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Abstract
When comparing multiple models of species distribution, models yielding higher pre-
dictive	performance	are	clearly	to	be	favored.	A	more	difficult	question	is	how	to	de-
cide whether even the best model is “good enough”. Here, we clarify key choices and 
metrics related to evaluating the predictive performance of presence–absence mod-
els. We use a hierarchical case study to evaluate how four metrics of predictive per-
formance	(AUC,	Tjur's	R2, max-Kappa, and max-TSS) relate to each other, the random 
and fixed effects parts of the model, the spatial scale at which predictive performance 
is measured, and the cross-validation strategy chosen. We demonstrate that the very 
same metric can achieve different values for the very same model, even when similar 
cross-validation strategies are followed, depending on the spatial scale at which pre-
dictive	performance	is	measured.	Among	metrics,	Tjur's	R2 and max-Kappa generally 
increase	with	species'	prevalence,	whereas	AUC	and	max-TSS	are	largely	independent	
of	prevalence.	Thus,	Tjur's	R2 and max-Kappa often reach lower values when meas-
ured	at	the	smallest	scales	considered	in	the	study,	while	AUC	and	max-TSS	reaching	
similar values across the different spatial levels included in the study. However, they 
provide complementary insights on predictive performance. The very same model 
may appear excellent or poor not only due to the applied metric, but also how predic-
tive performance is exactly calculated, calling for great caution on the interpretation 
of predictive performance. The most comprehensive evaluation of predictive perfor-
mance can be obtained by evaluating predictive performance through the combina-
tion of measures providing complementary insights. Instead of following simple rules 
of thumb or focusing on absolute values, we recommend comparing the achieved 
predictive	performance	to	the	researcher's	own	a	priori	expectations	on	how	easy	it	
is	to	make	predictions	related	to	the	same	question	that	the	model	is	used	for.
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1  |  INTRODUC TION

In	species	distribution	modeling,	a	model's	predictive	performance	is	
routinely assessed by determining how well the model is able to pre-
dict either the same data that it was originally fitted to (explanatory 
power) or to predict validation data independent from the training 
data used for model fitting (predictive power on hold-out data). How 
exactly to partition the full data into training and validation data, 
and	what	method	to	use	to	evaluate	the	model's	predictive	perfor-
mance,	has	been	the	focus	of	a	large	body	of	literature	(e.g.,	Allouche	
et al., 2006;	Araújo	et	al.,	2005; Elith et al., 2006; Hijmans, 2012; 
Liu et al., 2011;	Norberg	et	al.,	2019; Vaughan & Ormerod, 2005). 
When comparing multiple models, a model yielding higher predictive 
performance is clearly to be favored over a model yielding lower pre-
dictive	performance,	yet	a	more	difficult	question	is	how	to	decide	
if even the best model is “good enough”. To facilitate the interpre-
tation of model evaluation results, simple rules of thumb have been 
proposed to classify predictive performances into categories such as 
“excellent,”	“good,”	or	“poor”	(Araújo	et	al.,	2005;	Guisan	et	al.,	2017; 
Swets, 1988). However, as we argue in this article, following such 
simplified rules of thumb can lead to misleading interpretations, be-
cause the level of predictive performance achieved will simultane-
ously depend on multiple factors that should explicitly be accounted 
for.

The level of predictive performance achieved depends not only 
on how optimally the model has been chosen, but also on the nature 
of the study system and on the study design—especially on the range 
and representation of environmental conditions present in the data 
(e.g.,	 Guillera-Arroita	 et	 al.,	 2015; Jiménez-Valverde et al., 2013; 
Peterson et al., 2008;	Segurado	&	Araújo,	2004). Furthermore, the 
very same model can achieve very different levels of predictive per-
formance depending on the spatial and/or temporal scale at which 
the	 prediction	 task	 is	 performed	 (Aguirre-Gutiérrez	 et	 al.,	 2013; 
Sofaer et al., 2019; Termansen et al., 2006; Wisz et al., 2008), and 
how the sampling units are partitioned into training and valida-
tion	 data	 (e.g.,	 Araújo	 et	 al.,	 2005;	 Bahn	&	McGill,	2013; Roberts 
et al., 2017). Thus, when considering how good a model is, it is 
not sufficient to merely consider the absolute value of a particular 
metric of predictive performance. Rather, it is also necessary to ac-
count for the many factors that influence the values achieved. Many 
ecologists, whether conducting their own work or evaluating that 
of others, may not be sufficiently aware of the complexities related 
to evaluating predictive performance, which motivated the present 
article.

