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Abstract

Both human and animal studies support the relationship between depression and reward 

processing abnormalities, giving rise to the expectation that neural signals of these processes 

may serve as biomarkers or mechanistic treatment targets. Given the great promise of this 

research line, we scrutinized those findings and the theoretical claims that underlie them. To 

achieve this, we applied the framework provided by classical work on causality as well as 

contemporary approaches to prediction. We identified a number of conceptual, practical, and 

analytical challenges to this line of research and used a preregistered meta-analysis to quantify 

the longitudinal associations between reward processing abnormalities and depression. We also 

investigated the impact of measurement error on reported data. We found that reward processing 
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abnormalities do not reach levels that would be useful for clinical prediction, yet the available 

evidence does not preclude a possible causal role in depression.
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Aberrations in how people form expectations about reward and how they respond to 

receiving rewards are thought to underlie depression. Indeed, there is considerable face 

validity to the relationship between depression and reward-related processes. Disruptions 

in reward processing phases such as anticipation, decision, action, and consumption are 

thought to map onto distinctive depressive symptoms—anticipatory anhedonia (loss of 

interest in previously pleasant activities), impaired decision making, low energy, and 

consummatory anhedonia (inability to experience pleasure), respectively (1) (see Figure 

S1A for an example and detailed description). These reward processes are instantiated 

in a network encompassing the ventral striatum, the anterior cingulate cortex, and the 

orbital prefrontal cortex (2). Importantly, work from animal models has shown that lesions 

in these areas produce anhedonic phenotypes that are characteristic of depression (3,4). 

Finally, meta-analytic evidence from functional magnetic resonance imaging (fMRI) and 

electroencephalogram (EEG) studies also shows that altered neural signals in these brain 

areas acquired during reward tasks are associated with depression (1,5,6). As we review 

below, the most commonly used task in fMRI studies of reward processing is the monetary 

incentive delay (MID) task (7), illustrated in Figure S1B. The MID task allows assessment 

of neural activity related to anticipation or feedback of losses or gains in contrast to neutral 

trials.

Obviously, the mapping of reward processing onto depressive symptoms could have 

important implications. It would be clinically useful if tasks that measure reward processing 

abnormalities (RPAs) could predict onset of depression. Similarly, if RPAs were causally 

involved, then modifying these abnormalities could help prevent or treat depression. Given 

this potential, we scrutinized evidence of this relationship and the theoretical claims that 

underlie it. Therefore, we build on previous reviews that have quantified cross-sectional 

associations; evaluating the literature in the framework provided by classical work on 

causality (8) and contemporary approaches to prediction (9). First, we examine the meta-

analytic evidence for a cross-sectional association between RPAs and depression. Second, 

we conduct a new meta-analysis of the longitudinal associations between RPAs and 

depression. Third, we review evidence on the impact that manipulating reward processing 

has on depression. Fourth, we consider the challenges of measuring symptoms of depression 

and reward processing and provide suggestions to address these challenges. Finally, we 

highlight the conceptual challenges to the purported relationship between RPAs and 

depression and provide suggestions for improved theoretical framing of future study designs.
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CROSS-SECTIONAL ASSOCIATIONS

RPAs must co-occur with depression in the same individuals if they are to be causes 

or predictors of the disease. In this section, we critically review meta-analyses of this 

relationship.

Functional Magnetic Resonance Imaging

Coordinate-based meta-analyses test the consistency of the neural location of findings 

across studies, typically with an approach called activation likelihood estimation (10). 

Three such meta-analyses have examined cross-sectional differences in reward processing 

between healthy volunteers and individuals with depression or at high risk of depression 

(1,5,6). These studies along with their characteristics are presented in Figure 1. While these 

three analyses included different sets of studies and identified consistent differences in 

reward-related activity related to depression in a diverse set of regions, they all identified 

reduced response to reward in the ventral striatum or caudate. Yet, these studies did not 

provide estimates of the strength of this association. Furthermore, these studies tested only 

one direction of effect at a time and did not include null effects or effects in the opposite 

direction, possibly introducing a positive bias.

Electroencephalogram

In EEG studies, reward processing is assessed by contrasting the signal in response to 

reward feedback with neutral or loss feedback. Depending on the contrast used, this is 

called the feedback-related negativity or the reward positivity (RewP). Keren et al. (1) 

meta-analyzed 12 studies that have compared the feedback-related negativity/RewP signal 

between participants with depression and healthy participants and found a mean effect size 

(Cohen’s d) of .38 (95% confidence interval [CI] = [.12, .64]) across age ranges and a 

mean effect size of .50 (95% CI = [.15, .85]) in 6 studies on children and adolescents. To 

give a sense of the potential discriminative capability of this association, we calculated the 

area under the receiver operating characteristic curve (AUC) [see Box S1 for definition and 

interpretation of AUC; see Salgado et al. (11) for calculation] for these estimates and found 

that they correspond to an AUC of .61 (95% CI = [.53, .68]) across age ranges and to an 

AUC of .64 (95% CI = [.54, .72]) in children and adolescents. An AUC of .64 is lower than 

the performance of even a brief screening questionnaire such as the 2-item Patient Health 

Questionnaire, which has an AUC of .90 or .88 in younger subjects (12).

In combination, the cross-sectional fMRI and EEG studies to date show that there is a 

small but consistent difference in reward processing in individuals with depression. The 

low magnitude of the association means that it would not be a good tool for diagnosing 

depression but still admits the possibility of a causal relationship.

LONGITUDINAL ASSOCIATION

RPAs must precede depression if they are to be a cause of it. Moreover, RPAs could 

be a prognostic biomarker if they predicted changes in symptoms. Here we conducted a 

set of preregistered random effects meta-analyses of longitudinal fMRI and EEG studies 

[(13–35); see also Supplement] to quantify the correlation between neural signals of 
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reward processing and subsequent changes in depression symptoms (see Tables S2–S5 for 

information extracted from these articles). We imputed nonsignificant unreported effects 

without introducing bias via iterative maximum likelihood estimation as implemented in the 

MetaNSUE method (36). We took the strongest striatal or RewP effect from each study, 

considering observational and treatment studies separately. We found that both striatal fMRI 

signals (r = −.10, 95% CI = [−.18, 2.03], p = .0074) (Figure 2) and RewP (r = −.18, 95% 

CI = [−.30, −.04], p = .011) are inversely related with changes in depressive symptoms 

in observational studies (Table 1; see Table S6 for results from treatment studies and 

Figures S2–S7 for additional forest plots). These estimates are upwardly biased estimates 

because we used the strongest striatal or RewP effect from each study, combining both 

region-of-interest and voxel-level results. We also tested a set of global hypotheses in which 

we took the strongest correlation across the entire brain from each study. We analyzed 

the absolute value of these correlations because we included activations, connectivity, and 

psychophysiological interactions. The purpose of these global hypotheses is to define the 

upper bounds of the relationship between neural reward processing signals and changes in 

depression symptoms. Based on this, the upper bound for the relationship is .17 (95% CI = 

[.09, .25]) for observational fMRI studies, with predictions using EEG in a similar range (r = 

.20, 95% CI = [.04, .35]). These associations are large enough to be of mechanistic interest 

but correspond to AUCs of .60 (95% CI = [.55, .65]) for fMRI and .61 (95% CI = [.50, .70]) 

for EEG and therefore are unlikely to be useful for prognosis on their own.

There are some limitations to these meta-analyses that may have led to an overestimation 

of the relationship between RPAs and depression. In particular, only two studies provide out-

of-sample tests of prediction accuracy (19,28) (Table S4); the others should be considered 

tests of within-sample association and would overestimate predictive performance as defined 

in Box S2. Open science practices improve reliability and reduce positive bias in published 

reports (37,38), but they are not yet broadly adopted and were not observed in the reviewed 

studies (Table S5). Finally, we were able to find only a small number of relevant studies and 

cannot exclude the possibility of study selection bias.

Implications of Measurement Error for Estimating the Relationship Between Reward 
Processing and Depression

Here we demonstrate that our current ability to estimate the correlation between RPAs and 

change in depression is affected by measurement error, operationalized as the reliability 

of a measure. Importantly, measurement error has profound implications for sample size 

required for future studies. To assess the degree of measurement error in studies reviewed 

in the previous section, we estimated the reliability of past fMRI studies of reward in 

a random-effects meta-analysis of test–retest reliability across the 9 reward-related fMRI 

analyses (39–45) from Elliott et al. (39) (median n = 25, interquartile range = 5; median 

test–retest interval = 14 days, interquartile range = 20 days) (Table S7). We found the 

test–retest reliability to be .44 (95% CI = [.28, .58]). Using these estimates, we conducted a 

power analysis for future studies as a function of future fMRI reward signal reliability. We 

compute the expected future observed effect size in two steps. First, previous effect sizes 

need to be reliability corrected by dividing the effect size by the reliability of the measures 

used in these studies. Then, to obtain the expected observed effect size in a future study, 
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the reliability-corrected effect size needs to be multiplied by the anticipated reliability (see 

Supplemental Methods for more details). Figure 3 demonstrates how expected effect sizes 

and, as a result, required sample sizes are affected by past reliability (x-axis) as well as 

assumed future reliabilities. The figure also makes clear why investing in improving fMRI 

reliability in future studies is crucial (see shifts in required sample sizes given different 

future reliabilities).

Our meta-analysis focused on univariate analyses to facilitate comparisons across studies, 

but multivariate methods are a promising approach to improve reliability (46,47). These 

methods may pool information across multiple regions, multiple phases of reward 

processing (14,31), multiple modalities, or all of the above (34). There are many approaches 

in machine learning to combine multiple predictors (48), including regularized regression, 

random forests, and deep learning, but application to prediction of future disease severity 

remains rare. The analogy to similar approaches in genetics may help explain this; just as 

single nucleotide polymorphisms have proven to have small individual effects, but polygenic 

risk scores have proven to be useful for prediction (49), so could neural predictors of disease 

severity benefit from multivariate approaches.

In sum, there is evidence that reward processing signals correlate with changes in depression 

symptoms. This correlation is consistent with the hypothesized mechanism of RPAs causing 

anhedonia and depression.

MANIPULABILITY

If RPAs cause depression, then altering the reward processing network should alter 

the clinical phenotype and course of depression. Manipulating reward stimuli changes 

ventral striatum activity as well as subjective ratings of momentary mood (50,51). 

However, evidence that manipulating the reward processing system changes clinical 

symptoms of depression has been largely elusive. The ideal evidence would come 

from a randomized, placebo-controlled trial where the intervention is shown to cause a 

change in reward processing and, consequently, a change in behavior. Statistically, this 

amounts to a mediation. Most studies that use pharmacological manipulations have so far 

demonstrated primarily that interventions perturb the reward system. Such interventions 

are typically designed as acute-dose trials of a drug and have included serotoninergic 

(52,53), dopaminergic (31,54–59), cannabinergic (60,61), glutamatergic, and opioidergic 

(62) manipulations. There is also preliminary evidence from small, open-label trials that 

deep brain stimulation of the nucleus accumbens treats depressive symptoms (63–66) and 

normalizes nucleus accumbens responses to reward (66). Several treatment trials have shown 

that changes in the reward system correlate with changes in depressive symptoms. In 

a placebo-controlled, double-blind crossover trial in 36 patients with treatment-resistant 

depression, Lally et al. (67) demonstrated that ketamine specifically lowered anhedonia 

and showed that increases in striatal glucose use correlated with changes in anhedonia. 

EEG markers of reward processing have also been shown to correlate with changes in 

depression and anxiety symptoms during treatment with cognitive behavioral therapy (n 
= 34) and selective serotonin reuptake inhibitors (n = 29) (29). Other small studies have 

found correlations with treatment response to pharmacological interventions (n = 15) (68) 
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and psychotherapy (n = 15 in each study) (69,70). On the other hand, there is at least one 

example of a pharmacological intervention (a κ-opioid antagonist) that increased striatal 

response to reward but did not change symptoms relative to placebo (71). Only one study 

has reported mediation; a double-blind trial of sertraline (which targets both dopaminergic 

and serotonergic systems) in 222 adults found that an fMRI-derived index of striatal reward 

processing mediated the effect of sertraline on depressive symptoms (14). This provides 

some evidence for the manipulability of depression symptoms via manipulations of the 

reward processing system, supporting the possibility of a causal relationship.

MEASUREMENT CHALLENGES

Measurement of Reward Processing

Several experimental approaches have been developed to isolate components such as 

anticipation and consummation of reward. Many behavioral tasks correlate poorly with 

self-report measures owing to low reliability and measurement of different entities (72). 

In addition, some widely used neuroimaging tasks, such as the MID (7,73), lack a 

behavioral output. Interpreting blood oxygen level–dependent (BOLD) signal in the absence 

of behavior is fraught with ambiguities; a reduced BOLD signal could be a deficit or a 

compensatory mechanism.

Most studies employ tasks that measure only some of the components of reward processing. 

For example, in the MID, the most commonly used task, only prediction (measured as neural 

activity during the anticipatory period) and experience (measured as neural activity during 

the feedback period) of reward are probed (Figure 1), while other important phases such 

as decision and effort are left out (74). This means that key components of the reward 

system are not probed in the same individuals, and therefore inferences drawn about reward 

processing may be biased or partial. Computational modeling [as in (50,75)] of all the 

phases of reward, potentially across multiple tasks within the same individuals, would allow 

a more thorough phenotyping of the reward system (76,77).

Multiplicity of Measurement

Different neuroimaging studies define the same phase of reward processing in different 

ways. For example, the label reward anticipation is applied to analyses that contrast it with 

a neutral condition, a loss condition, or even just baseline activity. In the fMRI studies 

reviewed in the meta-analyses described above (1,5,6), we found 19 different tasks, 14 of 

which have been used no more than twice (Figure S9 and Table S1). Across these tasks, at 

least 69 different task–contrast combinations were used, 54 of them only once. The most 

commonly reported was the gain anticipation versus neutral anticipation contrast for the 

MID task in 10 studies. Given such a large space of potential tasks, contrasts, and analytical 

approaches, it is impossible to know whether the contrasts and analyses used in any given 

article are the only analyses done or whether they are the result of searching that space for a 

significant finding (78,79). This may lead meta-analyses like those above to overestimate the 

magnitude of the relationship between reward processing and depression.
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Measurement of the Clinical Phenotype

Diagnosis of major depressive disorder is based on self-report of subjective symptoms (80), 

which presents several challenges as previously discussed (81,82). In particular, there are 

inherent problems with self-reported anhedonia, in particular consummatory anhedonia, or 

the lack of enjoyment when experiencing a reward. In our introductory example (Figure 

S1A), the child, sitting in a research laboratory, would be asked about her experience of 

consuming the chocolate. This requires forming the mental representation of a past event 

and attaching value to it, a different process than that of actual consummation and in some 

ways more related to the process of predicting the value of a future reward based on past 

experiences rather than reporting on the actual experience. This is especially problematic 

because patients with depression may have different recall biases compared with healthy 

volunteers (83). Ecological momentary assessment may allow more direct measurement of 

consummatory anhedonia (17,18), and assessment of effort expenditure or neural responses 

to reward delivered in the scanner may be another way to characterize consummatory 

anhedonia (84,85).

Proposed Solutions

Measurement of reward processing, depression, and anhedonia is challenging, but these are 

obstacles we must overcome as a field if we are to understand the relationships among these 

constructs. We propose a broad collaborative effort unifying a behaviorally informative task 

or tasks, measures of clinical symptoms, and generative computational models to address 

these challenges as outlined in Table 2. This is certainly not an exhaustive inventory of the 

goals such an effort would need to achieve, but we hope that it will serve as a starting 

point for the creation of a more robust set of tools for understanding reward processing, 

depression, and their relationship.

CONCEPTUAL CHALLENGES

For a promising and well-studied topic such as RPA and depression, there are surprising 

gaps in our theoretical framework about its origins, directions of effect, and specificity. We 

discuss these below along with proposals for solutions.

Origins of RPAs and Depression

So far, we have focused on the possibility of a causal relationship between RPAs and 

depression, but we have not considered the origins of RPAs themselves. The associations 

between depression and reward processing described above could be due to genes, 

environment, or their interplay. Small preliminary twin studies have suggested that striatal 

responses to reward and risk are moderately heritable (86,87). Animal and human studies 

have demonstrated that stress can reduce striatal reward responses (88–93). The relationship 

may be more complicated in that a genetic predisposition to RPAs may represent a 

vulnerability to depression when exposed to a stressful environment (23,30,94). An 

immediate research need is a twin study to test the genetic and environmental origins of 

the covariation between depression and reward processing.
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Development is another important factor to consider in the origins of RPAs and depression. 

A dramatic rise in new depression cases occurs during adolescence (95), coinciding with 

a period of time when, normatively, adolescents are apparently more sensitive to rewards 

(96). Moreover, there is some meta-analytic evidence (1) to suggest that RPAs in depression 

may be more pronounced in adolescents compared with adults. Yet, with notable exceptions 

(15,97,98), rarely are specific theories being proposed about the interplay of development 

with reward processing and depression. It is even rarer to see any robust tests of such 

theories (15). For example, one possibility is that neural reward responsiveness may be an 

important depression-related diathesis that interacts with other genetic and environmental 

factors at sensitive developmental stages such as puberty.

Direction of Relationship

The direction of the relationship between RPAs and depression is critical, yet studies rarely 

assess it (Figure 4). The majority of longitudinal studies of the relationship between reward 

processing and depression have examined the hypothesis that RPAs precede depression, 

but other plausible models are not as commonly considered. Depression could precede 

RPAs and the causal relationship could in fact be the reverse. Indeed, it could be that 

depression affects reward anticipation or enjoyment and that this is responsible for some 

of the downstream effects of depression such as social isolation. Another possibility 

is the existence of a shared risk factor causing both depression and RPAs. In such a 

case, the relationship between the two would be of little consequence for intervention or 

prediction. Finally, clinicians, particularly in the behavioral activation literature, often invoke 

a recursive relationship between RPAs and depression. Ideally, these explanatory models 

(Figure 4) should be tested against each other (see Box S2). However, we are not aware 

of data collected with sufficient temporal density and applying the necessary modeling to 

demonstrate the superiority of any of these models.

An alternative focus is prediction, for example, testing whether baseline neural reward 

signals improve the prediction of future depression beyond what other inexpensive 

and commonly available symptom measures and demographic factors contribute, termed 

incremental validity (Box S2). In this case, it might not matter whether there is a common 

latent cause of RPAs and depression; RPAs could still be a predictor of depression if they 

respond more quickly to changes in that latent factor. In evaluating both explanatory models 

and predictions, stronger evidence is provided by preregistered hypotheses and analytical 

plans (99).

Specificity

If RPAs are not specifically related to depression, they are less likely to be a specific cause 

of depression or a specific clinical predictor. There are several alternative hypotheses that 

have only partially been tested. First, within depression there is some evidence that RPAs 

are specifically related to anhedonia. Three studies have found that anhedonia, but not 

low mood, is related to RPAs (16,84,100). Yet comparing anhedonia with other plausible 

symptoms, such as loss of energy and fatigue, has yet to be done. Moreover, studies do not 

take comorbidity between depression and other disorders into account. It is possible that 

within depression the distribution of symptoms from other disorders (e.g., social anxiety 
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symptoms, particularly in adolescents) moderates the association between depression and 

reward processing (96).

Second, anhedonia (and reduced striatal BOLD signal during reward anticipation) is 

present in other common mental disorders, including schizophrenia and attention-deficit/

hyperactivity disorder (ADHD) (101,102). In some studies of schizophrenia, this signal has 

been accounted for by depression comorbidity (103); in ADHD, this reduction was observed 

only in adult samples but not in youth samples (43). In a recent study from our group, 

reduction in striatal activity was observed only in children with anhedonia but not in those 

with anxiety or ADHD in a community sample (while ADHD was associated with BOLD 

signal aberrations during a working memory task) (100). Anhedonia has been suggested 

as a transdiagnostic symptom (74). This may be true but has not been tested yet in a 

way that would satisfy criteria for trans-diagnostic research (104). Future studies linking 

anhedonia with RPAs across patient populations are needed to understand the specificity of 

this relationship.

Proposed Solutions

We do not currently have the kind of published studies that would be needed to address 

these conceptual challenges. Differentiating the role of genetics and environment on 

reward processing, finding the most likely direction of effect between reward processing 

and depression, and characterizing the specificity of RPAs to depression all require, as 

a base, a densely sampled longitudinal study (Table 2). A longitudinal design where 

reward processing and depression are characterized at least four times would provide 

several benefits. It potentially would allow us to distinguish between potential directions 

of effect, estimate the reliability of clinical and imaging measures within the same study, 

improve precision of measures through multiple measurements, and estimate nonlinear (e.g., 

quadratic) trajectories of imaging or clinical signals. Adding twin and family studies and 

characterization of stressful life events to this design would allow us to address questions 

about the relative contributions of genetics and environment to the development of RPAs 

and depression. Conducting a densely sampled longitudinal study in a trans-diagnostic 

population would allow us to address questions of the specificity of RPAs to depression.

Conclusions

Neural RPAs are currently unsuited for use as clinical predictors of depression, but improved 

measures of neural signals of reward processing and multivariate analyses may change this 

in the near future. There is evidence to support a causal relationship between RPAs and 

depression, with weak temporal association and evidence for manipulability. We have made 

general suggestions for improving the measurement of reward processing and depression, 

and we have proposed experimental designs (Table 2) for addressing some of the conceptual 

challenges we observed in the literature. Not all these suggestions are applicable to every 

study of reward processing and depression, but we hope that they will be a useful guide to 

the design of future studies.

Nielson et al. Page 9

Biol Psychiatry. Author manuscript; available in PMC 2023 December 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material
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Figure 1. 
Comparison of coordinate based meta-analyses by Ng et al. (5), Keren et al. (1), and Zhang 

et al. (6). Results from Ng et al. are in red, results from Keren et al. are in green, and results 

from Zhang et al. are in blue. Areas of overlap are indicated by additive mixture of the 

colors in (A), (B), and (D). Results of comparable analyses are consistent in identifying the 

ventral striatum and caudate as regions that differ during the execution of reward processing 

tasks between healthy volunteers and participants with major depressive disorder. Keren et 
al. (1) did not find any regions where participants with major depressive disorder showed 

more activity than healthy volunteers, but both Zhang et al. (6) and Ng et al. (5) found 

an area in the orbitofrontal cortex (A). The studies broadly agree on decreased reward 

responsiveness in the nucleus accumbens and caudate (B). This concordance implies that 

these findings are relatively robust given the differences in inclusion criteria (C) and studies 

(D) included in each meta-analysis. The overlapping regions in (D) indicate the number 

of studies in common between meta-analyses. Of particular note, Zhang et al. used a false 

discovery rate (FDR) for multiple comparison control, which is not as stringent as the 

clustering approach with a voxel level threshold of p < .001 and a cluster-level familywise 

error rate of .05 used by the other two meta-analyses (105). Keren et al. reported results for 

feedback and anticipation contrasts separately, and here we considered only the results for 

feedback contrasts. Studies are specified in Table S1.
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Figure 2. 
Forest plot for random effects meta-analysis of observational functional magnetic resonance 

imaging (fMRI) studies reporting a striatal effect for the correlation with change 

in depressive symptoms. Across these studies (15,16,21,25,28,32,35), predominantly 

conducted in adolescents, we found that the mean effect size for similar studies was −.10 

(95% confidence interval = [−.18, −.03]). In the figure, the size of the marker corresponds to 

study sample size. The error bars indicate the 95% confidence interval. The results in lighter 

blue [from Jin et al. (28)] represent unreported null effects where the effect size was imputed 

via the MetaNSUE method. 1Demographics reported for the entire study population, not for 

the subgroup on which the displayed correlation is based. excl., excluding; MDD, major 

depressive disorder; Obs., observational.
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Figure 3. 
Impact of functional magnetic resonance imaging (fMRI) test–retest reliability on expected 

effect size and required sample size of future studies. The figure depicts the dependence 

of the effect size to be expected in future studies (y-axis on the left) and the sample size 

of future studies (y-axis on the right) on the reliability of past studies (x-axis) and the 

expected reliability of future studies (color-coded lines). The reliability of past studies is 

derived from references (39–45), and the minimum and maximum values bound the x-axis. 

The following 3 cases are illustrated. Dotted line: If previous studies had a low reliability 

(.28) and our planned study will have a reliability of .80, we would expect to observe a 

correlation between reward processing and change in depressive symptoms of −.29 (95% 

confidence interval [CI] = [−.52, −.02]) and would expect a required sample size of 92 to 

have 80% power to detect with a two-sided test for Pearson correlation difference from 0. 

Solid line: If previous studies had a reliability of .44 and our planned study will increase this 

to .70, we would expect an observed correlation of −.16 (95% CI = [−.31, −.01]), requiring a 

sample size of 297. Dashed line: If previous studies had a reliability of .57 and our planned 

study will have a reliability of .60, we would expect an observed correlation of −.11 (95% 

CI = [−.21, −.01]), requiring a sample size of 690. For this figure, we assume a depressive 

symptom measurement reliability of .77 (95% CI = [.67, .84]) based on 8 studies (Table S8). 

If depressive symptom measurement reliability is improved in the planned study, the above 

observed effect sizes would be proportionally higher (Figure S8).
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Figure 4. 
Schematic depiction of potential relationships between depression (Dep) and reward 

processing abnormalities (RPAs). The most commonly tested model is that RPAs precede 

depression, but plausible alternatives such as the reverse of this relationship or a common 

origin receive little attention. The recursive associations model is frequently cited in the 

behavioral analysis literature (106–108) but has not been thoroughly tested. Datasets from 

many of the studies cited in the “Longitudinal Association” section could be used to assess 

the relative strengths of RPAs preceding depression versus depression preceding RPAs. In 

the schematics, “origins” indicates an unspecified combination of genetic and environmental 

factors. This is by no means a depiction of every possible model; mediating and moderating 

relationships, for example, are not depicted.
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