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A B S T R A C T   

Background and purpose: Tools for auto-segmentation in radiotherapy are widely available, but guidelines for 
clinical implementation are missing. The goal was to develop a workflow for performance evaluation of three 
commercial auto-segmentation tools to select one candidate for clinical implementation. 
Materials and Methods: One hundred patients with six treatment sites (brain, head-and-neck, thorax, abdomen, 
and pelvis) were included. Three sets of AI-based contours for organs-at-risk (OAR) generated by three software 
tools and manually drawn expert contours were blindly rated for contouring accuracy. The dice similarity co
efficient (DSC), the Hausdorff distance, and a dose/volume evaluation based on the recalculation of the original 
treatment plan were assessed. Statistically significant differences were tested using the Kruskal-Wallis test and 
the post-hoc Dunn Test with Bonferroni correction. 
Results: The mean DSC scores compared to expert contours for all OARs combined were 0.80 ± 0.10, 0.75 ± 0.10, 
and 0.74 ± 0.11 for the three software tools. Physicians’ rating identified equivalent or superior performance of 
some AI-based contours in head (eye, lens, optic nerve, brain, chiasm), thorax (e.g., heart and lungs), and pelvis 
and abdomen (e.g., kidney, femoral head) compared to manual contours. For some OARs, the AI models provided 
results requiring only minor corrections. Bowel-bag and stomach were not fit for direct use. During the inter
disciplinary discussion, the physicians’ rating was considered the most relevant. 
Conclusion: A comprehensive method for evaluation and clinical implementation of commercially available auto- 
segmentation software was developed. The in-depth analysis yielded clear instructions for clinical use within the 
radiotherapy department.   

1. Introduction 

The contouring of organs-at-risk (OARs) and target volumes on 
computed tomography (CT) and magnetic resonance (MR) images is an 
essential task in radiotherapy. It is very resource-intensive, particularly 
when done manually. Moreover, the results of manual contouring are 
subject to inter- and intra-observer variation [1] and are affected by the 
user’s level of experience [2]. These variations may significantly impact 
a dose/volume-based plan evaluation and clinical outcome [3] or lead to 
a bias in clinical trials [4]. 

Auto-segmentation was designed to address these shortcomings of 
manual contours by providing much faster and user-independent results. 

Large-scale clinical implementation offers the potential to improve 
standardization across institutes and users [4]. Recently, artificial in
telligence (AI) models have complemented or superseded conventional 
auto-segmentation methods such as atlas-based models [5,6], enabling 
fast progress in the field [7–10]. Many vendors offer pre-trained models 
that can be readily utilized in clinics. Not only does this present a sig
nificant opportunity for standardization, but it also paves the way to
ward online adaptive radiotherapy. 

AI-based auto-segmentation models are usually a “black box”. This 
poses a challenge for clinics when integrating AI tools into radiation 
oncology, because the model interpretability is very difficult and the 
results dependent on the data used for the training [11]. Moreover, 
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commercial models are usually based on data from other institutes. 
Therefore, performing an extensive evaluation of auto-segmentation 
prior to clinical implementation to understand their accuracy and lim
itations is crucial. Previous studies have focused on single sites 
[6,10,12–17]. This study aimed to develop a comprehensive procedure 
for evaluating AI-based auto-segmentation software for all sites before 
clinical implementation. 

2. Methods 

2.1. Patients and inclusion criteria 

This study was approved by the Institutional Review Board of the 
Medical University of Vienna (EK 1733/2022). Six different treatment 
sites were selected to cover most patients undergoing radiation therapy 
at our department: brain, head and neck, thorax, abdomen, male pelvis, 
and female pelvis. A representative subset of 15–20 patients per site was 
retrospectively selected and pseudonymized with a total of 100 patients. 
The selection parameters are listed in Table 1. Each patient data set 
contained planning CT, clinical contours, and clinical treatment plans. 
To reflect the real clinical practice, no improvement of contours was 
performed prior to the analysis. 