Predictive performance can be measured in terms of, for ex-
ample,	 accuracy,	 discrimination,	 precision,	 or	 calibration	 (Norberg	
et al., 2019). Here we focus on measures discrimination, that is, 
measures of how well a model discriminates between sampling units 
where a focal species is present and sampling units from which it 
is	 absent	 (Allouche	et	 al.,	 2006; Jiménez-Valverde, 2012;	Norberg	
et al., 2019; Tjur, 2009). While there are also many other metrics for 
measuring predictive performance in species distribution modeling 
(Guisan	et	al.,	2017; Sofaer et al., 2019), here we focus on the four 

metrics	of	AUC,	Tjur's	R2, max-Kappa, and max-TSS. The abbreviation 
AUC	stands	for	the	“area	under	the	receiver	operating	characteristic	
curve,” and this metric was initially developed in the fields of signal 
processing	and	medical	science	(Hanley	&	McNeil,	1982). It was pro-
posed as a measure of predictive performance for SDMs by Fielding 
and Bell (1997) and has become the most commonly applied met-
ric for evaluating the predictive performance of presence–absence 
SDMs (Elith et al., 2006; Liu et al., 2011; Pearce & Ferrier, 2000). 
However, it has also been subject to criticism, because, for example, 
it can reach a high value if including a large number of sites where 
the species is very unlikely to occur (Lobo et al., 2008; Peterson 
et al., 2008; see also Sofaer et al., 2019, for a variant that circum-
vents	this	problem).	A	more	recent	metric	for	measuring	predictive	
performance	 in	 presence–absence	 models	 is	 Tjur's	 coefficient	 of	
discrimination (Tjur, 2009),	henceforth	Tjur's	R2.	Tjur's	R2 was de-
veloped as an alternative to other coefficients of determination for 
logistic regression models (Tjur, 2009) and introduced in the SDM 
literature by Ovaskainen et al. (2016).	One	advantage	of	Tjur's	R2 is 
its resemblance to the R2 of the linear model, allowing its intuitive 
interpretation as the proportion of variance explained by the model. 
While	Tjur's	R2	is	still	less	commonly	used	than	AUC,	it	has	recently	
gained increasing popularity as a measure of predictive performance 
in SDM (e.g., Kotta et al., 2019; Mang et al., 2018; Tikhonov, Duan, 
et al., 2020; Tikhonov, Opedal, et al., 2020; Zhang et al., 2018). The 
metrics Kappa and TSS are based on threshold probabilities above 
which a species is considered to be present and below which is con-
sidered absent. These predicted presences and absences are then 
contrasted to the observed presences and absences through the 
so-called	 2 × 2	 confusion	 matrix.	 Kappa	 evaluates	 the	 overall	 ac-
curacy of model predictions, corrected by the accuracy expected 
to	 occur	 by	 chance	 (Allouche	 et	 al.,	 2006; Shao & Halpin, 1995). 
Allouche	et	al.	(2006) criticized Kappa due to its tendency to eval-
uate predictive performance more positively for common than for 
rare species and proposed the true skill statistics (TSS) as an alterna-
tive	for	Kappa.	Also	the	metric	AUC	has	been	favored	because	it	is	
relatively insensitive to the prevalence of the focal species (Franklin 
et al., 2009; Manel et al., 2001; McPherson et al., 2004). Both Kappa 
and TSS are based on a user-selected probability threshold, which 
can be difficult to use in an informed way and makes comparison 
among	studies	difficult.	As	a	generic	solution,	Guisan	et	al.	 (2017) 
proposed to try out all probability thresholds and apply the ones 
that maximize the metrics, leading to max-Kappa and max-TSS. This 
is	somewhat	analogous	to	the	definition	of	AUC	based	on	integrating	
over all possible probability thresholds (Fielding & Bell, 1997; Manel 
et al., 2001).

In attempts to provide clear guidelines for how to assess pre-
dictive	performance,	AUC	values	have	been	split	 into	various	per-
formance	 classes,	 with	 AUC > 0.9	 corresponding	 to	 “excellent,”	
0.8 < AUC < 0.9	to	“good,”	0.7 < AUC < 0.8	to	“fair,”	0.6 < AUC < 0.7	to	
“poor,”	and	0.5 < AUC < 0.6	to	“fail”	(Araújo	et	al.,	2005). Such rules 
of thumb for evaluating predictive performance have been adopted 
in	several	studies	(e.g.,	Gogol-Prokurat,	2011; Marmion et al., 2009; 
Smolik et al., 2010; Thuiller et al., 2006; Wang et al., 2020). In this 
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article, we argue that using performance classes or focusing on the 
absolute values of the metrics can result in misleading interpreta-
tions and oversimplified conclusions regarding predictive perfor-
mance. In evidence of this claim, we show that the very same model 
can achieve either a high or a low value also for a single metric of 
predictive performance, depending on the model evaluation strat-
egy. To advance the status quo, we clarify what key choices must 
be made when evaluating predictive performance. To this aim, we 
use a hierarchical case study of wood-inhabiting fungi to describe 
how	AUC,	Tjur's	R2, max-Kappa, and max-TSS should be interpreted, 
how	they	relate	to	each	other	and	species	prevalence,	how	a	model's	
predictive performance will vary with the model structure (most im-
portantly, the fixed and random effects included), the spatial scale at 
which predictive performance is measured, and the cross-validation 
strategy chosen.

