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Abstract
When comparing multiple models of species distribution, models yielding higher pre-
dictive performance are clearly to be favored. A more difficult question is how to de-
cide whether even the best model is “good enough”. Here, we clarify key choices and 
metrics related to evaluating the predictive performance of presence–absence mod-
els. We use a hierarchical case study to evaluate how four metrics of predictive per-
formance (AUC, Tjur's R2, max-Kappa, and max-TSS) relate to each other, the random 
and fixed effects parts of the model, the spatial scale at which predictive performance 
is measured, and the cross-validation strategy chosen. We demonstrate that the very 
same metric can achieve different values for the very same model, even when similar 
cross-validation strategies are followed, depending on the spatial scale at which pre-
dictive performance is measured. Among metrics, Tjur's R2 and max-Kappa generally 
increase with species' prevalence, whereas AUC and max-TSS are largely independent 
of prevalence. Thus, Tjur's R2 and max-Kappa often reach lower values when meas-
ured at the smallest scales considered in the study, while AUC and max-TSS reaching 
similar values across the different spatial levels included in the study. However, they 
provide complementary insights on predictive performance. The very same model 
may appear excellent or poor not only due to the applied metric, but also how predic-
tive performance is exactly calculated, calling for great caution on the interpretation 
of predictive performance. The most comprehensive evaluation of predictive perfor-
mance can be obtained by evaluating predictive performance through the combina-
tion of measures providing complementary insights. Instead of following simple rules 
of thumb or focusing on absolute values, we recommend comparing the achieved 
predictive performance to the researcher's own a priori expectations on how easy it 
is to make predictions related to the same question that the model is used for.
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1  |  INTRODUC TION

In species distribution modeling, a model's predictive performance is 
routinely assessed by determining how well the model is able to pre-
dict either the same data that it was originally fitted to (explanatory 
power) or to predict validation data independent from the training 
data used for model fitting (predictive power on hold-out data). How 
exactly to partition the full data into training and validation data, 
and what method to use to evaluate the model's predictive perfor-
mance, has been the focus of a large body of literature (e.g., Allouche 
et al., 2006; Araújo et al., 2005; Elith et al., 2006; Hijmans, 2012; 
Liu et al., 2011; Norberg et al., 2019; Vaughan & Ormerod, 2005). 
When comparing multiple models, a model yielding higher predictive 
performance is clearly to be favored over a model yielding lower pre-
dictive performance, yet a more difficult question is how to decide 
if even the best model is “good enough”. To facilitate the interpre-
tation of model evaluation results, simple rules of thumb have been 
proposed to classify predictive performances into categories such as 
“excellent,” “good,” or “poor” (Araújo et al., 2005; Guisan et al., 2017; 
Swets, 1988). However, as we argue in this article, following such 
simplified rules of thumb can lead to misleading interpretations, be-
cause the level of predictive performance achieved will simultane-
ously depend on multiple factors that should explicitly be accounted 
for.

The level of predictive performance achieved depends not only 
on how optimally the model has been chosen, but also on the nature 
of the study system and on the study design—especially on the range 
and representation of environmental conditions present in the data 
(e.g., Guillera-Arroita et  al.,  2015; Jiménez-Valverde et  al.,  2013; 
Peterson et al., 2008; Segurado & Araújo, 2004). Furthermore, the 
very same model can achieve very different levels of predictive per-
formance depending on the spatial and/or temporal scale at which 
the prediction task is performed (Aguirre-Gutiérrez et  al.,  2013; 
Sofaer et al., 2019; Termansen et al., 2006; Wisz et al., 2008), and 
how the sampling units are partitioned into training and valida-
tion data (e.g., Araújo et  al.,  2005; Bahn & McGill, 2013; Roberts 
et  al.,  2017). Thus, when considering how good a model is, it is 
not sufficient to merely consider the absolute value of a particular 
metric of predictive performance. Rather, it is also necessary to ac-
count for the many factors that influence the values achieved. Many 
ecologists, whether conducting their own work or evaluating that 
of others, may not be sufficiently aware of the complexities related 
to evaluating predictive performance, which motivated the present 
article.

Predictive performance can be measured in terms of, for ex-
ample, accuracy, discrimination, precision, or calibration (Norberg 
et  al.,  2019). Here we focus on measures discrimination, that is, 
measures of how well a model discriminates between sampling units 
where a focal species is present and sampling units from which it 
is absent (Allouche et  al.,  2006; Jiménez-Valverde,  2012; Norberg 
et al., 2019; Tjur, 2009). While there are also many other metrics for 
measuring predictive performance in species distribution modeling 
(Guisan et al., 2017; Sofaer et al., 2019), here we focus on the four 

metrics of AUC, Tjur's R2, max-Kappa, and max-TSS. The abbreviation 
AUC stands for the “area under the receiver operating characteristic 
curve,” and this metric was initially developed in the fields of signal 
processing and medical science (Hanley & McNeil, 1982). It was pro-
posed as a measure of predictive performance for SDMs by Fielding 
and Bell  (1997) and has become the most commonly applied met-
ric for evaluating the predictive performance of presence–absence 
SDMs (Elith et  al., 2006; Liu et  al.,  2011; Pearce & Ferrier, 2000). 
However, it has also been subject to criticism, because, for example, 
it can reach a high value if including a large number of sites where 
the species is very unlikely to occur (Lobo et  al.,  2008; Peterson 
et al., 2008; see also Sofaer et al., 2019, for a variant that circum-
vents this problem). A more recent metric for measuring predictive 
performance in presence–absence models is Tjur's coefficient of 
discrimination (Tjur, 2009), henceforth Tjur's R2. Tjur's R2 was de-
veloped as an alternative to other coefficients of determination for 
logistic regression models (Tjur, 2009) and introduced in the SDM 
literature by Ovaskainen et al. (2016). One advantage of Tjur's R2 is 
its resemblance to the R2 of the linear model, allowing its intuitive 
interpretation as the proportion of variance explained by the model. 
While Tjur's R2 is still less commonly used than AUC, it has recently 
gained increasing popularity as a measure of predictive performance 
in SDM (e.g., Kotta et al., 2019; Mang et al., 2018; Tikhonov, Duan, 
et al., 2020; Tikhonov, Opedal, et al., 2020; Zhang et al., 2018). The 
metrics Kappa and TSS are based on threshold probabilities above 
which a species is considered to be present and below which is con-
sidered absent. These predicted presences and absences are then 
contrasted to the observed presences and absences through the 
so-called 2 × 2 confusion matrix. Kappa evaluates the overall ac-
curacy of model predictions, corrected by the accuracy expected 
to occur by chance (Allouche et  al.,  2006; Shao & Halpin,  1995). 
Allouche et al. (2006) criticized Kappa due to its tendency to eval-
uate predictive performance more positively for common than for 
rare species and proposed the true skill statistics (TSS) as an alterna-
tive for Kappa. Also the metric AUC has been favored because it is 
relatively insensitive to the prevalence of the focal species (Franklin 
et al., 2009; Manel et al., 2001; McPherson et al., 2004). Both Kappa 
and TSS are based on a user-selected probability threshold, which 
can be difficult to use in an informed way and makes comparison 
among studies difficult. As a generic solution, Guisan et al.  (2017) 
proposed to try out all probability thresholds and apply the ones 
that maximize the metrics, leading to max-Kappa and max-TSS. This 
is somewhat analogous to the definition of AUC based on integrating 
over all possible probability thresholds (Fielding & Bell, 1997; Manel 
et al., 2001).

