 0.7 as the criteria to screen
for the essential genes, and we found 2156 genes in the critical
trait. The GO biological process analysis demonstrated that
these essential genes were enriched in the inflammation
pathway and apoptotic process (Figure 2g).

3.2 | Identification of hub genes

Gene pairs with weight >0.1 were put into the Cytoscape, and
the top 10 hub genes in this network were identified by the
cytoHubba plugin via MCC values (Figure 3a). The differential
gene analysis demonstrated that 916 significant DEGs with
675 upregulated genes and 241 downregulated genes in the
critical group compared with the non‐critical group. The Venn
diagram demonstrated that toll‐like receptor 5 (TLR5) and

acyl‐CoA synthetase long chain family member 1 (ACSL1)
were intersected both in the DEGs and genecards dataset
associated with COVID‐19 (Figure 3b). Toll‐like receptor 5
and ACSL1 were upregulated with the adjusted p < 0.001.
Moreover, TLR5 and ACSL1 were upregulated in the whole
blood samples of severe forms of COVID‐19 patients
compared with not‐severe forms (p = 0.021, p = 0.027,
respectively) (Figure 3c,d). These results suggest that TLR5 and
ACSL1 may serve as hub genes in the critical COVID‐19
patients.

3.3 | Gene set enrichment analysis analysis
between high and low toll‐like receptor 5 and
acyl‐CoA synthetase long chain family
member 1 groups

We used the binary classification to divide the samples of
GSE172114 into two groups based on the expression level of
TLR5 and ACSL1, respectively (34 high expression samples
and 33 low expression samples). Hallmark datasets is one of
the most widely used and comprehensive databases for GSEA,
which could better represent a wider range of biological pro-
cesses/diseases [22]. In our study, we applied hallmark datasets
for investigation. The GSEA results showed significant hall-
mark pathways associated with high TLR5 and ACSL1,
including IL6/JAK/STAT3 pathway, TNFA pathway via
NFKB, and inflammatory response (Figure 4a–f).

F I GURE 1 Overall study design. Weighted
gene co‐expression network analysis (WGCNA),
gene ontology (GO), maximal clique centrality
(MCC), differentially expressed genes (DEGs),
Gene Set Enrichment Analysis (GSEA), cell‐type
identification by estimating relative subsets of RNA
transcript (CIBERSORT).
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3.4 | Immune cell subtypes between high
and low toll‐like receptor 5 and acyl‐CoA
synthetase long chain family member 1 groups

To explore the immunological changes between the high and
low TLR5 and ACSL1 groups, we utilised cell‐type identifica-
tion by estimating relative subsets of RNA transcript to eval-
uate the immune cell infiltration on GSE172114 (Figure 5a–d).
Interestingly, we found a significant decline of naïve CD4 T
cells, resting‐memory CD4 T cells, monocytes but a significant
augment of neutrophils in the high TLR5 and ACSL1 group.
Moreover, a decline of the resting NK cell was also found in
the high TLR5 group.

4 | DISCUSSION

Coronavirus disease 2019 is a serious pandemic caused by
severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐
2) [23]. Among these, the critical COVID‐19 is the most severe
type and its mortality rate was extremely high (more than 25%).
Therefore, it is imperative to identify the potential hub genes
to improve the therapeutic regimen and prognosis of critical
COVID‐19 patients.

Several studies have applied WGCNA to identify the hub
genes COVID‐19 patients, including the hub genes in the
nasopharyngeal swabs between normal subjects and COVID‐19
patients, critical genes of age‐related module in the peripheral