The CT scans were performed with the standard site-specific clinical 
CT protocols (Siemens Somatom Definition AS) with a tube voltage of up 
to 120 kVp, slice thicknesses 2 to 4 mm and in-plane resolution of 
approximately 1 mm. 

3. Reference contours and auto-contours 

The clinical contours were used for all treatment sites to benchmark 
the contours produced by the auto-segmentation models. Most contours 
were manually delineated on CT by radiation technologists (RTTs) and 
checked by the radiation oncologist. In male pelvis, the physician 
delineated all OARs, and in the brain, some contours were delineated on 
rigidly registered MR images. 

Three different commercially available software tools were evalu
ated. They will be referred to as Software A, B, and C throughout this 
study (see Supplementary Data I). 

3.1. Workflow of evaluation of auto-segmentation software and clinical 
implementation 

Evaluating software candidates for clinical auto-segmentation was a 
comprehensive and collaborative effort in multiple phases over several 
months (Fig. 1). A team of medical physicists handled the preparation 
and execution of the whole process. 

In the first phase, quantitative geometric, dose/volume metric- 
based, and qualitative analysis were performed. Before the analysis, 
all patient contours were visually verified by two medical physicists to 
identify whether any systematic or random differences existed and to 
check the consistency and quality of the data. The main detected sys
tematic differences were in contouring protocols used clinically within 

our department and those used for the model development. For example, 
kidneys were contoured with hilus by all auto-segmentation software 
tools and without manually. All the organs with variable shapes and 
sizes (e.g. bladder, bowel) sometimes failed completely (e.g., misplacing 
the OAR etc.). Software C didn’t include a bowel contouring model. The 
clinic-specific findings from the visual evaluation are summarized in 
Supplementary Data II. 

In the second phase, a medical physicist calculated median values of 
the clinicians’ ratings. An interdisciplinary group discuss the results and 

Table 1 
An overview of patient cohorts for each treatment site. Each patient was rated by different MDs, indicated by initials. Additional manually delineated contours were 
added by the MDs indicated in the column under ‘Extra contours’. * For the head and neck site only 12 contours were rated by MDs, but all 15 were analyzed 
geometrically and with respect to dose/volume metrics.  

Site Types of cancer Number of patients Rated by # MDs Extra contours (by # MDs) Slice thickness 
(mm) 

Brain gliomas, metastases, eye 15 2 (FE, CT) – 2 
Head and neck Nasopharynx, oropharynx, tongue, larynx 15* 2 (HH, IMS) – 4 
Thorax Breast, lung, ribs 15 2 (SK, MH) – 2 and 4 (lung)2  

(breast) 
Abdomen Pancreatic, liver, digestive tract 15 2 (AZ, VD) 15 (AZ, VD) 4 
Pelvis (female) cervix, vagina, endometrium, bladder, ano-rectal 20 3 (JK, IMS, MM) 10 (IMS, JK, MM) 4 
Pelvis (male) Primary & post-operative prostate, bladder, ano-rectal 20 3 (AZ, JK, MM) 10 (IMS, JK, MM) 2 (prostate) and 4 (others)  

Fig. 1. Flowchart of the implementation and selection of auto-segmentation 
software in clinical practice. 
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reached the ultimate decision of the most suitable software, based on the 
quantitative and qualitative results, user experience and the tools’ 
ability to delineate additional structures that are currently not delin
eated clinically. 

In the third phase, the operational implementation of the selected 
software was prepared by interdisciplinary and site-specific focus 
meetings attended by physicians working in relevant tumour group, one 
RTT, and the involved medical physicists. The meetings consisted of a 
review of the evaluation and a case-by-case discussion. A guideline 
catalogue with descriptive instructions for each structure was developed 
and training of the involved personnel was prepared. 

3.2. Quantitative and qualitative analysis 

All auto-segmented contours were imported into the RayStation 
(v11A, RaySearch Laboratories AB, Stockholm, Sweden) treatment 
planning system. Every contour set of each patient was imported in a 
separate case. 

Two quantitative geometrical parameters were calculated using 
built-in scripts in RayStation: Dice Similarity Coefficient (DSC) 
describing the volumetric similarity between two structures, ranging 
from 0 to 1 where 1 indicates perfect overlap between contours; Haus
dorff Distance (HD) quantifying the distance between two contours 
where the lower HD the better agreement [3,18]. Additionally, average 
dose (Dmean) and maximum dose (D1%) for the original and recalculated 
plan on the new contours from each auto-segmentation model were 
reported for analysis. Lastly, a qualitative evaluation using a physician’s 
blind rating of three auto-segmented contour sets and manual contours 
was performed [19]. The rating was done by ten different radiation 
oncologists and residents, with each patient case rated by at least two 
different physicians (see Table 1). None of them had prior knowledge of 
the evaluated case’s segmentation source (software or human). Ratings 
of 4 and 3 corresponded to acceptable contours with no or minor 
modifications, respectively, and rating of 2 and 1 to major changes or 
rejections, respectively. 

3.3. Inter-observer variability 

To quantify the inter-observer variability [1,12], three medical 
doctors delineated OARs for ten female pelvis, ten male pelvis, and two 
other doctors delineated 15 abdomen cases. The clinical manual contour 
was used as a reference for the inter-observer study. 

3.4. Statistical analysis 

For each OAR, the hypothesis that the contours generated by the 
auto-segmentation models were at least equivalent in qualitative metrics 
to the manual reference contours was tested. For quantitative metrics, 
we tested the hypothesis to determine whether significant differences 
existed among the results from the various software tools. The geometric 
and dose/volume metrics comparison results were tested with Kruskal 
Wallis, followed by posthoc Dunn with Bonferroni correction, to identify 
the best-performing model. 

We assessed the correlation (Spearman’s rank correlation) between 
quantitative metrics and MD ratings to determine their predictive value 
for clinical acceptance. 

4. Results 

4.1. Quantitative evaluation: Geometric and dose/volume metrics results 

The combined average Dice Similarity Coefficient (DSC) scores for all 
organs at risk (OARs) were 0.80 ± 0.10 for Software A, 0.75 ± 0.10 for 
Software B, and 0.74 ± 0.11 for Software C. Some OARs had DSC scores 
below the acceptable 0.7 level in each software; these included the 
chiasm, pituitary, and cochlea for Software A, the lacrimal gland and 

bowel for Software B, and the optic nerve for Software C. Conversely, 
specific OARs exceeded an average DSC of 0.9, notably the brain and 
lung in all three software programs. For a more detailed analysis, see 
Fig. 2 and Fig. 3. 

In Hausdorff Distances (HD) were the lowest in lens, eye, pituitary, 
and cochlea, while the highest in the bowel and liver. Software B and C 
did not contour the spinal cord in abdomen cases, contributing to higher 
HD values for Software A in that region due to comparison with 
incomplete manual contour. 

Dose/volume metrics showed average dose differences within ± 5 % 
for most OARs with exceptions for heart, bowel, liver, and brain in 
Software A, bowel, heart, bladder and lacrimal gland in software B and 
brain, lacrimal gland, heart, optic nerve, cochlea and brainstem in 
software C. 

Statistically significant differences in the geometric and dosimetric 
results of software A, B, and C are reported in detail in Supplementary 
Data III. No significant differences were found for half of the investi
gated OARs (10/20). Only in the rectum did the DSC scores between the 
different software tools differ. For the rest, typically, two software tools 
performed similarly, while one was significantly worse, except in the 
cochlea, where software A outperformed the others. 

The geometric evaluation of the interobserver study on a subset of 
pelvis and abdomen patients showed a similar variance in the geometric 
scores of inter-observer contours compared to auto-contours. 

4.2. Qualitative evaluation 

The results of the physician ratings are shown in Table 2, a graphical 
representation of the ratings in a radar plot can be found in Supple
mentary Data IV. Only for bowel, manual contours were rated signifi
cantly higher than result of any auto-segmentation tool. Detailed 
statistical analysis of the results is in Supplementary Data III. 

The kidneys, femoral heads, eyes, and brainstem of software A 
showed the highest median rating. The spinal cord and the heart of 
software B was rated better than any other contours. Software C ach
ieved the highest overall rating for the optic nerve, chiasm and brain. 

In the heart (p = 0.26), bladder (p = 0.05), brainstem (p = 0.08), and 
lens (p = 0.28), the results of the ratings did not significantly differ 
among any software or the manual contours. 

4.3. Dependency of metrics 

Table 3 shows cross-calibration matrices. Spearman coefficients 
indicated little to no correlation for most classes but showed moderate to 
strong correlations for class III OARs. 

5. Discussion 

We have developed a comprehensive method for evaluation und 
understanding the performance of auto-segmentation tools based on 
qualitative, quantitative and dosimetric parameters, and multi- 
disciplinary discussion. The qualitative rating by MD was considered 
the most relevant. The most important lesson learned was that none of 
the metrics can be blindly used for the decision of the contour’s 
acceptability. Ideally, all three methods should be employed. Visual 
evaluation is necessary to understand the differences to the clinical 
practice. The quantitative assessment provides baseline parameters for 
tracing the quality of the contours after updates. The results of the 
analysis were used for treatment-site independent clinical workflow 
definition with minimal manual corrections. Our overall positive 
conclusion regarding the clinical implementation of deep learning-based 
auto-segmentation is in line with recently published literature. Our 
study covers all clinically relevant sites, compared to more narrow 
studies for head-and-neck [6,10,12], breast [13], prostate [12,14], 
thorax [15,16], central nervous system [12], or cervix [17]. 

The method was used for a comparison of auto-segmented OARs 
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Fig. 2. Results of the DSC, HD (in mm), Dmean and D1% comparison between software tools A, B and C for the thorax, abdomen, and pelvis region. Dmean and D1% are 
given as relative differences (%) compared to the original plan. The roman numerals indicate the classification according to chapter 2.5 in categories of class I, class II 
and class III. 
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Fig. 3. Results of the the DSC, HD (in mm), Dmean and D1% comparison between software tools A, B and C for the central nervous system, head and neck, and upper 
digestive tract. Dmean and D1% are given as relative differences (%) compared to the original plan. The roman numerals indicate the classification according to chapter 
2.5 in categories of class I, class II and class III. 
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using three different software tools. In most cases, all three software 
tools produced good, and sometimes even superior results compared to 
manual segmentations. Their outcome was mostly similar. Software A 
performed better in the abdomen and pelvis, while software C’s per
formance was rated higher for the brain region, with software B falling 
somewhere in the middle. However, in some organs at risk (OARs), the 
results were systematically inferior and did not meet the clinical re
quirements of radiation oncologists. This agrees with previous studies 
[6,10,12,15,16]. 

Along with AI-based models for the automatic generation of treat
ment plans [20–22] and strategies for workflow optimization [23], auto- 
segmentation plays a vital role in automizing the treatment planning 
process and making it more efficient. A recent survey found, that while 
the perceived impact of auto-contouring was positive, only a minority 
was using it on a larger scale [24]. Arguments have been made that 
extensive upfront validation and testing are needed prior to the clinical 
implementation of AI-based auto-segmentation tools [25]. Therefore, 
when introducing commercial auto-segmentation software into clinical 
practice, we propose a multidisciplinary evaluation to understand the 
performance and limitations of the employed software. 

The decision on implementing such a software tool is not straight- 
forward and strongly depends on the focus of the clinic and treatment 
sites to be auto-segmented. Moreover, we believe that it is important to 
understand the evaluation parameters and their relevancy for the deci
sion and clinical impact. We have demonstrated that the geometric and 
dose/volume results did not necessarily correspond with good clinical 
ratings by radiation oncologists. While higher DSC, HD, and Dmean scores 
typically yielded better physician ratings, there were several exceptions 
where good performance in these measures did not translate to high 
ratings. On the other hand, organs with a low DSC (and high HD) 
sometimes resulted very positive MD ratings (e.g., chiasm). The DSC 
showed a strong correlation with physician rating only for class III or
gans and might be useful to identify structures not useful for clinical 
implementation. As pointed out by others [3], the DSC is dependent on 
the organ size. Although the quantitative analysis did in general not 
correlate with the physician rating, it is still useful to acquire these data 
in the implementation phase to have a baseline quantitative parameter 
for QA purposes, e.g., after updates. 

A comparison between the dose/volume metrics of the manual and 
auto-segmented contours can provide a useful information on the rele
vancy of the observed contour differences. However, the location of the 
tumor significantly influences the sensitivity of dose differences, a factor 
that certainly must be accounted for when reporting such findings [26]. 

The site-specific focus group meetings led to categorizing each OAR 
into three groups, forming the foundation for new delineation protocols 
detailed in Supplementary Data V, with all RTTs trained on these 
classifications. 

Class I represents OARs where the models perform very well. These 
contours can be directly accepted after a plausibility review. If during 
this review minimal corrections would be identified, these require no 
action. Class II OARs often require small adjustments due to differences 
in the auto-segmentation models and the anatomical definitions used in 
the clinic. Lastly, class III OARs are typically clinically unacceptable and 
may require more time and effort to modify than manually delineate the 
contours from scratch. However, a visual inspection should be per
formed before contour approval, even for class I contours. Atypical 
cases, e.g., implants, anatomical anomalies (e.g., nephrectomy) or large 
tumors close to the contoured OAR, may cause any model to fail [11]. 

Table 2 
Data of the qualitative evaluation showing median MD ratings and the quartiles (0.25–0.75).  

OAR manual Software A Software B Software C  
Median Q1-Q3 Median Q1-Q3 Median Q1-Q3 Median Q1-Q3 

Class I         
Brain 4 4–4 4 4–4 3 3–3 4 4–4 
Eye 4 4–4 4 4–4 4 4–4 4 4–4 
FemoralHead 3 3–4 4 4–4 3 3–4 3 3–3 
Kidney 4 3–4 4 3–4 3 2–4 4 3–4 
Lens 4 4–4 4 4–4 4 4–4 4 4–4 
Liver 4 3–4 4 3–4 3 3–4 3 3–3 
Lung 4 3–4 4 3–4 4 4–4 3 3–3 
SpinalCord 4 4–4 3 3–4 4 4–4 4 3–4 
Thyroid 4 4–4 4 3–4 4 4–4 3 2–3 
Class II         
Rectum 3 3–4 3 3–4 2 2–3 2 2–3 
Lips 3 3–4 4 4–4 3 3–4 3 3–4 
Mandible 4 3–4 4 4–4 4 4–4 4 4–4 
Heart 3 3–4 3 3–4 3 3–4 3 3–4 
Bladder 3 2–3 3 2–4 3 1–3 3 3–4 
Esophagus 4 4–4 3 2–4 4 4–4 3 3–4 
OpticNerve 4 3–4 3 3–3 3 3–4 4 4–4 
Chiasm 4 3–4 4 3–4 3 3–3 4 4–4 
Brainstem 4 4–4 4 4–4 4 3–4 4 3–4 
Cochlea 4 4–4 4 4–4 4 3–4 4 3–4 
Parotid 4 3–4 4 4–4 4 4–4 4 4–4 
OralCavity 4 3–4 3 3–3 3 3–4 3 3–3 
Class III         
Stomach 3 3–4 – – 3 1–3 2 1–3 
Bowel 3 2–3 2 2–2 2 1–2 – –  

Table 3 
Correlation table showing the Spearman correlation coefficients of the three 
software tools with respect to the OAR classification (I, II or III) and the different 
quantitative metrics (DICE, HD and dose) vs. MD rating.  

Software Class Spearman correlation coefficient 
DICE HD Dose/volume 

A I  0.16  0.12  0.05 
II  0.19  0.31  0.05 
III  0.36  0.21  0.31 
combined  0.55  0.40  0.17 

B I  0.01  0.12  0.11 
II  0.12  0.49  0.04 
III  0.53  0.48  0.65 
combined  0.41  0.46  0.19 

C I  0.11  0.57  0.06 
II  0.15  0.47  0.16 
III  0.85  0.44  0.44 
combined  0.03  0.55  0.05  
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An important aspect of implementing auto-segmentation in a 
department is the level of corrections necessary for auto-segmented 
structures to be deemed clinically acceptable. In the site-specific dis
cussions with multidisciplinary teams, the auto-segmented contour was 
often accepted without correction, even with systematic differences 
from manual contours. For example, kidneys were contoured without 
renal hilus clinically but with hilus in all software. Esophagus and heart 
had different craniocaudal extension definitions. While the difference in 
dose/volume parameters was relatively small, the impact was discussed 
in the multidisciplinary meetings to understand whether the different 
OAR definitions can be clinically accepted. We want to stress that any 
adaptations in the institutional contouring protocol must be carefully 
reviewed, as these changes will impact the planning process, from 
planning objectives to clinical goals and constraints, and reporting in e. 
g. clinical studies. 

Another important outcome of this analysis was the standardization 
of the contouring within the department. The multidisciplinary discus
sion revealed differences in OAR definition across different treatment 
site groups (e.g., spinal cord and spinal canal). Here, the more consistent 
structures from the software tools will improve intra-departmental ho
mogeneity. While not the subject of our study, our observations were in 
line with other studies that investigated interobserver variability among 
AI models [12]. 

When integrating auto-segmentation tools into clinical practices, a 
multitude of factors, beyond the segmentation outcomes, play a pivotal 
role in determining the choice of software. These include costs, user- 
friendliness, automation efficiency, seamless integration with existing 
systems, ease of maintenance, additional feature sets, and the roadmap 
for future capabilities. It is impossible to provide universal guidelines or 
even a weighted prioritization rank list, but we recommend incorpo
rating these clinic-specific considerations into your decision-making 
process to ensure optimal utilization. 

We acknowledge several study limitations. First, due to resource 
constraints, additional manual contours were created only for a subset of 
patients, preventing variation correction like averaging multiple expert 
segmentations. Second, we didn’t perform a time comparison between 
manual and auto-segmentation, which requires more resources. Third, 
the quantitative parameters DSC and HD employed in this study have 
shortcomings such as the volume dependence of the DSC and the HD not 
being robust against outliers. Nevertheless, they were easily accessible 
using the TPS and were therefore used. Recently, other metrics such as 
surface DSC and HD95% have been proposed to compensate these is
sues. [27,28]. Fourth, dose re-optimization on auto-contours was not 
conducted, which might impact dose/volume results when planning is 
based on AI-derived contours. Finally, we assessed only two key dose/ 
volume parameters (Dmean and Dmax), which may not fully represent all 
treatment sites. We note that commercial software is continually 
improving, including forthcoming MR-based models that may enhance 
OAR accuracy. 

In summary, emphasizing the significance of clinical acceptance as a 
crucial factor in evaluating AI segmentation models, it is strongly rec
ommended to establish a thorough workflow for the interdisciplinary 
assessment of auto-segmentation software prior to its implementation in 
clinical settings. Such a workflow will provide valuable insights into the 
suitability of the chosen software and the necessary adaptations 
required for institutional protocols. Additionally, such a workflow helps 
establishing guidelines for the use of the software and the determination 
of a baseline for regular QA of the software. 
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