2  |  MATERIAL S AND METHODS

2.1  |  Overall accuracy, sensitivity and specificity

We focus here on four metrics of predictive performance: true 
skill	 statistic	 (max-TSS),	Cohen's	Kappa,	Tjur's	R2,	 and	AUC.	While	
all these metrics are used to assess how well the fitted models dis-
tinguish between occupied and empty sampling units, they have 
different mathematical formulations, and thus evaluate model per-
formance from different perspectives. To introduce these measures 
and discuss their properties, we first introduce some basic notation 
and terminology. We denote by y the data, so that yi = 1	if	the	sam-
pling unit i is occupied, and yi = 0	 if	 it	 is	empty.	We	further	denote	
by pi the model-predicted occurrence probability for the sampling 
unit i. Some of the measures we consider are based on the idea of 
thresholding, that is, considering that the model predicts a presence 
(respectively, absence) if the probability is greater (respectively, 
smaller) than the selected threshold t∗. We denote thresholding-
based predictions by ti so that ti = 1 if pi ≥ t∗, and ti = 0 if pi < t∗ .	
With	 thresholding-based	 predictions,	 it	 is	 natural	 to	 use	 the	 2 × 2	
confusion matrix as a basis of model evaluations. True positives are 
those datapoints (the number of which we denote by a, following 
the	notation	of	Allouche	et	al.	(2006)) for which the model correctly 
predicts species presence (ti = 1 and yi = 1); true negatives are those 
d datapoints for which the model correctly predicts species absence 
(ti = 0 and yi = 0); false positives are those b datapoints for which the 
model falsely predicts species presence (ti = 1 but yi = 0); and false 
negatives are those c datapoints for which the model falsely pre-
dicts species absence (ti = 0 but yi = 1). Overall accuracy is defined 
as (a + d)∕n, sensitivity as a∕(a + c), and specificity as d∕(b + d), 
where n = a + b + c + d the total number of datapoints. Thus, overall 
accuracy measures the proportion of all datapoints (whether actual 
presences or absences) that the model predicts correctly, sensitivity 
measures the proportion of actual presences that the model pre-
dicts correctly, and specificity measures what proportion of actual 
absences that the model predicts correctly.

Figure 1 illustrates these concepts by two examples of model 
predictions versus actual species occurrences. We note in passing 
that these examples derive from the case study of wood-inhabiting 
fungi that we will consider in more detail below, but at this point 
it is not yet necessary to know in detail how the predictions were 
generated. Both species that we consider in Figure 1 are rare: the 
prevalence of Crustomyces subabruptus is 0.2% (occurring 10 times 
out	of	the	5097	sampling	units),	and	the	prevalence	of	Fomes fomen-
tarius	 is	0.8%	 (occurring	41	 times).	As	 the	 species	are	 so	 rare,	 the	
models predict very low probabilities for most sampling units, for 
which reason we have used both the linear and the log-scale to show 
the full range of probabilities (Figure 1).	As	for	the	interpretation	of	
Tjur's	R2, it is important to know that the predicted probabilities are 
well	calibrated,	we	note	that	this	is	the	case:	the	sum	over	all	5097	
occurrence probabilities for C. subabruptus is 10.7 (which close to 
the number of 10 occurrences), whereas for F. fomentarius it is 41.1 
(which is close to the number of 41 occurrences). The model predic-
tions do not reach high occurrence probabilities for any sampling 
units, and thus selecting, for example, a threshold of t∗ = 0.9 would 
suggest that, for example, C. subabruptus would not be present any-
where. For this reason, we have used t∗ = 0.05 as the threshold, as 
illustrated in Figure 1 by the red vertical lines. With this threshold, 
the	overall	accuracy	is	very	high	for	both	species	(0.995	for	C. sub-
abruptus	and	0.974	for	F. fomentarius), reflecting the fact that many 
more sampling units are predicted correctly (black symbols) than in-
correctly (red symbols). Even if the low value of the threshold means 
that we have attempted to increase sensitivity with a potential cost 
for specificity, the sensitivity in C. subabruptus is only 0.1, as only 
one of the true presences pass the selected threshold. For F. fomen-
tarius,	sensitivity	is	high	(0.93),	as	almost	all	true	presences	pass	the	
selected threshold. Specificity is very high for both species, reflect-
ing the fact that the vast majority of empty sampling units obtain 
very low model predictions.

2.2  |  Model evaluation measures: max-TSS, 
max-Kappa, Tjur's R2, and AUC

Three out of the four model evaluation measures that we consider 
here	(max-TSS,	max-Kappa,	and	AUC)	are	derived	from	a	threshold-
ing-based	perspective,	whereas	Tjur's	R2 is directly based on occur-
rence probabilities without a reference to thresholding (Table 1). 
AUC	overcomes	the	difficulty	of	the	user	needing	to	choose	a	spe-
cific threshold by integrating over all possible thresholds, which also 
leads	AUC	to	have	a	probabilistic	interpretation	(Table 1). Kappa and 
TSS,	however,	require	choosing	a	specific	threshold	t∗. Here we will 
follow the often-used alternative for selecting the threshold: max-
Kappa and max-TSS are defined as the values of Kappa and TSS for 
the	threshold	that	maximizes	their	values	(Guisan	et	al.,	2017).

Figure 1 shows the values of the four model evaluation mea-
sures for our two example species. Just based on how these 
numbers relate to the range of values that these measures can 
theoretically obtain (Table 1) we might either consider that both 
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models	are	excellent	 (AUC),	 that	 the	model	 for	C. subabruptus is 
poor, whereas the model for F. fomentarius	is	relatively	good	(Tjur's	
R2 and max-Kappa), or that the model for C. subabruptus is rel-
atively good, whereas the model for F. fomentarius is excellent 
(max-TSS). This difference in interpretation naturally follows from 
the fact that the different metrics emphasize different aspects 

of	how	the	predictions	are	in	line	with	the	data.	All	metrics	have	
been advocated for some reasons and criticized for other reasons, 
many of which relate to how the metrics do or do not account 
for the overall prevalence of the species, e.g., whether they tend 
to	generally	obtain	 low	or	high	values	 for	 rare	species	 (Allouche	
et al., 2006; Jiménez-Valverde et al., 2013; Lobo et al., 2008; 

F I G U R E  1 Illustrations	of	model	evaluations	based	on	comparing	actual	occurrences	(y-axis showing presence or absence; note that 
datapoints jiggered vertically to how overlapping data) by model predictions (x-axis). The panels show the data for the wood-inhabiting 
species Crustomyces subabruptus	(AB)	and	Fomes fomentarius	(CD),	with	probabilities	shown	either	in	the	linear	(AC)	or	logarithmic	(BD)	scale.	
The red vertical lines show a probability threshold set arbitrarily to t∗ = 0.05. The black symbols correspond to correct predictions (black 
dots show true positives and back crosses show true negatives) and the red symbols to incorrect predictions (red dots show false negatives 
and red crosses show false positives). The values of the model evaluation metrics considered in this paper are shown on top of the panels.
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Peterson et al., 2008; Sofaer et al., 2019). In our view, all the four 
measures	are	adequate,	as	 long	as	 the	 researcher	applying	 them	
is able to correctly interpret what they do and do not measure. 
Here we aim to help in making such interpretations by considering 
an empirical case study that contains many rare species and thus 
where different model evaluation measures can be expected to 
lead to different conclusions. Earlier studies have pointed out that 
the spatial scale at which a model is evaluated can greatly influ-
ence	predictive	performance	(Aguirre-Gutiérrez	et	al.,	2013) and 
that fixed and random effects play a different role in generating 
predictions (Roberts et al., 2017). To further illustrate how the dif-
ferences between the four model evaluation metrics depend on 
the interplay between model structure and spatial scale of predic-
tion, we will consider a spatially hierarchical empirical case study 
and set up models that vary in their random effect structures.

2.3  |  Empirical case study to examine the 
measures of predictive performance

As	 an	 empirical	 case	 study,	 we	 used	 the	 wood-inhabiting	 fungal	
data	of	Abrego	et	al.	(2016) surveyed at the three hierarchical spa-
tial scales of deadwood units (i.e., sampling units), which are nested 
within plots, the latter being nested within sites. To simplify the 
case	study,	we	selected	data	for	1 year	only	(2011)	out	of	the	origi-
nally	2-year	study.	In	each	of	the	16	forest	sites,	randomly	located	
10 × 10 m	sample	plots	(in	total	80	plots)	were	surveyed	for	the	pres-
ence–absences of fruiting fungi on deadwood units of a diameter 
larger	than	0.2 cm	(in	total	5097	deadwood	units).	We	restricted	the	

data	to	those	68	fungal	species	which	were	found	to	be	present	in	at	
least 10 sampling units and for which we thus considered it possible 
to meaningfully fit a model and evaluate predictive performance. For 
each	deadwood	unit,	the	decay	stage	(scalar	from	1	to	5)	and	volume	
(in cm3) were measured, and for each forest site, the management 
type (managed or natural) was recorded. These data allowed us to 
investigate the scale dependency of the discrimination measures, as 
well as to assess their dependency on the inclusion or exclusion of 
fixed and random effects.

As	the	SDM	tool,	we	used	the	Hierarchical	Modelling	of	Species	
Communities (HMSC) framework, which is a joint species distri-
bution	 model	 (JSDM)	 (Ovaskainen	 &	 Abrego,	 2020; Ovaskainen 
et al., 2017). While different SDM models can greatly vary in their 
absolute	performance	(Norberg	et	al.,	2019), we do not expect the 
qualitative	results	of	 the	present	study	to	be	sensitive	to	the	spe-
cific choice of the SDM model made here, as we are not interested 
in absolute performance but rather understanding factors that in-
fluence	performance.	As	the	data	are	binary	(presence	or	absence),	
we used probit regression, thus modeling occurrence probability as 
Pr

(

yij = 1
)

= Φ
(

Lij
)

, where Lij is the linear predictor for sampling unit 
i and species j, and Φ is the cumulative distribution function of the 
standard normal distribution.

To be able to separate the roles of fixed and random effects on 
predictive performance, we considered three model variants: one in-
cluding both fixed and random effects 

(

Lij = LF
ij
+ LR

ij

)

, one including 
fixed effects only (Lij = LF

ij
), and one including random effects only 

(Lij = LF
ij
+LR

ij
, where LF

ij
 contains only the species-specific intercept). 

HMSC models the fixed effects as LF
ij
=

∑

kxik�kj, where xik is the 
predictor k for sampling unit i and �kj is the response of species j 

TA B L E  1 The	four	metrics	of	model	evaluation	considered	in	this	paper,	their	formulations,	ranges,	and	descriptions.

Metric Formula
[Range] (random 
expectation) Description

Area	under	the	operator	
curve	(AUC)

∑

i,j
1pi>pj

yi(1− yj)
∑

i,j
yi(1− yj)

,

where the indicator function 1pi>pj 
obtains the value of one if pi > pj

, whereas otherwise it obtains the 
value of zero

[0…1]
(0.5)

The proportion of cases for which the occurrence 
probability for a randomly chosen occupied sampling 
unit is higher than the occurrence probability for 
a randomly chosen empty sampling unit. Can be 
equivalently	defined	as	the	integral	of	the	receiver	
operating characteristic (ROC) curve, plotting 
sensitivity against 1—specificity over all thresholds 
(Hanley	&	McNeil,	1982)

Tjur's	R2
py=1 − py=0

=
∑

i
yipi

∑

i
yi

−
∑

i(1− yi)pi
∑

i(1− yi)

[−1…1]
(0)

The difference in the average occupancy probabilities 
between occupied and empty sampling units 
(Tjur, 2009). Can be also interpreted as variance 
explained by the binary model, hence being to some 
extent	equivalent	of	the	usual	R2 of linear models 
(Tjur, 2009)

True skill statistic (TSS) Sensitivity + specificity – 1 [−1…1]
(0)

TSS compares the number of correct predictions, minus 
those attributable to random guessing, to that of 
a	hypothetical	set	of	perfect	predictions	(Allouche	
et al., 2006)

Cohen's	Kappa Ao − Ae

1− Ae

,

where Ao and Ae are, respectively, 
the observed and expected total 
accuracy

[−1…1]
(0)

Overall accuracy of model predictions, corrected by 
the	accuracy	expected	to	occur	by	chance	(Allouche	
et al., 2006; Shao & Halpin, 1995)
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to this predictor. We included as predictors the forest management 
category (a site-level categorical covariate with two levels), the 
log-transformed volume of the deadwood unit (a sampling-unit level 
continuous covariate), and the decay stage of the log (a sampling-unit 
level continuous covariate). We included also the second-order term 
of decay stage to allow for non-monotonic responses such as maxi-
mal occurrence probability achieved at an intermediate decay stage. 
HMSC models random effects through the latent-variable approach 
LF
ij
=

∑

k�ik�kj, where �ik is the site loading and �kj is the species load-
ing. We included random effects at the three hierarchical levels of 
the study design: the site (in which case �ik = �S(i)k where S(i) is the 
site of the sampling unit i), the plot (in which case �ik = �P(i)k where 
P(i) is the plot of the sampling unit i), and the sampling unit. We note 
that while in a univariate model, a random effect at the level of the 
sampling unit would be fully confounded with the residual, in a mul-
tivariate JSDM its inclusion is meaningful, as it models the residual 
associations among the species (Ovaskainen et al., 2016). We fitted 
the models with the R-package Hmsc (Tikhonov, Opedal, et al., 2020) 
assuming default prior distributions. For details on model fitting and 
evaluation	of	MCMC	convergence,	see	Appendix	S1.

We evaluated model performance separately for each species. 
To evaluate the scale dependency of model performance, we exam-
ined how well the models were able to predict whether the (i) sam-
pling units (ii) plots, or (iii) sites were empty or occupied (Figure 2a). 
We scored a plot P as being occupied if at least one sampling unit 
belonging to it was occupied, thus defining plot-level occurrence yP 
and computing plot-level occurrence probability pP as

Similarly, we scored a site S as occupied if at least one sampling 
unit belonging to it was occupied, thus defining site-level occurrence 
yS and computing site-level occurrence probability pS as

What is critically important for the interpretation of predictive 
performance is how exactly the model predicted probabilities pi have 
been generated. To cover a range of cases that relate to dissimilar 
prediction tasks, we considered both explanatory power and three 
variants of predictive power. We evaluated the explanatory power 
by predicting the occurrence probabilities by a model fitted to all 
data (a procedure also known as model fit or resubstitution). We 
evaluated predictive power through repeated fivefold cross-valida-
tion: splitting the sampling units into five folds (i.e., subsets), fitting 
the model to data on four of the folds, making predictions for the 
fifth fold, and looping over the five folds to generate such predic-
tions for all sampling units. We partitioned the sampling units into 
the five folds following three prediction tasks in the following in-
creasingly challenging order (Figure 2b): completely randomly (test-
ing how well the model predicts species presence in a new sampling 
unit), by partitioning the plots into five folds (testing how well the 

model predicts species presence in a sampling unit belonging to a 
new plot), or by partitioning the sites into five folds (testing how 
well the model predicts species presence in a sampling unit belong-
ing to a new site). To avoid dependency on the specific partition-
ing applied in the fivefold cross-validation, we repeated the above 
procedure 10 times and averaged the results over the replicates. 
We selected these four model evaluation strategies (explanatory 
power and three variants of predictive power) as it is well known 
that the more independent the test units are from the training units, 
the	worse	will	the	predictive	performance	be	(Bahn	&	McGill,	2013; 
Roberts et al., 2017). In particular, the random effects can be uti-
lized for prediction only for cases where at least some sampling 
units have been included in the training data from the level for 
which	the	predictions	are	made	(Ovaskainen	&	Abrego,	2020). By 
creating variation in the difficulty level of the prediction tasks, we 
aimed	to	both	demonstrate	 its	 influence	on	the	user's	perception	
of	model's	performance,	as	well	as	to	test	whether	the	comparison	
among the four different performance measures depends on the 
specific prediction task. We note that even if different cross-valida-
tion strategies are applied, our case study does not address model 
transferability, because it makes predictions to the same study area 
and to the same spatial scales (sampling units, plots, sites) to which 
the model was fitted.

To facilitate the comparison among the metrics, we transformed 
AUC	as	2*AUC−1	to	make	all	performance	measure	have	the	same	
range	from	0	to	1	and	took	the	square	root	of	Tjur's	R2 due to its 
quadratic	nature.

3  |  RESULTS

Figure 2 illustrates how the four metrics behave with respect to each 
other and species prevalence based on the explanatory power of the 
full	model.	Consistently	with	the	earlier	literature,	AUC	and	max-TSS	
did	not	have	any	strong	relationship	with	prevalence	whereas	Tjur's	
R2 and max-Kappa generally increased with increasing prevalence 
(Figure 2).	As	prevalence	increases	with	the	spatial	scale	of	consid-
eration (e.g., a species is scored to be present in a plot if it is pre-
sent	in	any	of	the	sampling	units	of	that	plot),	this	resulted	in	Tjur's	
R2 and max-Kappa yielding much higher values for plot- and site-
level predictions than for sampling-unit level predictions (Figure 2). 
Contrasting the four measures with respect to each other revealed 
that	Tjur's	R2	and	max-Kappa	behave	largely	similarly,	as	do	AUC	and	
max-TSS (Figure 2). While these measures are not exactly identical, 
the correlations within these two pairs of measures are so high that 
in practice they should be seen as alternatives rather than as com-
plementary. In contrast, a comparison between these pairs of meas-
ures	shows	that	AUC	and	max-TSS	behave	qualitatively	differently	
from	Tjur's	R2 and max-Kappa (Figure 2). This is largely explained by 
their dependency on prevalence: all measures yield similar evalua-
tions	at	the	plot-	and	site-levels	where	prevalence	is	high,	but	AUC	
and	max-TSS	yield	higher	values	than	Tjur's	R2 and max-Kappa at the 
sampling-unit level where prevalence is low (Figure 2).

(1)yP = 1 −
∏

i∈ P

(

1 − yi
)

, pP = 1 −
∏

i∈ P

(

1 − pi
)

.

(2)yS = 1 −
∏

i∈ S

(

1 − yi
)

, pS = 1 −
∏

i∈ S

(

1 − pi
)

.



    |  7 of 11ABREGO and OVASKAINEN

The comparison between all model types (with or without fixed 
and random effects) as well as all model evaluation strategies (ex-
planatory power and predictive power based on three different 
model validation strategies) suggests the generality of the results 
reported	above:	Tjur's	R2 and max-Kappa behave largely similarly, as 
do	AUC	and	max-TSS.	Again,	the	main	difference	between	these	two	
pairs	of	measures	is	that	Tjur's	R2 and max-Kappa yield lower values 
than	 AUC	 and	max-TSS	 for	 sampling	 unit-level	 evaluations	where	
species prevalence is low (Figure 3). The results of Figure 3 also con-
firm the expectation that the more independent the test units are 
from the training units, the worse is the model performance (Bahn 
&	McGill,	2013). This is especially the case for models that rely on 
random effects on their predictions, as the random effects can only 
be	used	for	levels	seen	already	in	the	training	data.	As	one	example,	
for models utilizing random effects, sampling unit-level predictions 
are much more accurate if based on fitting the model to all data (ex-
planatory power) rather than applying cross-validation (predictive 
power) (Figure 3).	As	another	example,	for	models	utilizing	random	
effects, site-level predictions are much more accurate if based on 
explanatory power or predictive power computed through sampling 
unit-level or plot-level cross-validation, as compared to predictive 
power computed through site-level cross-validation (Figure 3). These 

results derive from what components each model is able to use for 
prediction depending on the model evaluation strategy, and the fact 
that the random effects explained a substantial part of the explained 
variation also in the full model (Table S1	in	the	Appendix	S1).

4  |  DISCUSSION

After	fitting	a	SDM	to	data,	a	critical	question	to	ask	is	“how	good	
is the model?”. Here we showed that depending on exactly how 
the	model's	 predictive	 performance	 is	 evaluated,	 the	 very	 same	
model can achieve very different values even for one and the 
same	 metric	 (be	 it	 Tjur's	 R2,	 AUC,	 max-Kappa	 or	 max-TSS).	We	
also showed that the four metrics of predictive performance form 
two	groups,	with	Tjur's	R2 being largely similar to max-Kappa, and 
AUC	being	largely	similar	to	max-TSS.	These	two	groups	of	metrics	
behave	quite	differently,	the	main	difference	being	that	Tjur's	R2 
and	max-Kappa	 tend	 to	 increase	 with	 prevalence	 whereas	 AUC	
and max-TSS are largely independent from it. So which metrics 
one	should	use	for	model	evaluation?	As	Tjur's	R2 and max-Kappa 
behave	 similarly,	 as	 well	 as	 do	 AUC	 and	max-TSS,	 it	 seems	 suf-
ficient to pick one metric from each group. Which ones to pick 

F I G U R E  2 Illustration	of	relationships	between	the	four	measures	of	model	performance	(Tjur's	R2,	AUC,	max-Kappa	and	max-TSS)	and	
prevalence (upper row of panels), and among the four measures (lower row of panels). Each dot corresponds to one species, and the results 
are based on the explanatory power of the full model with fixed and random effects. Each panel shows model evaluations performed at 
the levels of a sampling unit (yellow), plot (red), and site (blue). The lines in the lower row of panels show the identity y = x. To increase 
comparability	among	the	measures,	Tjur's	R2	has	been	square	root	transformed	and	AUC	has	been	2x−1	transformed.
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might mainly depend on the traditions followed in the particular 
research line, in order to make the results easily communicable. In 
our	view,	it	is	natural	to	choose	either	Tjur's	R2	and	AUC,	as	these	
two measures have a probabilistic interpretation, or alternatively 
max-Kappa and max-TSS, as these two measures are derived from 
thresholding and as they are derived from the viewpoints of ac-
curacy, sensitivity, and specificity.

But how do the two groups of metrics differ in terms of what 
exactly they measure, and do they provide complementary in-
sights	or	 is	one	of	 them	simply	a	better	way	to	assess	a	model's	
predictive performance and thus should be generally favored? To 
address this, let us return to the species C. subabruptus in Figure 1, 
for which the metrics are in apparent contradiction: based on the 
AUC	value	of	0.96,	the	model	would	likely	to	be	considered	excel-
lent,	whereas	based	on	the	Tjur's	R2 value of 0.02, the same model 
would likely be considered poor. Importantly, these two interpre-
tations are in no contradiction, because whether the model is good 
or bad depends on what it is used for. For example, if a conserva-
tion biologist were to use the model to select protection units, 
they	would	consider	the	model	not	very	useful,	as	the	low	Tjur's	R2 
suggests that the model is unable of pinpointing the units where 
the species will occur with a high likelihood: even for the highest 

predictions, the species would actually occur only in 1 out of 10 
units. However, if the same conservation biologist were to use the 
model to identify units that could be managed without risk of ham-
pering	the	occurrences	of	the	species,	due	to	the	high	AUC	they	
could consider the model excellent, as it successfully identifies 
units	where	the	species	is	very	unlikely	to	occur	(say,	those	90%	
of the sampling units for which the predicted probability is smaller 
than	 0.005,	 in	 none	 of	 which	 the	 species	 is	 actually	 present).	
These considerations relate closely to the evaluation of predictive 
performance through measuring its sensitivity and specificity with 
respect to a particular probability threshold (Jiménez-Valverde & 
Lobo, 2007; Lawson et al., 2014; Liu et al., 2011), as they relate 
to how important it is to correctly predict the presences (sensi-
tivity) compared to the importance of correctly presenting the 
absences (specificity). Choosing a fixed threshold will, however, 
per necessity involve somewhat arbitrary decisions, which makes 
it difficult to e.g. compare predictive performances among studies 
(Allouche	et	al.,	2006; Lawson et al., 2014; Liu et al., 2011; Manel 
et al., 2001), for which reason we have focused here on threshold 
independent measures.

From	 a	 statistical	 point	 of	 view,	 the	 value	 of	 Tjur's	R2 for C. 
subabruptus is low, because it is defined as the mean occurrence 

F I G U R E  3 Evaluation	of	model	performance	based	on	the	empirical	case	study.	Each	boxplot	shows	the	distribution	of	model	evaluation	
measures	over	the	68	species	included	in	the	study.	The	rows	of	panels	correspond	to	Tjur's	R2	(square	root	transformed),	AUC	(2x−1	
transformed), max-Kappa, and max-TSS. Model performance has been evaluated at the three hierarchical levels of sampling unit, plot, and 
site. The legend box on the top exemplifies how the predicted occurrence probabilities at the level of the sampling unit accumulate as 
occurrence probabilities at the plot and site level, respectively. The legend box on the right shows how the models have been used for four 
different prediction tasks that translate to different partitionings of the data into training and test sets. The results are shown for the three 
different model variants that contain both fixed and random effects (F & R), fixed effects only (F), or random effects only (R).
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probabilities of occupied and empty sampling units, and because 
for this species all predictions achieved a low probability. In con-
trast,	AUC	achieved	a	high	value,	because	for	the	vast	majority	of	
empty sampling units, the predicted occurrence probabilities are 
still much lower than for occupied units. Thus, following the prob-
abilistic	definition	of	AUC,	if	randomly	picking	one	empty	sampling	
unit and one occupied sampling unit, it is very likely that the occu-
pied	sampling	unit	has	a	higher	occurrence	probability.	A	high	value	
of	Tjur's	R2 can only be obtained when the predicted occurrence 
probabilities range from low (close to zero) to high (close to one), 
whereas	 a	 high	 value	 of	 AUC	 can	 be	 obtained	 even	 if	 there	 are	
only cases of either low or high predicted occurrence probabilities. 
These observations also relate closely to how the evaluations of 
model performance are influenced by the range of environmental 
conditions present in the sampling units. If the researcher decides 
to survey not only on the most suitable habitats but also include 
a large number of sampling units in unsuitable habitats, then the 
value	 of	 AUC	will	 be	 inflated	 and	 theoretically	 converge	 to	 one	
if adding more and more unsuitable sampling units. While adding 
such	 sampling	 units	will	 also	 increase	 the	 value	 of	 Tjur's	R2, the 
value of this metric will not converge to its maximal value of one, 
but to a value corresponding to the mean occurrence probability 
across occupied sampling units.

Our hierarchical case study demonstrated how the different 
model components can or cannot help in making predictions, de-
pending on the cross-validation strategy chosen, and the hierarchical 
level (or more generally, spatial scale) at which model performance 
is evaluated. This is in line with the earlier findings that ignoring 
relevant dependency structures in the cross-validation step can 
greatly influence the perceived predictive performance of the model 
(Roberts et al., 2017). Which model evaluation strategy one should 
then apply, will depend on what purpose the model is to be used 
for. For example, if a conservation biologist uses the model to select 
protection sites for a threatened species, predictive performance 
should be evaluated at the site level and using a site-level cross-val-
idation strategy. This is because the conservation biologist would 
like to locate occupied sites (rather than e.g., individual occupied 
sampling units within sites), and because for this prediction task, the 
researcher is unlikely to hold any species data from the candidate 
sites (as otherwise the model predictions would not be needed to 
start with). In contrast, if a manager were interested in harvesting a 
commercially valuable species, then a cross-validation strategy tar-
geting	the	level	of	sampling	units	might	be	more	adequate,	because	
that would reveal how well the model is able to identify the sampling 
units where the species does occur.

In this article, we have stressed that the use of simple rules 
of thumb for evaluating model performance can be misleading, 
as that the values achieved of predictive performance depend on 
multiple factors. This will most likely come as a disappointment for 
the ecologist looking for simple guidelines. How then might a re-
searcher account for all of those confounding factors and decide 
on whether the model is excellent, good, fair, poor, or a complete 
failure? Rather than coming up with a more refined set of rules of 

thumb, we recommend that researchers use their intuition from 
past experience to derive a priori expectations on how predictable 
their system is, and then compare the achieved predictive perfor-
mance to those expectations. By explicitly articulating this past 
knowledge in their expectations, they can also communicate the 
advances achieved by the new model. If occupied and unoccupied 
sites are easy to separate a priori within the data range, then what 
do we need a new model for? If, on the other hand, occupied and 
unoccupied sites are a priori close to inseparable, then even a mod-
est improvement in our discriminatory capabilities will correspond 
to a major advancement.

For example, based on our field experience on surveying 
wood-inhabiting fungi, we know that C. subabruptus is not partic-
ularly affected by forest management, that it is absent from the 
smallest deadwood pieces, and that it appears to slightly prefer 
intermediate	decay	classes.	Given	all	 this	knowledge,	our	 intuition	
tells that it is possible to predict beforehand that the species will 
be absent from certain kinds of deadwood units, but it will be very 
difficult to tell exactly in which deadwood units this species is pres-
ent,	which	is	in	line	with	the	low	value	of	Tjur's	R2 and high value of 
AUC	achieved	at	the	level	of	deadwood	units.	For	the	other	exam-
ple species of Figure 1, F. fomentarius, our field intuition tells that 
the	 species	 is	 quite	 predictably	 found	 from	 large	 deadwood	units	
and absent from small ones, which is in line with the high values of 
Tjur's	R2	and	AUC	that	we	obtained	for	this	species.	These	kinds	of	
considerations can be generalized to the levels of study systems and 
spatial scales. For example, while for an ecologist conducting a field 
survey it can be very difficult to predict which individual deadwood 
units will be occupied by a given fungal species, it can be much eas-
ier to predict in which forest sites that species will occur, as was 
observed	by	the	higher	values	of	Tjur's	R2 that we recorded at the 
plot	and	site	levels.	As	another	example,	for	a	researcher	surveying	
birds in forest fragments, it can be difficult to predict beforehand in 
which sites the common chaffinch (Fringilla coelebs) will or will not 
be found, because the species is a forest generalist. However, if the 
survey was extended to also cover many other types of habitats, 
such as cultivated areas and water bodies, then it will be much easier 
to beforehand predict that the chaffinch will mostly be found in the 
forest sites.

One	reason	why	Tjur's	R2 may have not gained much popular-
ity in ecological studies is that it generally yields much lower val-
ues	than	AUC.	The	“modest”	values	achieved	can	then	be	harder	
to	communicate	and	publish	than	the	typically	much	higher	AUC	
values.	 As	 a	 reviewer,	 one	may	 be	misled	 to	 condemn	 a	model	
as	 inferior	 as	 based	 on	 a	 low	 Tjur's	R2, unless one gives added 
thought	to	why	this	is	the	case.	Given	the	complementary	infor-
mation contained in the two measures, and the fact that most 
ecologists	are	typically	more	familiar	with	the	scale	of	AUC,	our	
recommendation is for researchers to report both measures (or 
alternatively, max-Kappa and max-TSS) and to spell out their as-
sessment of how these values relate to a priori expectations. Only 
this way may the author and the reader evaluate the values from 
the same starting positions. With this article, we hope we have 
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increased the general awareness about the options for evaluating 
predictive performance, the complications inherent and their im-
plications for the values achieved—thus allowing researchers to 
reach more comprehensive and informative assessments on how 
useful their models are for the very purposes that these models 
were built.
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