F I GURE 2 Weighted gene co‐expression network analysis (WGCNA) analysis in GSE172114 and key module identification. (a) The sample‐trait clustering
heatmap. (b) The scale‐free topology model fit index analysis for soft threshold powers and the mean connectivity analysis for soft threshold powers. (c) Scale‐
free topology fitting graph. (d) Dynamic shearing tree merging similar module genes. (e) Module‐trait correlation heatmap. (f) Scatter plot for correlation
between module membership in darkslateblue module and gene significance for the critical trait. (g) Gene ontology (GO) enrichment analysis of the hub genes in
darkslateblue module.
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bloodmononuclear cell of COVID‐19 patients, and key genes in
the platelets of between health controls and COVID‐19 patients
[24–26]. These studies explored the key genes of COVID‐19
from a variety of perspectives. However, the potential hub
genes in critical COVID‐19 patients remain largely unclear. In
our study, we applied WGCNA to construct the co‐expression
modules associated with critical COVID‐19 using the
GSE172114 dataset to identify the driver genes. The hierarchical
clustering of the WGCNA indicated that there existed some
patients in the two groups with similar gene expression patterns.
We think that it is reasonable for patients suffering from the same
disease. The following analysis demonstrated that the darksla-
teblue module was significantly positively correlated with the
critical COVID‐19 trait, and the GO biological process analysis
of the essential genes in this module indicated the enrichment of
inflammation pathway and apoptotic process, which are the
important processes that participated in the pathogenesis of

COVID‐19 [4–6, 27, 28]. Finally, two candidate hub genes,
ACSL1 and TLR5, were screened out to be the intersection of
MCC calculated hub genes, DEGs, and genecards dataset
associated with COVID‐19.

Acyl‐CoA synthetase long chain family member 1 is an
isozyme of the long‐chain fatty‐acid‐coenzyme A ligase family
and is associated with lipid metabolism, fatty acid uptake, and
inflammation [29–32]. The abnormal expression of ACSL1 was
identified in various disease, including cancer [33], virus
infection [34, 35], diabetes [32], sepsis [29], osteoporosis [36],
non‐alcoholic fatty liver disease [37] etc. In our results, we
found that ACSL1 significantly upregulated in the whole blood
cells of critical COVID‐19 patients. Moreover, it was identified
as a hub gene of critical COVID‐19 traits, and the high
expression of ACSL1 was correlated with more severe
inflammation, especially neutrophil infiltration, in severe
COVID‐19 patients. Consistent with our findings, the ACSL1

F I GURE 3 Identification of the hub gene. (a) Top 10 hub genes identification by maximal clique centrality (MCC). (b) Venn diagram screening for key
genes. (c) Expression of acyl‐CoA synthetase long chain family member 1 (ACSL1) in the additional Coronavirus disease 2019 (COVID‐19) dataset GSE178967.
(d) Expression of toll‐like receptor 5 (TLR5) in the additional COVID‐19 dataset GSE178967.
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inhibitor triacsin C was reported to be effective against
different viruses and proposed to be a promising drug to tackle
SARS‐CoV‐2 at the cell level [34, 38, 39]. We hypothesised that
the inhibitor of ACSL1 might be an effective therapy for the
critical COVID‐19 patients.

Toll‐like receptor 5 is one of the pattern recognition re-
ceptors of great importance in innate immunity by eliciting the
first line of defence against invading pathogens [40]. This
pathway has been identified as an immunotherapeutic target
for a lot of antibacterial or antiviral drug development [41]. An
early TLR5 activation could enhance the immunogenicity for
immunotherapeutic development, which could be found after
the vaccination of SARS‐COV‐2 [42–44]. Therefore, it was
proposed that immunomodulation via the activation of TLR5
might be an innovative approach to fight COVID‐19 [45].
However, in our study, we identified TLR5 as a hub gene for
critical COVID‐19, and high TLR5 expression corresponded
to higher cell composition of neutrophils, which indicated
more severe inflammation in the critical COVID‐19 patients.
According to the previous research, TLR5 was elevated in the
liver of hyperammonaemia rat model and TLR5 silencing could

ameliorate HA‐induced liver injury via the inhibition of
apoptosis, oxidative stress, and inflammation responses [46].
The ligand of TLR5, flagellin, could trigger the innate immune
responses of cardiac and acutely depress the myocardial
contractility and the deficiency of TLR5 could diminish
doxorubicin‐induced acute cardiotoxicity in mice [47, 48]. Toll‐
like receptor 5 was suggested to be a potential key factor in
inflammation‐induced bone erosions in diseases, such as
rheumatoid arthritis, reactive arthritis, and periodontitis [49].
These studies were consistent with our results. Thus, we
hypothesised that targeting TLR5 may decrease the inflam-
mation and alleviate the symptoms of the critical COVID‐19
patients even though the early activation of TLR5 might
minimise SARS‐COV‐2 replication.

Our study contains several limitations. First, this study
focused on the transcriptome analysis of whole blood cells.
Adding data from the lung and bronchoalveolar lavage fluid
could make the results more comprehensive and conclusive.
Second, a more precise value of ACSL1 and TLR5 in critical
COVID‐19 patients needs to be further clarified with deeper
functional experiments.

F I GURE 4 Gene set enrichment analysis (GSEA) enrichment analysis. (a) High expression of acyl‐CoA synthetase long chain family member 1 (ACSL1)
could upregulate the IL6/JAK/STAT3 signalling pathway. (b) High expression of ACSL1 could upregulate the TNFA signalling pathway via NFKB. (c) High
expression of ACSL1 could upregulate the inflammatory response signalling pathway. (d) High expression of toll‐like receptor 5 (TLR5) could upregulate the
TNFA signalling pathway via NFKB. (e) High expression of TLR5 could upregulate the IL6/JAK/STAT3 signalling pathway. (f) High expression of TLR5 could
upregulate the inflammatory response signalling pathway.

332 - WANG ET AL.



5 | CONCLUSION

Using WGCNA‐based analysis methods, we discovered
two hub genes, ACSL1 and TLR5, related to the char-
acteristics of critical COVID‐19 patients, which might be
involved in the pathogenesis and become potential targets
for subsequent treatment explorations in critical COVID‐
19 patients.

AUTHOR CONTRIBUTIONS
Luoyi Wang: Data curation; formal analysis; funding acquisi-
tion; investigation; methodology; project administration; re-
sources; software; supervision; validation; visualisation; writing –
original draft; writing – review & editing. Zhaomin Mao: Data
curation; formal analysis; funding acquisition; investigation;
methodology; resources; software; supervision; validation;
writing – original draft; writing – review & editing. Fengmin
Shao: Conceptualisation; funding acquisition; project adminis-
tration; supervision; writing – original draft; writing – review &
editing.

ACKNOWLEDGEMENTS
The authors would like to express our appreciation to “Henan
Provincial People's Hospital” and “The First Affiliated Hos-
pital of Zhengzhou University” for their effort.

CONFLICT OF INTEREST STATEMENT
The authors declare that they have no competing interests.

DATA AVAILABILITY STATEMENT
These data were derived from the following resources available
in the GEO dataset (GSE172114 and GSE178967).

ORCID
Zhaomin Mao https://orcid.org/0000-0002-9029-7252

REFERENCES
1. Wu, Z., McGoogan, J.M.: Characteristics of and important lessons from

the coronavirus disease 2019 (Covid‐19) outbreak in China: summary of
a report of 72314 cases from the Chinese center for disease control and
prevention. JAMA 323(13), 1239–1242 (2020). https://doi.org/10.1001/
jama.2020.2648

F I GURE 5 22 immune cells analysis via cell‐type identification by estimating relative subsets of RNA transcript (CIBERSORT). (a) The mean proportion
of 22 immune cells in the high acyl‐CoA synthetase long chain family member 1 (ACSL1) and low ACSL1 groups. (b) The histogram shows the cell compositions
of 22 immune cells in the high ACSL1 and low ACSL1 groups. (c) The mean proportion of 22 immune cells in the high toll‐like receptor 5 (TLR5) and low TLR5
groups. (d) The histogram shows the cell compositions of 22 immune cells in the high TLR5 and low TLR5 groups.