In attempts to provide clear guidelines for how to assess pre-
dictive performance, AUC values have been split into various per-
formance classes, with AUC > 0.9 corresponding to “excellent,” 
0.8 < AUC < 0.9 to “good,” 0.7 < AUC < 0.8 to “fair,” 0.6 < AUC < 0.7 to 
“poor,” and 0.5 < AUC < 0.6 to “fail” (Araújo et al., 2005). Such rules 
of thumb for evaluating predictive performance have been adopted 
in several studies (e.g., Gogol-Prokurat, 2011; Marmion et al., 2009; 
Smolik et al., 2010; Thuiller et al., 2006; Wang et al., 2020). In this 
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article, we argue that using performance classes or focusing on the 
absolute values of the metrics can result in misleading interpreta-
tions and oversimplified conclusions regarding predictive perfor-
mance. In evidence of this claim, we show that the very same model 
can achieve either a high or a low value also for a single metric of 
predictive performance, depending on the model evaluation strat-
egy. To advance the status quo, we clarify what key choices must 
be made when evaluating predictive performance. To this aim, we 
use a hierarchical case study of wood-inhabiting fungi to describe 
how AUC, Tjur's R2, max-Kappa, and max-TSS should be interpreted, 
how they relate to each other and species prevalence, how a model's 
predictive performance will vary with the model structure (most im-
portantly, the fixed and random effects included), the spatial scale at 
which predictive performance is measured, and the cross-validation 
strategy chosen.

2  |  MATERIAL S AND METHODS

2.1  |  Overall accuracy, sensitivity and specificity

We focus here on four metrics of predictive performance: true 
skill statistic (max-TSS), Cohen's Kappa, Tjur's R2, and AUC. While 
all these metrics are used to assess how well the fitted models dis-
tinguish between occupied and empty sampling units, they have 
different mathematical formulations, and thus evaluate model per-
formance from different perspectives. To introduce these measures 
and discuss their properties, we first introduce some basic notation 
and terminology. We denote by y the data, so that yi = 1 if the sam-
pling unit i is occupied, and yi = 0 if it is empty. We further denote 
by pi the model-predicted occurrence probability for the sampling 
unit i. Some of the measures we consider are based on the idea of 
thresholding, that is, considering that the model predicts a presence 
(respectively, absence) if the probability is greater (respectively, 
smaller) than the selected threshold t∗. We denote thresholding-
based predictions by ti so that ti = 1 if pi ≥ t∗, and ti = 0 if pi < t∗ . 
With thresholding-based predictions, it is natural to use the 2 × 2 
confusion matrix as a basis of model evaluations. True positives are 
those datapoints (the number of which we denote by a, following 
the notation of Allouche et al. (2006)) for which the model correctly 
predicts species presence (ti = 1 and yi = 1); true negatives are those 
d datapoints for which the model correctly predicts species absence 
(ti = 0 and yi = 0); false positives are those b datapoints for which the 
model falsely predicts species presence (ti = 1 but yi = 0); and false 
negatives are those c datapoints for which the model falsely pre-
dicts species absence (ti = 0 but yi = 1). Overall accuracy is defined 
as (a + d)∕n, sensitivity as a∕(a + c), and specificity as d∕(b + d), 
where n = a + b + c + d the total number of datapoints. Thus, overall 
accuracy measures the proportion of all datapoints (whether actual 
presences or absences) that the model predicts correctly, sensitivity 
measures the proportion of actual presences that the model pre-
dicts correctly, and specificity measures what proportion of actual 
absences that the model predicts correctly.

Figure  1 illustrates these concepts by two examples of model 
predictions versus actual species occurrences. We note in passing 
that these examples derive from the case study of wood-inhabiting 
fungi that we will consider in more detail below, but at this point 
it is not yet necessary to know in detail how the predictions were 
generated. Both species that we consider in Figure 1 are rare: the 
prevalence of Crustomyces subabruptus is 0.2% (occurring 10 times 
out of the 5097 sampling units), and the prevalence of Fomes fomen-
tarius is 0.8% (occurring 41 times). As the species are so rare, the 
models predict very low probabilities for most sampling units, for 
which reason we have used both the linear and the log-scale to show 
the full range of probabilities (Figure 1). As for the interpretation of 
Tjur's R2, it is important to know that the predicted probabilities are 
well calibrated, we note that this is the case: the sum over all 5097 
occurrence probabilities for C. subabruptus is 10.7 (which close to 
the number of 10 occurrences), whereas for F. fomentarius it is 41.1 
(which is close to the number of 41 occurrences). The model predic-
tions do not reach high occurrence probabilities for any sampling 
units, and thus selecting, for example, a threshold of t∗ = 0.9 would 
suggest that, for example, C. subabruptus would not be present any-
where. For this reason, we have used t∗ = 0.05 as the threshold, as 
illustrated in Figure 1 by the red vertical lines. With this threshold, 
the overall accuracy is very high for both species (0.995 for C. sub-
abruptus and 0.974 for F. fomentarius), reflecting the fact that many 
more sampling units are predicted correctly (black symbols) than in-
correctly (red symbols). Even if the low value of the threshold means 
that we have attempted to increase sensitivity with a potential cost 
for specificity, the sensitivity in C. subabruptus is only 0.1, as only 
one of the true presences pass the selected threshold. For F. fomen-
tarius, sensitivity is high (0.93), as almost all true presences pass the 
selected threshold. Specificity is very high for both species, reflect-
ing the fact that the vast majority of empty sampling units obtain 
very low model predictions.

2.2  |  Model evaluation measures: max-TSS, 
max-Kappa, Tjur's R2, and AUC

Three out of the four model evaluation measures that we consider 
here (max-TSS, max-Kappa, and AUC) are derived from a threshold-
ing-based perspective, whereas Tjur's R2 is directly based on occur-
rence probabilities without a reference to thresholding (Table  1). 
AUC overcomes the difficulty of the user needing to choose a spe-
cific threshold by integrating over all possible thresholds, which also 
leads AUC to have a probabilistic interpretation (Table 1). Kappa and 
TSS, however, require choosing a specific threshold t∗. Here we will 
follow the often-used alternative for selecting the threshold: max-
Kappa and max-TSS are defined as the values of Kappa and TSS for 
the threshold that maximizes their values (Guisan et al., 2017).

Figure 1 shows the values of the four model evaluation mea-
sures for our two example species. Just based on how these 
numbers relate to the range of values that these measures can 
theoretically obtain (Table 1) we might either consider that both 
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models are excellent (AUC), that the model for C. subabruptus is 
poor, whereas the model for F. fomentarius is relatively good (Tjur's 
R2 and max-Kappa), or that the model for C. subabruptus is rel-
atively good, whereas the model for F. fomentarius is excellent 
(max-TSS). This difference in interpretation naturally follows from 
the fact that the different metrics emphasize different aspects 

of how the predictions are in line with the data. All metrics have 
been advocated for some reasons and criticized for other reasons, 
many of which relate to how the metrics do or do not account 
for the overall prevalence of the species, e.g., whether they tend 
to generally obtain low or high values for rare species (Allouche 
et  al.,  2006; Jiménez-Valverde et  al.,  2013; Lobo et  al.,  2008; 

F I G U R E  1 Illustrations of model evaluations based on comparing actual occurrences (y-axis showing presence or absence; note that 
datapoints jiggered vertically to how overlapping data) by model predictions (x-axis). The panels show the data for the wood-inhabiting 
species Crustomyces subabruptus (AB) and Fomes fomentarius (CD), with probabilities shown either in the linear (AC) or logarithmic (BD) scale. 
The red vertical lines show a probability threshold set arbitrarily to t∗ = 0.05. The black symbols correspond to correct predictions (black 
dots show true positives and back crosses show true negatives) and the red symbols to incorrect predictions (red dots show false negatives 
and red crosses show false positives). The values of the model evaluation metrics considered in this paper are shown on top of the panels.
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Peterson et al., 2008; Sofaer et al., 2019). In our view, all the four 
measures are adequate, as long as the researcher applying them 
is able to correctly interpret what they do and do not measure. 
Here we aim to help in making such interpretations by considering 
an empirical case study that contains many rare species and thus 
where different model evaluation measures can be expected to 
lead to different conclusions. Earlier studies have pointed out that 
the spatial scale at which a model is evaluated can greatly influ-
ence predictive performance (Aguirre-Gutiérrez et al., 2013) and 
that fixed and random effects play a different role in generating 
predictions (Roberts et al., 2017). To further illustrate how the dif-
ferences between the four model evaluation metrics depend on 
the interplay between model structure and spatial scale of predic-
tion, we will consider a spatially hierarchical empirical case study 
and set up models that vary in their random effect structures.

2.3  |  Empirical case study to examine the 
measures of predictive performance

As an empirical case study, we used the wood-inhabiting fungal 
data of Abrego et al. (2016) surveyed at the three hierarchical spa-
tial scales of deadwood units (i.e., sampling units), which are nested 
within plots, the latter being nested within sites. To simplify the 
case study, we selected data for 1 year only (2011) out of the origi-
nally 2-year study. In each of the 16 forest sites, randomly located 
10 × 10 m sample plots (in total 80 plots) were surveyed for the pres-
ence–absences of fruiting fungi on deadwood units of a diameter 
larger than 0.2 cm (in total 5097 deadwood units). We restricted the 

data to those 68 fungal species which were found to be present in at 
least 10 sampling units and for which we thus considered it possible 
to meaningfully fit a model and evaluate predictive performance. For 
each deadwood unit, the decay stage (scalar from 1 to 5) and volume 
(in cm3) were measured, and for each forest site, the management 
type (managed or natural) was recorded. These data allowed us to 
investigate the scale dependency of the discrimination measures, as 
well as to assess their dependency on the inclusion or exclusion of 
fixed and random effects.

As the SDM tool, we used the Hierarchical Modelling of Species 
Communities (HMSC) framework, which is a joint species distri-
bution model (JSDM) (Ovaskainen & Abrego,  2020; Ovaskainen 
et al., 2017). While different SDM models can greatly vary in their 
absolute performance (Norberg et al., 2019), we do not expect the 
qualitative results of the present study to be sensitive to the spe-
cific choice of the SDM model made here, as we are not interested 
in absolute performance but rather understanding factors that in-
fluence performance. As the data are binary (presence or absence), 
we used probit regression, thus modeling occurrence probability as 
Pr

(

yij = 1
)

= Φ
(

Lij
)

, where Lij is the linear predictor for sampling unit 
i and species j, and Φ is the cumulative distribution function of the 
standard normal distribution.

To be able to separate the roles of fixed and random effects on 
predictive performance, we considered three model variants: one in-
cluding both fixed and random effects 

(

Lij = LF
ij
+ LR

ij

)

, one including 
fixed effects only (Lij = LF

ij
), and one including random effects only 

(Lij = LF
ij
+LR

ij
, where LF

ij
 contains only the species-specific intercept). 

HMSC models the fixed effects as LF
ij
=

∑

kxik�kj, where xik is the 
predictor k for sampling unit i and �kj is the response of species j 

TA B L E  1 The four metrics of model evaluation considered in this paper, their formulations, ranges, and descriptions.

Metric Formula
[Range] (random 
expectation) Description

Area under the operator 
curve (AUC)

∑

i,j
1pi>pj

yi(1− yj)
∑

i,j
yi(1− yj)

,

where the indicator function 1pi>pj 
obtains the value of one if pi > pj

, whereas otherwise it obtains the 
value of zero

[0…1]
(0.5)

The proportion of cases for which the occurrence 
probability for a randomly chosen occupied sampling 
unit is higher than the occurrence probability for 
a randomly chosen empty sampling unit. Can be 
equivalently defined as the integral of the receiver 
operating characteristic (ROC) curve, plotting 
sensitivity against 1—specificity over all thresholds 
(Hanley & McNeil, 1982)

Tjur's R2
py=1 − py=0

=
∑

i
yipi

∑

i
yi

−
∑

i(1− yi)pi
∑

i(1− yi)

[−1…1]
(0)

The difference in the average occupancy probabilities 
between occupied and empty sampling units 
(Tjur, 2009). Can be also interpreted as variance 
explained by the binary model, hence being to some 
extent equivalent of the usual R2 of linear models 
(Tjur, 2009)

True skill statistic (TSS) Sensitivity + specificity – 1 [−1…1]
(0)

TSS compares the number of correct predictions, minus 
those attributable to random guessing, to that of 
a hypothetical set of perfect predictions (Allouche 
et al., 2006)

Cohen's Kappa Ao − Ae

1− Ae

,

where Ao and Ae are, respectively, 
the observed and expected total 
accuracy

[−1…1]
(0)

Overall accuracy of model predictions, corrected by 
the accuracy expected to occur by chance (Allouche 
et al., 2006; Shao & Halpin, 1995)
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to this predictor. We included as predictors the forest management 
category (a site-level categorical covariate with two levels), the 
log-transformed volume of the deadwood unit (a sampling-unit level 
continuous covariate), and the decay stage of the log (a sampling-unit 
level continuous covariate). We included also the second-order term 
of decay stage to allow for non-monotonic responses such as maxi-
mal occurrence probability achieved at an intermediate decay stage. 
HMSC models random effects through the latent-variable approach 
LF
ij
=

∑

k�ik�kj, where �ik is the site loading and �kj is the species load-
ing. We included random effects at the three hierarchical levels of 
the study design: the site (in which case �ik = �S(i)k where S(i) is the 
site of the sampling unit i), the plot (in which case �ik = �P(i)k where 
P(i) is the plot of the sampling unit i), and the sampling unit. We note 
that while in a univariate model, a random effect at the level of the 
sampling unit would be fully confounded with the residual, in a mul-
tivariate JSDM its inclusion is meaningful, as it models the residual 
associations among the species (Ovaskainen et al., 2016). We fitted 
the models with the R-package Hmsc (Tikhonov, Opedal, et al., 2020) 
assuming default prior distributions. For details on model fitting and 
evaluation of MCMC convergence, see Appendix S1.

We evaluated model performance separately for each species. 
To evaluate the scale dependency of model performance, we exam-
ined how well the models were able to predict whether the (i) sam-
pling units (ii) plots, or (iii) sites were empty or occupied (Figure 2a). 
We scored a plot P as being occupied if at least one sampling unit 
belonging to it was occupied, thus defining plot-level occurrence yP 
and computing plot-level occurrence probability pP as

Similarly, we scored a site S as occupied if at least one sampling 
unit belonging to it was occupied, thus defining site-level occurrence 
yS and computing site-level occurrence probability pS as

What is critically important for the interpretation of predictive 
performance is how exactly the model predicted probabilities pi have 
been generated. To cover a range of cases that relate to dissimilar 
prediction tasks, we considered both explanatory power and three 
variants of predictive power. We evaluated the explanatory power 
by predicting the occurrence probabilities by a model fitted to all 
data (a procedure also known as model fit or resubstitution). We 
evaluated predictive power through repeated fivefold cross-valida-
tion: splitting the sampling units into five folds (i.e., subsets), fitting 
the model to data on four of the folds, making predictions for the 
fifth fold, and looping over the five folds to generate such predic-
tions for all sampling units. We partitioned the sampling units into 
the five folds following three prediction tasks in the following in-
creasingly challenging order (Figure 2b): completely randomly (test-
ing how well the model predicts species presence in a new sampling 
unit), by partitioning the plots into five folds (testing how well the 

model predicts species presence in a sampling unit belonging to a 
new plot), or by partitioning the sites into five folds (testing how 
well the model predicts species presence in a sampling unit belong-
ing to a new site). To avoid dependency on the specific partition-
ing applied in the fivefold cross-validation, we repeated the above 
procedure 10 times and averaged the results over the replicates. 
We selected these four model evaluation strategies (explanatory 
power and three variants of predictive power) as it is well known 
that the more independent the test units are from the training units, 
the worse will the predictive performance be (Bahn & McGill, 2013; 
Roberts et al., 2017). In particular, the random effects can be uti-
lized for prediction only for cases where at least some sampling 
units have been included in the training data from the level for 
which the predictions are made (Ovaskainen & Abrego, 2020). By 
creating variation in the difficulty level of the prediction tasks, we 
aimed to both demonstrate its influence on the user's perception 
of model's performance, as well as to test whether the comparison 
among the four different performance measures depends on the 
specific prediction task. We note that even if different cross-valida-
tion strategies are applied, our case study does not address model 
transferability, because it makes predictions to the same study area 
and to the same spatial scales (sampling units, plots, sites) to which 
the model was fitted.

To facilitate the comparison among the metrics, we transformed 
AUC as 2*AUC−1 to make all performance measure have the same 
range from 0 to 1 and took the square root of Tjur's R2 due to its 
quadratic nature.

3  |  RESULTS

Figure 2 illustrates how the four metrics behave with respect to each 
other and species prevalence based on the explanatory power of the 
full model. Consistently with the earlier literature, AUC and max-TSS 
did not have any strong relationship with prevalence whereas Tjur's 
R2 and max-Kappa generally increased with increasing prevalence 
(Figure 2). As prevalence increases with the spatial scale of consid-
eration (e.g., a species is scored to be present in a plot if it is pre-
sent in any of the sampling units of that plot), this resulted in Tjur's 
R2 and max-Kappa yielding much higher values for plot- and site-
level predictions than for sampling-unit level predictions (Figure 2). 
Contrasting the four measures with respect to each other revealed 
that Tjur's R2 and max-Kappa behave largely similarly, as do AUC and 
max-TSS (Figure 2). While these measures are not exactly identical, 
the correlations within these two pairs of measures are so high that 
in practice they should be seen as alternatives rather than as com-
plementary. In contrast, a comparison between these pairs of meas-
ures shows that AUC and max-TSS behave qualitatively differently 
from Tjur's R2 and max-Kappa (Figure 2). This is largely explained by 
their dependency on prevalence: all measures yield similar evalua-
tions at the plot- and site-levels where prevalence is high, but AUC 
and max-TSS yield higher values than Tjur's R2 and max-Kappa at the 
sampling-unit level where prevalence is low (Figure 2).

(1)yP = 1 −
∏

i∈ P

(

1 − yi
)

, pP = 1 −
∏

i∈ P

(

1 − pi
)

.

(2)yS = 1 −
∏

i∈ S

(

1 − yi
)

, pS = 1 −
∏

i∈ S

(

1 − pi
)

.
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The comparison between all model types (with or without fixed 
and random effects) as well as all model evaluation strategies (ex-
planatory power and predictive power based on three different 
model validation strategies) suggests the generality of the results 
reported above: Tjur's R2 and max-Kappa behave largely similarly, as 
do AUC and max-TSS. Again, the main difference between these two 
pairs of measures is that Tjur's R2 and max-Kappa yield lower values 
than AUC and max-TSS for sampling unit-level evaluations where 
species prevalence is low (Figure 3). The results of Figure 3 also con-
firm the expectation that the more independent the test units are 
from the training units, the worse is the model performance (Bahn 
& McGill, 2013). This is especially the case for models that rely on 
random effects on their predictions, as the random effects can only 
be used for levels seen already in the training data. As one example, 
for models utilizing random effects, sampling unit-level predictions 
are much more accurate if based on fitting the model to all data (ex-
planatory power) rather than applying cross-validation (predictive 
power) (Figure 3). As another example, for models utilizing random 
effects, site-level predictions are much more accurate if based on 
explanatory power or predictive power computed through sampling 
unit-level or plot-level cross-validation, as compared to predictive 
power computed through site-level cross-validation (Figure 3). These 

results derive from what components each model is able to use for 
prediction depending on the model evaluation strategy, and the fact 
that the random effects explained a substantial part of the explained 
variation also in the full model (Table S1 in the Appendix S1).

4  |  DISCUSSION

After fitting a SDM to data, a critical question to ask is “how good 
is the model?”. Here we showed that depending on exactly how 
the model's predictive performance is evaluated, the very same 
model can achieve very different values even for one and the 
same metric (be it Tjur's R2, AUC, max-Kappa or max-TSS). We 
also showed that the four metrics of predictive performance form 
two groups, with Tjur's R2 being largely similar to max-Kappa, and 
AUC being largely similar to max-TSS. These two groups of metrics 
behave quite differently, the main difference being that Tjur's R2 
and max-Kappa tend to increase with prevalence whereas AUC 
and max-TSS are largely independent from it. So which metrics 
one should use for model evaluation? As Tjur's R2 and max-Kappa 
behave similarly, as well as do AUC and max-TSS, it seems suf-
ficient to pick one metric from each group. Which ones to pick 

F I G U R E  2 Illustration of relationships between the four measures of model performance (Tjur's R2, AUC, max-Kappa and max-TSS) and 
prevalence (upper row of panels), and among the four measures (lower row of panels). Each dot corresponds to one species, and the results 
are based on the explanatory power of the full model with fixed and random effects. Each panel shows model evaluations performed at 
the levels of a sampling unit (yellow), plot (red), and site (blue). The lines in the lower row of panels show the identity y = x. To increase 
comparability among the measures, Tjur's R2 has been square root transformed and AUC has been 2x−1 transformed.
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might mainly depend on the traditions followed in the particular 
research line, in order to make the results easily communicable. In 
our view, it is natural to choose either Tjur's R2 and AUC, as these 
two measures have a probabilistic interpretation, or alternatively 
max-Kappa and max-TSS, as these two measures are derived from 
thresholding and as they are derived from the viewpoints of ac-
curacy, sensitivity, and specificity.

But how do the two groups of metrics differ in terms of what 
exactly they measure, and do they provide complementary in-
sights or is one of them simply a better way to assess a model's 
predictive performance and thus should be generally favored? To 
address this, let us return to the species C. subabruptus in Figure 1, 
for which the metrics are in apparent contradiction: based on the 
AUC value of 0.96, the model would likely to be considered excel-
lent, whereas based on the Tjur's R2 value of 0.02, the same model 
would likely be considered poor. Importantly, these two interpre-
tations are in no contradiction, because whether the model is good 
or bad depends on what it is used for. For example, if a conserva-
tion biologist were to use the model to select protection units, 
they would consider the model not very useful, as the low Tjur's R2 
suggests that the model is unable of pinpointing the units where 
the species will occur with a high likelihood: even for the highest 

predictions, the species would actually occur only in 1 out of 10 
units. However, if the same conservation biologist were to use the 
model to identify units that could be managed without risk of ham-
pering the occurrences of the species, due to the high AUC they 
could consider the model excellent, as it successfully identifies 
units where the species is very unlikely to occur (say, those 90% 
of the sampling units for which the predicted probability is smaller 
than 0.005, in none of which the species is actually present). 
These considerations relate closely to the evaluation of predictive 
performance through measuring its sensitivity and specificity with 
respect to a particular probability threshold (Jiménez-Valverde & 
Lobo, 2007; Lawson et  al., 2014; Liu et  al., 2011), as they relate 
to how important it is to correctly predict the presences (sensi-
tivity) compared to the importance of correctly presenting the 
absences (specificity). Choosing a fixed threshold will, however, 
per necessity involve somewhat arbitrary decisions, which makes 
it difficult to e.g. compare predictive performances among studies 
(Allouche et al., 2006; Lawson et al., 2014; Liu et al., 2011; Manel 
et al., 2001), for which reason we have focused here on threshold 
independent measures.

From a statistical point of view, the value of Tjur's R2 for C. 
subabruptus is low, because it is defined as the mean occurrence 

F I G U R E  3 Evaluation of model performance based on the empirical case study. Each boxplot shows the distribution of model evaluation 
measures over the 68 species included in the study. The rows of panels correspond to Tjur's R2 (square root transformed), AUC (2x−1 
transformed), max-Kappa, and max-TSS. Model performance has been evaluated at the three hierarchical levels of sampling unit, plot, and 
site. The legend box on the top exemplifies how the predicted occurrence probabilities at the level of the sampling unit accumulate as 
occurrence probabilities at the plot and site level, respectively. The legend box on the right shows how the models have been used for four 
different prediction tasks that translate to different partitionings of the data into training and test sets. The results are shown for the three 
different model variants that contain both fixed and random effects (F & R), fixed effects only (F), or random effects only (R).
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probabilities of occupied and empty sampling units, and because 
for this species all predictions achieved a low probability. In con-
trast, AUC achieved a high value, because for the vast majority of 
empty sampling units, the predicted occurrence probabilities are 
still much lower than for occupied units. Thus, following the prob-
abilistic definition of AUC, if randomly picking one empty sampling 
unit and one occupied sampling unit, it is very likely that the occu-
pied sampling unit has a higher occurrence probability. A high value 
of Tjur's R2 can only be obtained when the predicted occurrence 
probabilities range from low (close to zero) to high (close to one), 
whereas a high value of AUC can be obtained even if there are 
only cases of either low or high predicted occurrence probabilities. 
These observations also relate closely to how the evaluations of 
model performance are influenced by the range of environmental 
conditions present in the sampling units. If the researcher decides 
to survey not only on the most suitable habitats but also include 
a large number of sampling units in unsuitable habitats, then the 
value of AUC will be inflated and theoretically converge to one 
if adding more and more unsuitable sampling units. While adding 
such sampling units will also increase the value of Tjur's R2, the 
value of this metric will not converge to its maximal value of one, 
but to a value corresponding to the mean occurrence probability 
across occupied sampling units.

Our hierarchical case study demonstrated how the different 
model components can or cannot help in making predictions, de-
pending on the cross-validation strategy chosen, and the hierarchical 
level (or more generally, spatial scale) at which model performance 
is evaluated. This is in line with the earlier findings that ignoring 
relevant dependency structures in the cross-validation step can 
greatly influence the perceived predictive performance of the model 
(Roberts et al., 2017). Which model evaluation strategy one should 
then apply, will depend on what purpose the model is to be used 
for. For example, if a conservation biologist uses the model to select 
protection sites for a threatened species, predictive performance 
should be evaluated at the site level and using a site-level cross-val-
idation strategy. This is because the conservation biologist would 
like to locate occupied sites (rather than e.g., individual occupied 
sampling units within sites), and because for this prediction task, the 
researcher is unlikely to hold any species data from the candidate 
sites (as otherwise the model predictions would not be needed to 
start with). In contrast, if a manager were interested in harvesting a 
commercially valuable species, then a cross-validation strategy tar-
geting the level of sampling units might be more adequate, because 
that would reveal how well the model is able to identify the sampling 
units where the species does occur.

In this article, we have stressed that the use of simple rules 
of thumb for evaluating model performance can be misleading, 
as that the values achieved of predictive performance depend on 
multiple factors. This will most likely come as a disappointment for 
the ecologist looking for simple guidelines. How then might a re-
searcher account for all of those confounding factors and decide 
on whether the model is excellent, good, fair, poor, or a complete 
failure? Rather than coming up with a more refined set of rules of 

thumb, we recommend that researchers use their intuition from 
past experience to derive a priori expectations on how predictable 
their system is, and then compare the achieved predictive perfor-
mance to those expectations. By explicitly articulating this past 
knowledge in their expectations, they can also communicate the 
advances achieved by the new model. If occupied and unoccupied 
sites are easy to separate a priori within the data range, then what 
do we need a new model for? If, on the other hand, occupied and 
unoccupied sites are a priori close to inseparable, then even a mod-
est improvement in our discriminatory capabilities will correspond 
to a major advancement.

For example, based on our field experience on surveying 
wood-inhabiting fungi, we know that C. subabruptus is not partic-
ularly affected by forest management, that it is absent from the 
smallest deadwood pieces, and that it appears to slightly prefer 
intermediate decay classes. Given all this knowledge, our intuition 
tells that it is possible to predict beforehand that the species will 
be absent from certain kinds of deadwood units, but it will be very 
difficult to tell exactly in which deadwood units this species is pres-
ent, which is in line with the low value of Tjur's R2 and high value of 
AUC achieved at the level of deadwood units. For the other exam-
ple species of Figure 1, F. fomentarius, our field intuition tells that 
the species is quite predictably found from large deadwood units 
and absent from small ones, which is in line with the high values of 
Tjur's R2 and AUC that we obtained for this species. These kinds of 
considerations can be generalized to the levels of study systems and 
spatial scales. For example, while for an ecologist conducting a field 
survey it can be very difficult to predict which individual deadwood 
units will be occupied by a given fungal species, it can be much eas-
ier to predict in which forest sites that species will occur, as was 
observed by the higher values of Tjur's R2 that we recorded at the 
plot and site levels. As another example, for a researcher surveying 
birds in forest fragments, it can be difficult to predict beforehand in 
which sites the common chaffinch (Fringilla coelebs) will or will not 
be found, because the species is a forest generalist. However, if the 
survey was extended to also cover many other types of habitats, 
such as cultivated areas and water bodies, then it will be much easier 
to beforehand predict that the chaffinch will mostly be found in the 
forest sites.

One reason why Tjur's R2 may have not gained much popular-
ity in ecological studies is that it generally yields much lower val-
ues than AUC. The “modest” values achieved can then be harder 
to communicate and publish than the typically much higher AUC 
values. As a reviewer, one may be misled to condemn a model 
as inferior as based on a low Tjur's R2, unless one gives added 
thought to why this is the case. Given the complementary infor-
mation contained in the two measures, and the fact that most 
ecologists are typically more familiar with the scale of AUC, our 
recommendation is for researchers to report both measures (or 
alternatively, max-Kappa and max-TSS) and to spell out their as-
sessment of how these values relate to a priori expectations. Only 
this way may the author and the reader evaluate the values from 
the same starting positions. With this article, we hope we have 
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increased the general awareness about the options for evaluating 
predictive performance, the complications inherent and their im-
plications for the values achieved—thus allowing researchers to 
reach more comprehensive and informative assessments on how 
useful their models are for the very purposes that these models 
were built.

AUTHOR CONTRIBUTIONS
Nerea Abrego: Conceptualization (equal); formal analysis (equal); 
investigation (equal); methodology (equal); resources (equal); writ-
ing – original draft (equal); writing – review and editing (equal). 
Otso Ovaskainen: Conceptualization (equal); formal analysis 
(equal); investigation (equal); methodology (equal); resources 
(equal); writing – original draft (equal); writing – review and edit-
ing (equal).

ACKNO​WLE​DG E​MENTS
We thank Tomas Roslin and the Predictive Community Ecology 
Group for highly insightful comments. OO was funded by the 
Academy of Finland (grant no. 309581), Jane and Aatos Erkko 
Foundation, Research Council of Norway through its Centres of 
Excellence Funding Scheme (223257), and the European Research 
Council (ERC) under the European Union's Horizon 2020 research 
and innovation programme (grant agreement No 856506; ERC-
synergy project LIFEPLAN). NA was funded by the Academy of 
Finland (grant no. 342374).

CONFLIC T OF INTERE S T S TATEMENT
The authors declare no conflict of interest.

DATA AVAIL ABILIT Y S TATEMENT
The data and scripts to reproduce the results of this study have been 
published in Zenodo (https://​zenodo.​org/​record/​8281224).

ORCID
Nerea Abrego   https://orcid.org/0000-0001-6347-6127 
Otso Ovaskainen   https://orcid.org/0000-0001-9750-4421 

R E FE R E N C E S
Abrego, N., Dunson, D., Halme, P., Salcedo, I., & Ovaskainen, O. (2016). 

Data from: Wood-inhabiting fungi with tight associations with 
other species have declined as a response to forest management. 
Dryad. https://​doi.​org/​10.​5061/​DRYAD.​48636​

Aguirre-Gutiérrez, J., Carvalheiro, L. G., Polce, C., van Loon, E. E., Raes, 
N., Reemer, M., & Biesmeijer, J. C. (2013). Fit-for-purpose: Species 
distribution model performance depends on evaluation criteria – 
Dutch hoverflies as a case study. PLoS One, 8(5), e63708. https://​
doi.​org/​10.​1371/​journ​al.​pone.​0063708

Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy 
of species distribution models: Prevalence, kappa and the true 
skill statistic (TSS): Assessing the accuracy of distribution models. 
Journal of Applied Ecology, 43(6), 1223–1232. https://​doi.​org/​10.​
1111/j.​1365-​2664.​2006.​01214.​x

Araújo, M. B., Pearson, R. G., Thuiller, W., & Erhard, M. (2005). Validation 
of species–climate impact models under climate change. Global 
Change Biology, 11(9), 1504–1513. https://​doi.​org/​10.​1111/j.​1365-​
2486.​2005.​01000.​x

Bahn, V., & McGill, B. J. (2013). Testing the predictive performance of 
distribution models. Oikos, 122(3), 321–331. https://​doi.​org/​10.​
1111/j.​1600-​0706.​2012.​00299.​x

Elith, J., Graham, C., Anderson, R., Dudík, M., Ferrier, S., Guisan, A., 
Hijmans, R., Huettmann, F., Leathwick, J., Lehmann, A., Li, J., 
Lohmann, L., Loiselle, B., Manion, G., Moritz, C., Nakamura, M., 
Nakazawa, Y., Overton, J., Townsend Peterson, A., … Zimmermann, 
N. (2006). Novel methods improve prediction of species' distribu-
tions from occurrence data. Ecography, 29(2), 129–151. https://​doi.​
org/​10.​1111/j.​2006.​0906-​7590.​04596.​x

Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assess-
ment of prediction errors in conservation presence/absence mod-
els. Environmental Conservation, 24(1), 38–49. https://​doi.​org/​10.​
1017/​S0376​89299​7000088

Franklin, J., Wejnert, K. E., Hathaway, S. A., Rochester, C. J., & Fisher, R. 
N. (2009). Effect of species rarity on the accuracy of species distri-
bution models for reptiles and amphibians in southern California. 
Diversity and Distributions, 15(1), 167–177. https://​doi.​org/​10.​
1111/j.​1472-​4642.​2008.​00536.​x

Gogol-Prokurat, M. (2011). Predicting habitat suitability for rare plants 
at local spatial scales using a species distribution model. Ecological 
Applications, 21(1), 33–47. https://​doi.​org/​10.​1890/​09-​1190.​1

Guillera-Arroita, G., Lahoz-Monfort, J. J., Elith, J., Gordon, A., Kujala, H., 
Lentini, P. E., McCarthy, M. A., Tingley, R., & Wintle, B. A. (2015). Is 
my species distribution model fit for purpose? Matching data and 
models to applications: Matching distribution models to applica-
tions. Global Ecology and Biogeography, 24(3), 276–292. https://​doi.​
org/​10.​1111/​geb.​12268​

Guisan, A., Wilfried, T., & Zimmermann, N. E. (2017). Measuring 
model accuracy: Which metrics to use? In Habitat suitability and 
distribution models: With applications in R (1st ed., pp. 241–269). 
Cambridge University Press. https://​doi.​org/​10.​1017/​97811​
39028​271.​022

Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area 
under a receiver operating characteristic (ROC) curve. Radiology, 
143(1), 29–36. https://​doi.​org/​10.​1148/​radio​logy.​143.1.​7063747

Hijmans, R. J. (2012). Cross-validation of species distribution models: 
Removing spatial sorting bias and calibration with a null model. 
Ecology, 93(3), 679–688. https://​doi.​org/​10.​1890/​11-​0826.​1

Jiménez-Valverde, A. (2012). Insights into the area under the receiver 
operating characteristic curve (AUC) as a discrimination measure in 
species distribution modelling: Insights into the AUC. Global Ecology 
and Biogeography, 21(4), 498–507. https://​doi.​org/​10.​1111/j.​1466-​
8238.​2011.​00683.​x

Jiménez-Valverde, A., Acevedo, P., Barbosa, A. M., Lobo, J. M., & 
Real, R. (2013). Discrimination capacity in species distribution 
models depends on the representativeness of the environmen-
tal domain: Discrimination is context dependent. Global Ecology 
and Biogeography, 22(4), 508–516. https://​doi.​org/​10.​1111/​geb.​
12007​

Jiménez-Valverde, A., & Lobo, J. M. (2007). Threshold criteria for conver-
sion of probability of species presence to either–or presence–ab-
sence. Acta Oecologica, 31(3), 361–369. https://​doi.​org/​10.​1016/j.​
actao.​2007.​02.​001

Kotta, J., Vanhatalo, J., Jänes, H., Orav-Kotta, H., Rugiu, L., Jormalainen, 
V., Bobsien, I., Viitasalo, M., Virtanen, E., Sandman, A. N., Isaeus, 
M., Leidenberger, S., Jonsson, P. R., & Johannesson, K. (2019). 
Integrating experimental and distribution data to predict future 
species patterns. Scientific Reports, 9(1), 1821. https://​doi.​org/​10.​
1038/​s4159​8-​018-​38416​-​3

Lawson, C. R., Hodgson, J. A., Wilson, R. J., & Richards, S. A. (2014). 
Prevalence, thresholds and the performance of presence-absence 
models. Methods in Ecology and Evolution, 5(1), 54–64. https://​doi.​
org/​10.​1111/​2041-​210X.​12123​

Liu, C., White, M., & Newell, G. (2011). Measuring and comparing the ac-
curacy of species distribution models with presence-absence data. 

https://zenodo.org/record/8281224
https://orcid.org/0000-0001-6347-6127
https://orcid.org/0000-0001-6347-6127
https://orcid.org/0000-0001-9750-4421
https://orcid.org/0000-0001-9750-4421
https://doi.org/10.5061/DRYAD.48636
https://doi.org/10.1371/journal.pone.0063708
https://doi.org/10.1371/journal.pone.0063708
https://doi.org/10.1111/j.1365-2664.2006.01214.x
https://doi.org/10.1111/j.1365-2664.2006.01214.x
https://doi.org/10.1111/j.1365-2486.2005.01000.x
https://doi.org/10.1111/j.1365-2486.2005.01000.x
https://doi.org/10.1111/j.1600-0706.2012.00299.x
https://doi.org/10.1111/j.1600-0706.2012.00299.x
https://doi.org/10.1111/j.2006.0906-7590.04596.x
https://doi.org/10.1111/j.2006.0906-7590.04596.x
https://doi.org/10.1017/S0376892997000088
https://doi.org/10.1017/S0376892997000088
https://doi.org/10.1111/j.1472-4642.2008.00536.x
https://doi.org/10.1111/j.1472-4642.2008.00536.x
https://doi.org/10.1890/09-1190.1
https://doi.org/10.1111/geb.12268
https://doi.org/10.1111/geb.12268
https://doi.org/10.1017/9781139028271.022
https://doi.org/10.1017/9781139028271.022
https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1890/11-0826.1
https://doi.org/10.1111/j.1466-8238.2011.00683.x
https://doi.org/10.1111/j.1466-8238.2011.00683.x
https://doi.org/10.1111/geb.12007
https://doi.org/10.1111/geb.12007
https://doi.org/10.1016/j.actao.2007.02.001
https://doi.org/10.1016/j.actao.2007.02.001
https://doi.org/10.1038/s41598-018-38416-3
https://doi.org/10.1038/s41598-018-38416-3
https://doi.org/10.1111/2041-210X.12123
https://doi.org/10.1111/2041-210X.12123


    |  11 of 11ABREGO and OVASKAINEN

Ecography, 34(2), 232–243. https://​doi.​org/​10.​1111/j.​1600-​0587.​
2010.​06354.​x

Lobo, J. M., Jiménez-Valverde, A., & Real, R. (2008). AUC: A misleading 
measure of the performance of predictive distribution models. 
Global Ecology and Biogeography, 17(2), 145–151. https://​doi.​org/​10.​
1111/j.​1466-​8238.​2007.​00358.​x

Manel, S., Williams, H. C., & Ormerod, S. J. (2001). Evaluating pres-
ence-absence models in ecology: The need to account for preva-
lence: Presence-absence modelling. Journal of Applied Ecology, 38(5), 
921–931. https://​doi.​org/​10.​1046/j.​1365-​2664.​2001.​00647.​x

Mang, T., Essl, F., Moser, D., Kleinbauer, I., & Dullinger, S. (2018). An inte-
grated, spatio-temporal modelling framework for analysing biolog-
ical invasions. Diversity and Distributions, 24(5), 652–665. https://​
doi.​org/​10.​1111/​ddi.​12707​

Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K., & Thuiller, 
W. (2009). Evaluation of consensus methods in predictive species 
distribution modelling. Diversity and Distributions, 15(1), 59–69. 
https://​doi.​org/​10.​1111/j.​1472-​4642.​2008.​00491.​x

McPherson, J. M., Jetz, W., & Rogers, D. J. (2004). The effects of species' 
range sizes on the accuracy of distribution models: Ecological phe-
nomenon or statistical artefact?: Species' range and distribution 
model accuracy. Journal of Applied Ecology, 41(5), 811–823. https://​
doi.​org/​10.​1111/j.​0021-​8901.​2004.​00943.​x

Norberg, A., Abrego, N., Blanchet, F. G., Adler, F. R., Anderson, B. J., 
Anttila, J., Araújo, M. B., Dallas, T., Dunson, D., Elith, J., Foster, S. D., 
Fox, R., Franklin, J., Godsoe, W., Guisan, A., O'Hara, B., Hill, N. A., 
Holt, R. D., Hui, F. K. C., … Ovaskainen, O. (2019). A comprehensive 
evaluation of predictive performance of 33 species distribution 
models at species and community levels. Ecological Monographs, 
89(3), e01370. https://​doi.​org/​10.​1002/​ecm.​1370

Ovaskainen, O., & Abrego, N. (2020). Joint species distribution modelling: 
With applications in R (1st ed.). Cambridge University Press. https://​
doi.​org/​10.​1017/​97811​08591720

Ovaskainen, O., Roy, D. B., Fox, R., & Anderson, B. J. (2016). Uncovering 
hidden spatial structure in species communities with spatially explicit 
joint species distribution models. Methods in Ecology and Evolution, 
7(4), 428–436. https://​doi.​org/​10.​1111/​2041-​210X.​12502​

Ovaskainen, O., Tikhonov, G., Norberg, A., Guillaume Blanchet, F., Duan, 
L., Dunson, D., Roslin, T., & Abrego, N. (2017). How to make more 
out of community data? A conceptual framework and its imple-
mentation as models and software. Ecology Letters, 20(5), 561–576. 
https://​doi.​org/​10.​1111/​ele.​12757​

Pearce, J., & Ferrier, S. (2000). Evaluating the predictive performance 
of habitat models developed using logistic regression. Ecological 
Modelling, 133(3), 225–245. https://​doi.​org/​10.​1016/​S0304​-​
3800(00)​00322​-​7

Peterson, A. T., Papeş, M., & Soberón, J. (2008). Rethinking receiver op-
erating characteristic analysis applications in ecological niche mod-
eling. Ecological Modelling, 213(1), 63–72. https://​doi.​org/​10.​1016/j.​
ecolm​odel.​2007.​11.​008

Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera-Arroita, 
G., Hauenstein, S., Lahoz-Monfort, J. J., Schröder, B., Thuiller, W., 
Warton, D. I., Wintle, B. A., Hartig, F., & Dormann, C. F. (2017). 
Cross-validation strategies for data with temporal, spatial, hier-
archical, or phylogenetic structure. Ecography, 40(8), 913–929. 
https://​doi.​org/​10.​1111/​ecog.​02881​

Segurado, P., & Araújo, M. B. (2004). An evaluation of methods for mod-
elling species distributions: Methods for modelling species distribu-
tions. Journal of Biogeography, 31(10), 1555–1568. https://​doi.​org/​
10.​1111/j.​1365-​2699.​2004.​01076.​x

Shao, G., & Halpin, P. N. (1995). Climatic controls of eastern north 
American coastal tree and shrub distributions. Journal of 
Biogeography, 22(6), 1083. https://​doi.​org/​10.​2307/​2845837

Smolik, M. G., Dullinger, S., Essl, F., Kleinbauer, I., Leitner, M., Peterseil, 
J., Stadler, L.-M., & Vogl, G. (2010). Integrating species distribution 

models and interacting particle systems to predict the spread of 
an invasive alien plant. Journal of Biogeography, 37(3), 411–422. 
https://​doi.​org/​10.​1111/j.​1365-​2699.​2009.​02227.​x

Sofaer, H. R., Hoeting, J. A., & Jarnevich, C. S. (2019). The area under 
the precision-recall curve as a performance metric for rare binary 
events. Methods in Ecology and Evolution, 10(4), 565–577. https://​
doi.​org/​10.​1111/​2041-​210X.​13140​

Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. 
Science, 240(4857), 1285–1293. https://​doi.​org/​10.​1126/​scien​ce.​
3287615

Termansen, M., McClean, C. J., & Preston, C. D. (2006). The use of ge-
netic algorithms and Bayesian classification to model species dis-
tributions. Ecological Modelling, 192(3–4), 410–424. https://​doi.​org/​
10.​1016/j.​ecolm​odel.​2005.​07.​009

Thuiller, W., Broennimann, O., Hughes, G., Alkemade, J. R. M., Midgley, 
G., & Corsi, F. (2006). Vulnerability of African mammals to anthro-
pogenic climate change under conservative land transformation as-
sumptions. Global Change Biology, 12(3), 424–440. https://​doi.​org/​
10.​1111/j.​1365-​2486.​2006.​01115.​x

Tikhonov, G., Duan, L., Abrego, N., Newell, G., White, M., Dunson, D., 
& Ovaskainen, O. (2020). Computationally efficient joint species 
distribution modeling of big spatial data. Ecology, 101(2), e02929. 
https://​doi.​org/​10.​1002/​ecy.​2929

Tikhonov, G., Opedal, Ø. H., Abrego, N., Lehikoinen, A., Jonge, M. M. J., 
Oksanen, J., & Ovaskainen, O. (2020). Joint species distribution mod-
elling with the R-package Hmsc. Methods in Ecology and Evolution, 
11(3), 442–447. https://​doi.​org/​10.​1111/​2041-​210X.​13345​

Tjur, T. (2009). Coefficients of determination in logistic regression 
models—A new proposal: The coefficient of discrimination. The 
American Statistician, 63(4), 366–372. https://​doi.​org/​10.​1198/​tast.​
2009.​08210​

Vaughan, I. P., & Ormerod, S. J. (2005). The continuing challenges of test-
ing species distribution models. Journal of Applied Ecology, 42(4), 
720–730. https://​doi.​org/​10.​1111/j.​1365-​2664.​2005.​01052.​x

Wang, R., Jiang, C., Guo, X., Chen, D., You, C., Zhang, Y., Wang, M., & 
Li, Q. (2020). Potential distribution of Spodoptera frugiperda (J.E. 
Smith) in China and the major factors influencing distribution. 
Global Ecology and Conservation, 21, e00865. https://​doi.​org/​10.​
1016/j.​gecco.​2019.​e00865

Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., Guisan, 
A., & NCEAS Predicting Species Distributions Working Group†. 
(2008). Effects of sample size on the performance of species distri-
bution models. Diversity and Distributions, 14(5), 763–773. https://​
doi.​org/​10.​1111/j.​1472-​4642.​2008.​00482.​x

Zhang, C., Chen, Y., Xu, B., Xue, Y., & Ren, Y. (2018). Comparing the pre-
diction of joint species distribution models with respect to char-
acteristics of sampling data. Ecography, 41(11), 1876–1887. https://​
doi.​org/​10.​1111/​ecog.​03571​

SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.

How to cite this article: Abrego, N., & Ovaskainen, O. (2023). 
Evaluating the predictive performance of presence–absence 
models: Why can the same model appear excellent or poor? 
Ecology and Evolution, 13, e10784. https://doi.org/10.1002/
ece3.10784

https://doi.org/10.1111/j.1600-0587.2010.06354.x
https://doi.org/10.1111/j.1600-0587.2010.06354.x
https://doi.org/10.1111/j.1466-8238.2007.00358.x
https://doi.org/10.1111/j.1466-8238.2007.00358.x
https://doi.org/10.1046/j.1365-2664.2001.00647.x
https://doi.org/10.1111/ddi.12707
https://doi.org/10.1111/ddi.12707
https://doi.org/10.1111/j.1472-4642.2008.00491.x
https://doi.org/10.1111/j.0021-8901.2004.00943.x
https://doi.org/10.1111/j.0021-8901.2004.00943.x
https://doi.org/10.1002/ecm.1370
https://doi.org/10.1017/9781108591720
https://doi.org/10.1017/9781108591720
https://doi.org/10.1111/2041-210X.12502
https://doi.org/10.1111/ele.12757
https://doi.org/10.1016/S0304-3800(00)00322-7
https://doi.org/10.1016/S0304-3800(00)00322-7
https://doi.org/10.1016/j.ecolmodel.2007.11.008
https://doi.org/10.1016/j.ecolmodel.2007.11.008
https://doi.org/10.1111/ecog.02881
https://doi.org/10.1111/j.1365-2699.2004.01076.x
https://doi.org/10.1111/j.1365-2699.2004.01076.x
https://doi.org/10.2307/2845837
https://doi.org/10.1111/j.1365-2699.2009.02227.x
https://doi.org/10.1111/2041-210X.13140
https://doi.org/10.1111/2041-210X.13140
https://doi.org/10.1126/science.3287615
https://doi.org/10.1126/science.3287615
https://doi.org/10.1016/j.ecolmodel.2005.07.009
https://doi.org/10.1016/j.ecolmodel.2005.07.009
https://doi.org/10.1111/j.1365-2486.2006.01115.x
https://doi.org/10.1111/j.1365-2486.2006.01115.x
https://doi.org/10.1002/ecy.2929
https://doi.org/10.1111/2041-210X.13345
https://doi.org/10.1198/tast.2009.08210
https://doi.org/10.1198/tast.2009.08210
https://doi.org/10.1111/j.1365-2664.2005.01052.x
https://doi.org/10.1016/j.gecco.2019.e00865
https://doi.org/10.1016/j.gecco.2019.e00865
https://doi.org/10.1111/j.1472-4642.2008.00482.x
https://doi.org/10.1111/j.1472-4642.2008.00482.x
https://doi.org/10.1111/ecog.03571
https://doi.org/10.1111/ecog.03571
https://doi.org/10.1002/ece3.10784
https://doi.org/10.1002/ece3.10784

	Evaluating the predictive performance of presence–absence models: Why can the same model appear excellent or poor?
	Abstract
	1|INTRODUCTION
	2|MATERIALS AND METHODS
	2.1|Overall accuracy, sensitivity and specificity
	2.2|Model evaluation measures: max-TSS, max-Kappa, Tjur's R2, and AUC
	2.3|Empirical case study to examine the measures of predictive performance

	3|RESULTS
	4|DISCUSSION
	AUTHOR CONTRIBUTIONS
	ACKNO​WLE​DGE​MENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES


