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Abstract

Head movement is a major limitation in brain positron emission tomography (PET) imaging, 

which results in image artifacts and quantification errors. Head motion correction plays a critical 

role in quantitative image analysis and diagnosis of nervous system diseases. However, to date, 

there is no approach that can track head motion continuously without using an external device. 

Here, we develop a deep learning-based algorithm to predict rigid motion for brain PET by 

lever-aging existing dynamic PET scans with gold-standard motion measurements from external 

Polaris Vicra tracking. We propose a novel Deep Learning for Head Motion Correction (DL-

HMC) methodology that consists of three components: (i) PET input data encoder layers; (ii) 

regression layers to estimate the six rigid motion transformation parameters; and (iii) feature-

wise transformation (FWT) layers to condition the network to tracer time-activity. The input 

of DL-HMC is sampled pairs of one-second 3D cloud representations of the PET data and 

the output is the prediction of six rigid transformation motion parameters. We trained this 

network in a supervised manner using the Vicra motion tracking information as gold-standard. 

We quantitatively evaluate DL-HMC by comparing to gold-standard Vicra measurements and 

qualitatively evaluate the reconstructed images as well as perform region of interest standard 

uptake value (SUV) measurements. An algorithm ablation study was performed to determine 

the contributions of each of our DL-HMC design choices to network performance. Our results 

demonstrate accurate motion prediction performance for brain PET using a data-driven registration 

approach without external motion tracking hardware. All code is publicly available on GitHub: 

https://github.com/OnofreyLab/dl-hmc_miccai2022.
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1 Introduction

Positron emission tomography (PET) allows clinicians and researchers to study 

physiological or pathological processes in humans, and in particular the brain [10,15]. 

However, patient movement during scanning presents a challenge for accurate PET image 

reconstruction and subsequent quantitative analysis [9]. Head motion during brain PET 

scans reduces image resolution (sharpness), lowers concentrations in high-uptake regions, 

and causes mis-estimation in tracer kinetic modeling. Even small magnitude head motion 

may have a large impact on brain PET quantification. The long duration of PET studies 

exacerbates this problem, where involuntary movements of the patient are unavoidable and 

the average head motion can vary from 7 mm [1] in clinical scans to triple this amount for 

longer research scans. Therefore, the ability to track and correct head motion is critical in 

PET studies.

For motion correction, a straightforward approach is physical head restraint [5]. However, it 

does not provide correction once motion occurs and it reduces the level of patient comfort, 

especially for long research scans. Post-reconstruction registration, the most commonly 

used approach, cannot correct for motion within one scan period. An alternative method, 

multi-acquisition-frame [14] divides scan frames at times of motion but cannot correct for 

frequent motion due to low count statistics in one frame. Neither of these methods can 

perform motion correction in real-time. To date, the most accurate approach is event-by-

event correction using motion information measured by a hardware-based motion tracking 

(HMT) system such as Polaris Vicra [8]. However, HMT is not generally accepted in clinical 

use since it usually requires attaching a tracking device to the patient and additional setup 

time. Frames with inaccurate motion estimates can be excluded, but this increases image 

noise by discarding data. For HMT, slippage of the attached markers can happen due to 

non-rigid fixation that can be affected by hair style. Other systems like markerless motion 

tracking [11] are still under development and have not been validated for PET use. On 

the other hand, data-driven motion correction methods that are based on PET raw data do 

not suffer these problems and have been developed and applied in clinical research [13]. 

Therefore, it is appealing to develop an approach that can perform accurate and robust head 

motion tracking and estimation based only on PET raw data in real-time during the scan.

Image registration methods [17] that seek to align two or more images offer a data-driven 

solution for correcting brain motion. While some registration methods use hand-crafted 

features instead of raw intensities [17], deep learning (DL) techniques, in which neural 

networks build a hierarchical representation of the data using multiple layers of hidden 

units [12], allow for the registration methods to learn the features of interest directly from 

the data. Deep learning methods are of interest because they may be less susceptible to 

local optima, and they offer highly parallelized implementations conducive to real-time 

applications.

In this study, we developed a deep learning-based method capable of real-time head motion 

tracking during brain PET imaging in order to perform rigid motion correction without 

the aid of external devices. We train our deep learning head motion correction (DL-HMC) 

network in a supervised manner with one-second 3D point clouds back-projected from 
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clinical patient PET listmode data and use Vicra as gold standard motion estimates. 

We validate our method in both single subject and multiple subject experiments, and 

quantitatively compared the synthetic motion information with Vicra gold-standard as well 

as through qualitative reconstruction image ROI evaluation. We also performed an algorithm 

ablation study to determine the contributions of each of our strategies.

2 Methods

2.1 Data

We identified 25 18F-FDG PET scans from a database of brain PET scans acquired on 

a brain-dedicated Siemens HRRT scanner at the Yale PET Center. The 25 subject group 

constitutes a diverse patient population that includes 8 cognitive normals, 11 subjects 

suffering from cocaine dependence, and 6 with cognitive disease. The mean injected activity 

for these 25 patients is 4.95±0.14 mCi. Eight points forming the vertices of a 10-cm 

cube centered in the scanner FOV were chosen to describe the motion of the brain, and 

inter-frame motion was computed by averaging twice the standard deviation of the motion 

of each of these 8 points [7]. The overall motion of the brain throughout the entire scan 

(mean±SD) was 12.07±7.12 mm. In addition to the list-mode data, other materials were 

available such as Polaris Vicra motion tracking information used as motion gold-standard 

(Sec. 1), T1-weighted MR images and PET-space to MR-space transformation matrices. All 

PET imaging data is 30 minutes acquired 60 minutes post injection.

2.2 Motion Correction Network Structure

Our DL-HMC network architecture (Fig. 1) consists of the following components: (i) two 

feature extractor blocks to encode the PET input data, which consists of a reference image 

Iref and moving image Imov; (ii) a regression block to estimate the six rigid transformation 

motion parameters; and (iii) feature-wise transformation (FWT) layers [3] to condition the 

network to tracer time-activity. The proposed network architecture uses DenseNet [6] as 

a feature extractor with shared weights for two input images and concatenates the output 

features into a single vector. The encoders effectively reduce the 3D image data volumes 

down to a vector of size 128. The FWT takes the relative difference in time Δt = tmov 

− tref (in seconds) between the reference and moving images, respectively, as input to a 

fully connected network and then multiplies the concatenated feature output to this result, 

which conditions the network to dynamic changes in the PET tracer over time. Finally, 

the conditioned features are fed into the fully connected regression block to predict the 

translation and rotation components of the motion θ = [tx, ty, tz, rx, ry, rz]. The network has 

11,492,102 trainable parameters.

The input for the network consists of one-second 3D cloud representations of the PET data. 

The 3D clouds were created by back-projecting the PET listmode data along the line-of-

response (LOR) with normalization for scanner sensitivity using MATLAB. We pre-process 

the 3D cloud data volumes by smoothing and down sampling from 256×256×207 voxels 

(1.22×1.22×1.23 mm3 voxel spacing) to 32×32×32 voxels (9.76×9.76×7.96 mm3 voxel 

spacing), which reduces the data memory footprint, increases computational efficiency, and 

removes image noise. Each one-second 3D cloud has corresponding Vicra motion tracking 
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system (rigid transformation matrix) as gold-standard motion information. We implemented 

the network in Python (version 3.8) using Py-Torch (version 1.7.1) and MONAI (version 

0.8). All code is available on GitHub: http://github.com/OnofreyLab/dl-hmc_miccai2022/

2.3 Network Training Strategy

We perform supervised learning of the DL-HMC network using two input 3D point 

clouds from two different time points tref and tmov to predict the relative rigid motion 

transformation with respect to the Vicra gold-standard. Due to the large number of one-

second data input pairs available, we developed an efficient data sub-sampling strategy for 

model training. From each subject in our training set, we select nref reference time points 

from a uniform random distribution over the PET scan duration. For each reference time, we 

then sample nmov different moving image times using a uniform sampling strategy, where 

moving image times are randomly sampled from a uniform distribution such that tmov > tref. 

For nsub training subjects, this process generates nsub × nref × nmov unique training pairs. In 

both sampling procedures, we calculate the relative motion transformation matrix from the 

Vicra data and we record the time difference Δt between the reference and moving times. 

We train the network by minimizing the network’s mean square error (MSE) between the 

predicted motion estimate θ  and Vicra θ using Adam optimization with initial learning rate 

5e-4, γ=0.98, and exponential decay with step size 200. Because of GPU and CPU memory 

constraints, a smart caching dataset was used to replace 25% of the data (1,024 samples) for 

each epoch with new samples.

2.4 Motion Correction Inference

Using the trained DL-HMC model, we perform motion correction by using a single, fixed 

reference image rather than computing the relative motion between all two consecutive time 

points. This approach to using a single reference image avoids accumulation of any errors in 

the motion correction prediction. In this case, we select the first image time point tref=3,600 

(60 minutes post injection) as the reference image and predict the motion from this reference 

to all subsequent one second image frames in the next 30 minutes (1,800 one-second time 

points).

3 Results

Due to limitations caused by large amounts of data, hardware memory constraints, and long 

training times, we performed initial model development using data from a single subject 

(Sec. 3.1). The results of these pilot experiments informed our model design decisions (Sec. 

2.2) as well as training strategy (Sec. 2.3), which we then applied to our multi-subject 

DL-HMC model (Sec. 3.2).

For all experiments, we quantitatively and qualitatively evaluate motion correction 

performance. For quantitative assessment, we calculate the MSE between the Vicra gold-

standard θ and DL-HMC prediction θ  (these are unitless error measurements because they 

combine translation (mm) and rotation components (degrees)). For qualitative assessment, 

we reconstruct the PET image using the predicted motion correction information for the 

whole sequence using Motion-compensation OSEM List-mode Algorithm for Resolution-
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Recovery Reconstruction (MOLAR) [2] and compare to the Vicra reconstructed image. The 

same reconstruction parameters were applied using the different DL-HMC and Vicra motion 

estimates. For a more comprehensive quantitative analysis of the reconstructed PET images, 

each subject’s co-registered MR image was segmented into 109 regions using FreeSurfer 

[4], which were then merged and into twelve gray matter brain regions of interest (ROIs) and 

analysed by calculating standard uptake value (SUV). All computations were performed on 

a server with Intel Xeon Gold 5218 processors, 256 GB RAM, and an NVIDIA Quadro RTX 

8000 GPU (48 GB RAM).

3.1 Single Subject Pilot Experiments

To evaluate the feasibility of the proposed method to accurately predict head motion 

throughout the PET scan duration, we first applied the DL-HMC in single subject (nsub=1) 

experiments and perform a rigorous ablation study to determine the contributions of each 

of our DL-HMC design choices to network performance. For pilot experiments, we split 

the subject’s entire PET scan time course (1,800 one-second images) into three subsets 

corresponding to 80/10/10% of the data for training/validation/testing. While using data in 

this manner from the same subject introduces bias, we utilize a single reference point (tref 

= 3, 600) and register all tmov in the testing set to this image to calculate experimental 

error independent of the training data, which provides an informative measure of algorithm 

performance. From the training set, we randomly selected nref=1,440 reference time points. 

DL-HMC ablation experiments (Table 1) consisted of the following design choices: (i) using 

a different number moving image time points, nmov=1 (1,440 total samples) or nmov=10 

(14,400 total samples) (see Sec. 2.3); (ii) the inclusion of time information Δt using the FWT 

layers; (iii) increased depth of the image encoder by changing the DenseNet growth rate 

from 4 to 32; and (iv) different data sampling strategies, where we compare our uniform 
sampling strategy to a normal sampling with moving image times randomly sampled 

with respect to a normal distribution (right tail) with FWHM equal to 60 seconds. Our 

DL-HMC results demonstrated that using a large training dataset (nmov=10), FWTs, deep 

image encoders, and uniform random data sampling provided accurate motion prediction 

performance with MSE (mean±SD) 0.035±0.073 in the test set. Typical training for one 

subject with 14,400 training data samples required 10,000 epochs for convergence. Fig. 

2a shows DL-HMC motion correction predictions nearly identical to Vicra. Reconstructed 

PET images also appear qualitatively similar between DL-HMC and Vicra (Fig. S1) and 

both demonstrate similar ROI SUV differences compared to reconstruction with no motion 

correction (NMC).

3.2 Multi-subject Experiments

Based on the results of the pilot experiments (Sec 3.1), we verified the generalizability of the 

proposed network by training on multiple subjects and avoid bias by evaluating on subjects 

not included in the training data. Here, we split the patient cohort into training and testing 

subsets of 20 and 5 subjects, respectively. Training employed the sampling strategy from 

Sec. 2.3 using nsub=20, nref=1,800 and nmov=6 (216,000 unique data samples). Using an 

epoch size 4,096, model training required 20,000 epochs for convergence on the validation 

set. Fig. 2b shows motion prediction results for three example subjects: one subject included 

in the training set (to test if the model experiences any loss due to increasing the training 
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population) and two subjects from the testing dataset (a good example and the worst 

performing example). Table S1 shows quantitative results for all test subjects. The results for 

Subject 2 (mean MSE 0.02) included in the training set show that the network is capable 

of accurately predicting motion from training subjects even though the motion relative to 

the reference frame was never used for training. As expected, performance degrades when 

evaluated on data from the testing set. DL-HMC tracks the Vicra motion estimates for 

Subject 3 well except for rotation about y (mean MSE is 0.74), but fails to track motion well 

in Subject 4 (mean MSE is 6.33). Fig. 3 shows PET reconstruction results using MOLAR 

comparing DL-HMC motion results to Vicra and to NMC as well as quantitative ROI SUV 

evaluation. Subject 3 exhibits DL-HMC reconstruction performance similar to Vicra and 

shows similar ROI SUV values, although caudate and pallidum ROIs exhibit differences in 

mean SUV. As for the failure case, the DL-HMC reconstruction result is similar with NMC.

4 Discussion and Conclusion

In this work, we proposed a novel structure of deep neural network to perform head 

motion estimation using supervised learning. Instead of using one-second reconstructed 

PET images, which is time-consuming (~2 min), we use one-second 3D cloud images that 

take less than ten seconds to generate. DL-HMC is able to extract the motion information 

from these 3D cloud data with high noise levels (Fig. 1), which otherwise is extremely 

challenging for both standard, intensity-based registration methods and unsupervised deep 

learning approached. In contrast to other supervised registration learning approaches that 

utilize random (synthetic) transformations of the image data to learn the transformation 

parameters [16], we use an external device, Vicra, to provide supervision. The motion 

correction task is further complicated by the dynamic nature of PET imaging caused by 

tracer kinetics. With the help of FWTs, DL-HMC can capture tracer kinetic changes. The 

success of the uniform sampling strategy (Table 1) indicates that diversity in the training 

motion (reference and moving time frames are more likely to have larger motion between 

them with increasing Δt) is import for creating a robust model. Quantitative and qualitative 

evaluations of pilot and multi-subject experiments demonstrate that the proposed DL-HMC 

has potential for accurate PET rigid head motion correction.

Limitations of the work include training with a small number of subjects, which prevents 

the model from generalizing across diverse subject anatomies and motions. Our model may 

also benefit from a different data representation. While our initial model results indicate 

capabilities of predicting motion of magnitude ~1mm, our current pre-processing reduces 

input image resolution to ~10mm3, which may limit the model’s ability to detect motion 

with smaller magnitudes. Finally, we train and test DL-HMC using a single tracer (FDG), 

although this is by far the most commonly used. In the future, we will include more training 

data and test on a larger subject cohort, experiment with alternative data representations, and 

evaluate DL-HMC on other tracers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. DL-HMC network architecture.
The network takes two one-second 3D point cloud images as input to a feature extraction 

block (with a DenseNet structure) with shared weights between the reference and moving 

images. A regression block then estimates the rigid motion transformation parameters. A 

feature-wise transformation block conditions the network to relative time difference bewteen 

the reference and moving images.

Zeng et al. Page 9

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2023 December 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. Motion prediction results.
Columns show rigid transformation parameters (from left to right: translation in x, y, z 

directions and rotation about the x, y, z axes) from DL-HMC (red) and gold-standard Vicra 

motion tracking (blue). (a) Estimates from single-subject (Subject 1) model experiments and 

from (b) the multi-subject model in three example test subjects: example case in training 

set (Subject 2); a good example from the test set (Subject 3, Subject C in Table S1); and a 

failure case in the test set (Subject 4, Subject D in Table S1).
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Fig. 3. PET image reconstruction results.
MOLAR reconstructed images using Vicra gold-standard motion tracking, the proposed 

DL-HMC predicted motion correction, and no motion correction (NMC). Subject 3 is an 

example of successful motion correction using DL-HMC, and Subject 4 represents a failure 

case. The table on the right shows quantitative SUV difference values evaluated of twelve 

brain ROIs.
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Table 1.
DL-HMC ablation study results.

Reported values are mean±SD of corresponding dataset.

More Data FWT Deep Encoder Unif. Sampling Val. MSE Test MSE

✓ ✓ ✓ ✓ 0.070±0.109 0.035±0.073

✓ ✓ ✓ ◯ 0.029±0.082 3.530±4.644

✓ ✓ ◯ ✓ 0.094±0.244 0.058±0.118

✓ ✓ ◯ ◯ 0.139±0.237 0.112±0.179

✓ ◯ ◯ ✓ 0.170±0.227 0.188±0.177

◯ ✓ ◯ ✓ 0.144±0.186 0.143±0.204

◯ ◯ ◯ ◯ 0.665±0.970 0.786±0.836
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