WANG ET AL. - 333

https://orcid.org/0000-0002-9029-7252
https://orcid.org/0000-0002-9029-7252
https://doi.org/10.1001/jama.2020.2648
https://doi.org/10.1001/jama.2020.2648
https://orcid.org/0000-0002-9029-7252


2. Carapito, R., et al.: Identification of driver genes for critical forms of
Covid‐19 in a deeply phenotyped young patient cohort. Sci. Transl. Med.
eabj7521 (2021)

3. Quah, P., Phua, J.: Mortality rates of patients with Covid‐19 in the
intensive care unit: a systematic review of the emerging literature. Crit.
Care 24(1), 285 (2020). https://doi.org/10.1186/s13054‐020‐03006‐1

4. Chen, G., et al.: Clinical and immunological features of severe and
moderate coronavirus disease 2019. J. Clin. Invest. 130(5), 2620–2629
(2020). https://doi.org/10.1172/jci137244

5. Lucas, C., et al.: Longitudinal analyses reveal immunological misfiring in
severe Covid‐19. Nature 584(7821), 463–469 (2020). https://doi.org/10.
1038/s41586‐020‐2588‐y

6. Huang, C., et al.: Clinical features of patients infected with 2019 novel
coronavirus in Wuhan, China. Lancet 395(10223), 497–506 (2020).
https://doi.org/10.1016/s0140‐6736(20)30183‐5

7. Michot, J.M., et al.: Tocilizumab, an anti‐Il‐6 receptor antibody, to treat
Covid‐19‐related respiratory failure: a case report. Ann. Oncol. 31(7),
961–964 (2020). https://doi.org/10.1016/j.annonc.2020.03.300

8. Donlan, A.N., et al.: Il‐13 is a driver of Covid‐19 severity. JCI Insight
6(15) (2021). https://doi.org/10.1172/jci.insight.150107

9. Giamarellos‐Bourboulis, E.J., et al.: Complex immune dysregulation in
Covid‐19 patients with severe respiratory failure. Cell Host. Microbe.
27(6), 992–1000.e1003 (2020). https://doi.org/10.1016/j.chom.2020.04.
009

10. Meizlish, M.L., et al.: A neutrophil activation signature predicts critical
illness and mortality in Covid‐19. Blood Adv. 5(5), 1164–1177 (2021).
https://doi.org/10.1182/bloodadvances.2020003568

11. Pepe, J., et al.: Characterization of extracellular vesicles in osteoporotic
patients compared to osteopenic and healthy controls. J. Bone Miner.
Res. 37(11), 2186–2200 (2022). https://doi.org/10.1002/jbmr.4688

12. Friedrich, M., et al.: Il‐1‐Driven stromal‐neutrophil interactions define a
subset of patients with inflammatory bowel disease that does not respond
to therapies. Nat. Med. 27(11), 1970–1981 (2021). https://doi.org/10.
1038/s41591‐021‐01520‐5

13. Panebianco, V., et al.: Network analysis integrating microrna expression
profiling with mri biomarkers and clinical data for prostate cancer early
detection: a proof of concept study. Biomedicines 9(10), 1470 (2021).
https://doi.org/10.3390/biomedicines9101470

14. Langfelder, P., Horvath, S.: Wgcna: an R package for weighted correla-
tion network analysis. BMC Bioinf. 9(1), 559 (2008). https://doi.org/10.
1186/1471‐2105‐9‐559

15. Carapito, R., et al.: Identification of driver genes for critical forms of
Covid‐19 in a deeply phenotyped young patient cohort. Sci. Transl. Med.
14(628), eabj7521 (2022). https://doi.org/10.1126/scitranslmed.abj7521

16. Hu, Z., et al.: Early immune markers of clinical, virological, and immu-
nological outcomes in patients with Covid‐19: a multi‐omics study. Elife
11 (2022). https://doi.org/10.7554/elife.77943

17. Jia, N.Y., et al.: Weighted gene Co‐expression network analysis reveals
different immunity but shared renal pathology between Iga nephropathy
and lupus nephritis. Front. Genet. 12, 634171 (2021). https://doi.org/10.
3389/fgene.2021.634171

18. Chin, C.H., et al.: Cytohubba: identifying hub objects and sub‐networks
from complex interactome. BMC Syst. Biol. 8(Suppl 4), S11 (2014).
https://doi.org/10.1186/1752‐0509‐8‐s4‐s11

19. Shen, L., et al.: Identification and validation of Ifi44 as key biomarker in
lupus nephritis. Front. Med. 8, 762848 (2021). https://doi.org/10.3389/
fmed.2021.762848

20. Zhang, C., Berndt‐Paetz, M., Neuhaus, J.: A comprehensive bioinfor-
matics analysis of notch pathways in bladder cancer. Cancers 13(12), 3089
(2021). https://doi.org/10.3390/cancers13123089

21. Newman, A.M., et al.: Robust enumeration of cell subsets from tissue
expression profiles. Nat. Methods 12(5), 453–457 (2015). https://doi.
org/10.1038/nmeth.3337

22. Liberzon, A., et al.: The molecular signatures database (Msigdb) hallmark
gene set collection. Cell Syst. 1(6), 417–425 (2015). https://doi.org/10.
1016/j.cels.2015.12.004

23. Coronaviridae Study Group of the International Committee on Taxonomy
of, V.: The species severe acute respiratory syndrome‐related coronavirus:

classifying 2019‐Ncov and naming it sars‐Cov‐2. Nat. Microbiol. 5(4),
536–544 (2020). https://doi.org/10.1038/s41564‐020‐0695‐z

24. Hu, R.W., et al.: Identification of hub genes and molecular subtypes in
Covid‐19 based on Wgcna. Eur. Rev. Med. Pharmacol. Sci. 25(20),
6411–6424 (2021)

25. Lin, Y., et al.: Weighted gene Co‐expression network analysis revealed T
cell differentiation associated with the age‐related phenotypes in Covid‐
19 patients. BMC Med. Genom. 16(1), 59 (2023). https://doi.org/10.
1186/s12920‐023‐01490‐2

26. Alarabi, A.B., et al.: Co‐expression analysis to identify key modules and
hub genes associated with Covid‐19 in platelets. BMC Med. Genom.
15(1), 83 (2022). https://doi.org/10.1186/s12920‐022‐01222‐y

27. Li, S., et al.: Sars‐Cov‐2 triggers inflammatory responses and cell death
through caspase‐8 activation. Signal Transduct. Targeted Ther. 5(1), 235
(2020). https://doi.org/10.1038/s41392‐020‐00334‐0

28. Leonardi, A.J., Proenca, R.B.: Akt‐fas to quell aberrant T cell differenti-
ation and apoptosis in Covid‐19. Front. Immunol. 11, 600405 (2020).
https://doi.org/10.3389/fimmu.2020.600405

29. Roelands, J., et al.: Long‐chain acyl‐Coa synthetase 1 role in sepsis and
immunity: perspectives from a parallel review of public transcriptome
datasets and of the literature. Front. Immunol. 10, 2410 (2019). https://
doi.org/10.3389/fimmu.2019.02410

30. Kanter, J.E., Bornfeldt, K.E.: Inflammation and diabetes‐accelerated
atherosclerosis: myeloid cell mediators. Trends Endocrinol. Metabol.
24(3), 137–144 (2013). https://doi.org/10.1016/j.tem.2012.10.002

31. Al‐Rashed, F., et al.: Tnf‐alpha induces a pro‐inflammatory phenotypic
shift in monocytes through Acsl1: relevance to metabolic inflammation.
Cell. Physiol. Biochem. 52(3), 397–407 (2019)

32. Kanter, J.E., et al.: Diabetes promotes an inflammatory macrophage
phenotype and atherosclerosis through acyl‐Coa synthetase 1. Proc. Natl.
Acad. Sci. U S A 109(12), E715–724 (2012). https://doi.org/10.1073/
pnas.1111600109

33. Quan, J., Bode, A.M., Luo, X.: Acsl family: the regulatory mechanisms
and therapeutic implications in cancer. Eur. J. Pharmacol. 909, 174397
(2021). https://doi.org/10.1016/j.ejphar.2021.174397

34. Xia, H., Zhang, Z., You, F.: Inhibiting Acsl1‐related Ferroptosis restrains
murine coronavirus infection. Viruses 13(12), 2383 (2021). https://doi.
org/10.3390/v13122383

35. Zhang, Q., et al.: Acsl1 inhibits Alv‐J replication by Ifn‐ signaling and
Pi3k/Akt pathway. Front. Immunol. 12, 774323 (2021). https://doi.org/
10.3389/fimmu.2021.774323

36. Li, L., et al.: Integrative analysis reveals key Mrnas and lncrnas in
monocytes of osteoporotic patients. Math. Biosci. Eng. 16(5), 5947–5971
(2019). https://doi.org/10.3934/mbe.2019298

37. Dongiovanni, P., et al.: Beta‐klotho gene variation is associated with liver
damage in children with Nafld. J. Hepatol. 72(3), 411–419 (2020).
https://doi.org/10.1016/j.jhep.2019.10.011

38. Dechandt, C.R.P., et al.: Triacsin C reduces lipid droplet formation and
induces mitochondrial biogenesis in primary rat hepatocytes. J. Bioenerg.
Biomembr. 49(5), 399–411 (2017). https://doi.org/10.1007/s10863‐017‐
9725‐9

39. Santos‐Beneit, F., et al.: A metabolic modeling approach reveals prom-
ising therapeutic targets and antiviral drugs to combat Covid‐19. Sci. Rep.
11(1), 11982 (2021). https://doi.org/10.1038/s41598‐021‐91526‐3

40. Takeda, K., Kaisho, T., Akira, S.: Toll‐like receptors. Annu. Rev.
Immunol. 21(1), 335–376 (2003). https://doi.org/10.1146/annurev.
immunol.21.120601.141126

41. Mifsud, E.J., Tan, A.C.L., Jackson, D.C.: Tlr agonists as modulators of the
innate immune response and their potential as agents against infectious
disease. Front. Immunol. 5, 79 (2014). https://doi.org/10.3389/fimmu.
2014.00079

42. Kim, E., et al.: Microneedle array delivered recombinant coronavirus
vaccines: immunogenicity and rapid translational development. EBioMe-
dicine 55, 102743 (2020). https://doi.org/10.1016/j.ebiom.2020.102743

43. Bhattacharya, M., et al.: Development of epitope‐based peptide vaccine
against novel coronavirus 2019 (Sars‐Cov‐2): immunoinformatics
approach. J. Med. Virol. 92(6), 618–631 (2020). https://doi.org/10.1002/
jmv.25736

334 - WANG ET AL.

https://doi.org/10.1186/s13054-020-03006-1
https://doi.org/10.1172/jci137244
https://doi.org/10.1038/s41586-020-2588-y
https://doi.org/10.1038/s41586-020-2588-y
https://doi.org/10.1016/s0140-6736(20)30183-5
https://doi.org/10.1016/j.annonc.2020.03.300
https://doi.org/10.1172/jci.insight.150107
https://doi.org/10.1016/j.chom.2020.04.009
https://doi.org/10.1016/j.chom.2020.04.009
https://doi.org/10.1182/bloodadvances.2020003568
https://doi.org/10.1002/jbmr.4688
https://doi.org/10.1038/s41591-021-01520-5
https://doi.org/10.1038/s41591-021-01520-5
https://doi.org/10.3390/biomedicines9101470
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1126/scitranslmed.abj7521
https://doi.org/10.7554/elife.77943
https://doi.org/10.3389/fgene.2021.634171
https://doi.org/10.3389/fgene.2021.634171
https://doi.org/10.1186/1752-0509-8-s4-s11
https://doi.org/10.3389/fmed.2021.762848
https://doi.org/10.3389/fmed.2021.762848
https://doi.org/10.3390/cancers13123089
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1038/s41564-020-0695-z
https://doi.org/10.1186/s12920-023-01490-2
https://doi.org/10.1186/s12920-023-01490-2
https://doi.org/10.1186/s12920-022-01222-y
https://doi.org/10.1038/s41392-020-00334-0
https://doi.org/10.3389/fimmu.2020.600405
https://doi.org/10.3389/fimmu.2019.02410
https://doi.org/10.3389/fimmu.2019.02410
https://doi.org/10.1016/j.tem.2012.10.002
https://doi.org/10.1073/pnas.1111600109
https://doi.org/10.1073/pnas.1111600109
https://doi.org/10.1016/j.ejphar.2021.174397
https://doi.org/10.3390/v13122383
https://doi.org/10.3390/v13122383
https://doi.org/10.3389/fimmu.2021.774323
https://doi.org/10.3389/fimmu.2021.774323
https://doi.org/10.3934/mbe.2019298
https://doi.org/10.1016/j.jhep.2019.10.011
https://doi.org/10.1007/s10863-017-9725-9
https://doi.org/10.1007/s10863-017-9725-9
https://doi.org/10.1038/s41598-021-91526-3
https://doi.org/10.1146/annurev.immunol.21.120601.141126
https://doi.org/10.1146/annurev.immunol.21.120601.141126
https://doi.org/10.3389/fimmu.2014.00079
https://doi.org/10.3389/fimmu.2014.00079
https://doi.org/10.1016/j.ebiom.2020.102743
https://doi.org/10.1002/jmv.25736
https://doi.org/10.1002/jmv.25736


44. Chowdhury, U.N., et al.: Effects of bacille calmette guerin (Bcg) vacci-
nation during Covid‐19 infection. Comput. Biol. Med. 138, 104891
(2021). https://doi.org/10.1016/j.compbiomed.2021.104891

45. Chakraborty, C., et al.: Consider Tlr5 for new therapeutic development
against Covid‐19. J. Med. Virol. 92(11), 2314–2315 (2020). https://doi.
org/10.1002/jmv.25997

46. Yan, J., et al.: Tlr5 silencing reduced hyperammonaemia‐induced liver
injury by inhibiting oxidative stress and inflammation responses via
inactivating Nf‐Kappab and Mapk signals. Chem. Biol. Interact. 299,
102–110 (2019). https://doi.org/10.1016/j.cbi.2018.11.026

47. Rolli, J., et al.: Bacterial flagellin triggers cardiac innate immune responses
and acute contractile dysfunction. PLoS One 5(9), e12687 (2010).
https://doi.org/10.1371/journal.pone.0012687

48. Ma, Z.G., et al.: Toll‐like receptor 5 deficiency diminishes doxorubicin‐
induced acute cardiotoxicity in mice. Theranostics 10(24), 11013–11025
(2020). https://doi.org/10.7150/thno.47516

49. Kassem, A., et al.: Tlr5, a novel mediator of innate immunity‐induced
osteoclastogenesis and bone loss. FASEB J 29(11), 4449–4460 (2015).
https://doi.org/10.1096/fj.15‐272559

SUPPORTING INFORMATION
Additional supporting information can be found online in the
Supporting Information section at the end of this article.

How to cite this article: Wang, L., Mao, Z., Shao, F.:
Identification of toll‐like receptor 5 and acyl‐CoA
synthetase long chain family member 1 as hub genes are
correlated with the severe forms of COVID‐19 by
Weighted gene co‐expression network analysis. IET
Syst. Biol. 17(6), 327–335 (2023). https://doi.org/10.
1049/syb2.12079

WANG ET AL. - 335

https://doi.org/10.1016/j.compbiomed.2021.104891
https://doi.org/10.1002/jmv.25997
https://doi.org/10.1002/jmv.25997
https://doi.org/10.1016/j.cbi.2018.11.026
https://doi.org/10.1371/journal.pone.0012687
https://doi.org/10.7150/thno.47516
https://doi.org/10.1096/fj.15-272559
https://doi.org/10.1049/syb2.12079
https://doi.org/10.1049/syb2.12079

	Identification of toll‐like receptor 5 and acyl‐CoA synthetase long chain family member 1 as hub genes are correlated with  ...
	1 | INTRODUCTION
	2 | MATERIALS AND METHODS
	2.1 | Gene expression dataset processing
	2.2 | Weighted gene co‐expression network analysis
	2.3 | Differentially expressed gene analysis
	2.4 | Gene ontology and gene set enrichment analysis
	2.5 | Evaluation of immune cell abundance

	3 | RESULTS
	3.1 | Weighted gene co‐expression network analysis to dig potential hub genes of critical Coronavirus disease 2019 patients
	3.2 | Identification of hub genes
	3.3 | Gene set enrichment analysis analysis between high and low toll‐like receptor 5 and acyl‐CoA synthetase long chain fa ...
	3.4 | Immune cell subtypes between high and low toll‐like receptor 5 and acyl‐CoA synthetase long chain family member 1 groups

	4 | DISCUSSION
	5 | CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT


