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SUMMARY
B cell lineage acute lymphoblastic leukemia (B-ALL) is composed of diverse molecular subtypes, and while
transcriptional and DNAmethylation profiling has been extensively examined, the chromatin landscape is not
well characterized for many subtypes. We therefore mapped chromatin accessibility using ATAC-seq in pri-
mary B-ALL cells from 156 patients spanning ten molecular subtypes and present this dataset as a resource.
Differential chromatin accessibility and transcription factor (TF) footprint profiling were employed and iden-
tified B-ALL cell of origin, TF-target gene interactions enriched in B-ALL, and key TFs associated with acces-
sible chromatin sites preferentially active in B-ALL. We further identified over 20% of accessible chromatin
sites exhibiting strong subtype enrichment and candidate TFs that maintain subtype-specific chromatin ar-
chitectures. Over 9,000 genetic variants were uncovered, contributing to variability in chromatin accessibility
among patient samples. Our data suggest that distinct chromatin architectures are driven by diverse TFs and
inherited genetic variants that promote unique gene-regulatory networks.
INTRODUCTION

Acute lymphoblastic leukemia (ALL) is derived from B and T cell

lineage precursor cells and is the most common childhood can-

cer.1 A majority of acute lymphoblastic leukemias are derived

fromB cell lineages (B-ALL) that are comprised of distinct molec-

ular subtypes characterized by unique chromosomal lesions,

including aneuploidy, translocations, gene fusions, point muta-

tions, and other chromosomal rearrangements that drive leuke-

mogenesis.2 Numerous studies have identified extensive hetero-

geneity in transcriptomes3,4 and DNA methylomes5,6 among

B-ALL subtypes in large patient cohorts, but there is limited un-
Cell
This is an open access article und
derstanding of chromatin landscapes. Here we provide an

extensive survey of accessible chromatin state and cis-regulato-

ry element activity in primary B-ALL cells frommore than 150 pa-

tients across the United States.

Chromatin accessibility or open chromatin is a hallmark of

active cis-regulatory elements that control spatial and temporal

gene expression.7 Because ALL typically involves mutations

(PAX5-altered), complex rearrangements (e.g., DUX4-rear-

ranged, PAX5-altered, ZNF384-rearranged), and/or oncogenic

gene fusions (e.g., ETV6::RUNX1, TCF3::PBX1, KMT2A-rear-

ranged) of transcription factor (TF) genes, as well as disruptions

of cis-regulatory elements,8 chromatin-accessibility maps can
Genomics 3, 100442, December 13, 2023 ª 2023 The Author(s). 1
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Figure 1. Chromatin-accessibility landscapes in B-ALL

(A) Number and genomic location of accessible chromatin sites for ten B-ALL subtypes and B-other samples is provided.

(B) Percentage of B-ALL accessible chromatin sties thatmap toH3K4me1 and/or H3K27ac active histonemarks (active; green), H3K27me3 andH3K4me1 and/or

H3K27ac bivalent or poised histone marks (bivalent or poised; yellow), and H3K27me3 only repressed histone marks (repressed; red).

(legend continued on next page)
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provide valuable information to better understand the leukemo-

genic process. Accessible chromatin sites can be mapped using

transposases by performing assays for transposase-accessible

chromatin with high-throughput sequencing (ATAC-seq).9,10

AlthoughDNase treatment has also been used,11 one key advan-

tage of ATAC-seq is the low sample input requirements

compared to DNase-based assays. This makes ATAC-seq an

attractive assay for mapping open chromatin in primary cells

from patients wherein sample availability is limited. Additionally,

chromatin accessibility allows for identification of bound TFs

through an examination of TF footprints, which are defined by

depletion in DNA transposition12 or DNase13 cleavage events

within regions of accessible chromatin signal. As a result, the un-

derlying TF-binding gene-regulatory networks that promote

chromatin accessibility and differential gene expression can be

predicted.

Previous large-scale studies of chromatin accessibility in pri-

mary cells have predominantly focused on distinct cell types10,14

or distinct tumor types and locations.15,16 Therefore, large-scale

analyses aimed at better understanding the chromatin state in a

single heterogeneous malignancy are currently lacking. To

address this knowledge gap, we mapped chromatin acce-

ssibility in fresh primary ALL cells from 156 patients across ten

molecular subtypes of B-ALL (BCR::ABL1, DUX4-rearranged,

ETV6::RUNX1, high hyperdiploid, low hypodiploid, KMT2A-rear-

ranged, BCR::ABL1-like [Ph-like], PAX5-altered, TCF3::PBX1,

and ZNF384-rearranged) and B-other patient samples. Notably,

these subtypes span the entire spectrum of clinical prognoses,

including patients with excellent (DUX4-rearranged, ETV6::

RUNX1, high hyperdiploid), good (TCF3::PBX1), intermediate

(ZNF384-rearranged, PAX5-altered), and poor (BCR::ABL1,

low hypodiploid, KMT2A-rearranged, Ph-like) prognosis. We

also mapped histone H3 lysine 27 acetylation (H3K27ac) enrich-

ment using chromatin immunoprecipitation sequencing (ChIP-

seq) and performed promoter capture Hi-C in a subset of these

patient samples to additionally infer functional activity and candi-

date target genes of accessible chromatin sites.

Using ATAC-seq chromatin-accessibility and histone profiling

in primary ALL cells, we mapped cis-regulatory element activity

in B-ALL. In complement to chromatin-accessibility profiling, we

identified thousands of chromatin loops targeting promoters in

multiple B-ALL cell lines to better inform linkages of cis-regulato-

ry elements to cognate genes. We coupled these maps to TF

footprints at accessible chromatin sites to identify key TFs and

gene-regulatory networks across B-ALL samples and within

distinct B-ALL subtypes. Our results identified extensive chro-

matin reprogramming between B cell progenitors and B-ALL

as well as extensive heterogeneity in accessible chromatin land-

scapes among B-ALL subtypes. Specifically, we uncovered a

focused subset of over 42,000 B-ALL open chromatin sites ex-

hibiting extensive subtype enrichment and subtype-enriched
(C) B-ALL cell line chromatin loops detected using promoter capture Hi-C at B-AL

sites, number of B-ALL accessible chromatin sites within loops, and total numb

shown.

(D) University of California Santa Cruz (UCSC) genome browser ATAC-seq signal t

across the IKZF1 gene locus.

(E) UCSC genome browser ATAC-seq signal tracks of ten merged B-ALL subtyp
TF-binding events. Notably, these sites can predict and classify

B-ALL samples with 86% cross-validation accuracy. We addi-

tionally explored the impact of inherited genetic variation on

the chromatin state and delineated over 9,000 ATAC-seq chro-

matin-accessibility quantitative trait loci (ATAC-QTLs) in B-ALL

cells, including a subset that alters neighboring gene expression.

Using this expansive B-ALL chromatin-accessibility dataset, our

data collectively support substantial subtype specificity in chro-

matin accessibility that is driven in part by distinct TFs, as well as

pronounced inter-individual heterogeneity in chromatin state

through inherited genetic variants. Our work further supports

the role of these distinct chromatin architectures in establishing

unique gene-regulatory networks that impact gene expression

and B-ALL cell biology.

RESULTS

Chromatin-accessibility profiles of B-ALL patient
samples spanning multiple subtypes
ATAC-seq using the Fast-ATAC10 method was performed on

recently harvested primary ALL cells from 156 patients spanning

ten B-ALL molecular subtypes (BCR::ABL1, DUX4-rearranged,

ETV6::RUNX1, high hyperdiploid, low hypodiploid, KMT2A-rear-

ranged, Ph-like, PAX5-altered, TCF3::PBX1, and ZNF384-rear-

ranged) and B-other samples (Table S1) from diverse medical

centers, research groups, and clinical trials networks across

the United States (see STAR Methods). To identify high-confi-

dence sites, we identified ATAC-seq peak summits using sub-

type-merged data and selected only loci reproducible among

unmerged individual patients. Using this approach, we identified

110,468 accessible chromatin sites, on average, in each B-ALL

subtype (range 71,797–142,498), with 217,240 merged sites

identified in total representing the final B-ALL genomic regions

of interest (Figure 1A; Table S2).

Using H3K27ac ChIP-seq data generated from a subset of 11

B-ALL patient samples, as well as primary B-ALL cell H3K27ac,

H3K4me1, andH3K27me3 ChIP-seq data from the Blueprint Epi-

genome Consortium (https://www.blueprint-epigenome.eu/), we

determined thatnearly all openchromatin sitesmapped to regions

containing only active histonemarks (H3K27ac and/or H3K4me1,

89.6%; H3K27ac, 3.3%; H3K4me1, 34%; H3K4me1+H3K27ac,

52.3%) or regions with bivalent marks, suggesting a poised chro-

matin state (H3K27ac and/or H3K4me1 and H3K27me3, 8.9%),

compared toonly 1.5%ofATAC-seqsites thatmapped to regions

solely harboring repressive chromatin (H3K27me3; Figure 1B).

Because these histone modifications are typically found at tran-

scriptional enhancers and promoters,17–20 these findings suggest

that these accessible chromatin regions are B-ALL cis-regulatory

elements implicated in gene regulation.

In most cases, these candidate cis-regulatory elements map

within intergenic or intragenic loci with unclear gene targets.
L accessible chromatin sites. The total number of B-ALL accessible chromatin

er of accessible chromatin sites with a loop to a gene implicated in cancer is

rack of average B-ALL chromatin accessibility and promoter capture Hi-C loops

es with known molecular drivers across the IKZF1 gene locus.
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Therefore, to better inform gene connectivity, we produced chro-

matin looping data using promoter capture Hi-C21 across ten pa-

tient samples (BCR-ABL1, ETV6-RUNX1, KMT2A-rearranged,

Ph-like, TCF3-PBX1, and B-other subtypes) and seven B-ALL

cell lines (697, BALL1, Nalm6, REH, RS4;11, SEM, and SUP-

B15) to complement B-ALL patient chromatin-accessibility pro-

files. Collectively, across patient samples and B-ALL cell lines

we detected approximately 300,000 chromatin loops, with

approximately 50% of the 217,240 chromatin-accessible re-

gions of interest intersecting with a promoter loop, including

15,929 chromatin-accessible sites that looped to a cancer-impli-

cated gene set (Figure 1C).22,23 In many instances, large do-

mains of extensive chromatin looping are present, which with

chromatin accessibility and active histone marks emphasize

the gene-regulatory networks present across B-ALL patient

samples (e.g., Figures 1D and 1E).

Chromatin accessibility identifies Pro-B cell of origin for
most B-ALL patient samples
To better understand chromatin remodeling during leukemogen-

esis, we sought a comparison of chromatin accessibility be-

tween B-ALL and B cell progenitors. Moreover, although it is

widely accepted that the B-ALL cell of origin is a B cell precursor,

exactly which precursor is not always clear, particularly at the

chromatin-accessibility level.24 To resolve this uncertainty, we

examined publicly available ATAC-seq data from several human

B cell progenitors10,25 (Figure 2A). When comparing chromatin-

accessibility signal between B cell progenitor groups, we identi-

fied a set of approximately 42,344 genomic loci that demonstrate

a chromatin-accessibility enrichment or depletion trend for a B

cell progenitor (Figure 2B; Table S3; see also STAR Methods).

We refer to these chromatin loci as B-progenitor identity loci,

due to their distinct patterning across B-progenitor differentia-

tion and likely representation of stage-specific gene-regulatory

programs.

Next, we examined patient B-ALL cell chromatin accessibility

across these B-progenitor identity loci. When plotting chro-

matin-accessibility signal as a heatmap comparing B cell pro-

genitors and B-ALL patient samples, a high degree of similarity

was observed with prePro-B cells and Pro-B cells (Figure 2B).

Further, when applying the k-nearest neighbor classification

model previously trained on B-progenitor identity loci, the major-

ity of B-ALL samples were classified as either prePro-B or Pro-B

(Figures 2C and 2D). However, prePro-B cells have been re-

ported to be an extremely rare population beyond embryonic

and fetal development.25 Overall, Pro-B cells demonstrate the

most similarity to B-ALL cells at the chromatin-accessibility level

when focusing specifically on B cell precursor defining loci,

emphasizing this precursor B cell as a common cell of origin

for B-ALL.

Extensive differences in chromatin accessibility
between B-ALL and Pro-B cells
To better understand chromatin remodeling during leukemogen-

esis, we next compared accessible chromatin sites between

B-ALL and Pro-B cells (n = 3) using DESeq2 at the 217,240

merged B-ALL chromatin-accessibility peaks and uncovered

42,661 differentially accessible chromatin sites (DASs) exhibiting
4 Cell Genomics 3, 100442, December 13, 2023
lesser or greater accessibility in B-ALL samples (Figures 3A, 3B,

and S1; Table S4). Ontology analysis focusing strictly on DASs

with higher chromatin accessibility in B-ALL indicated an en-

richment for sites associated with genes involved with Toll-like

receptor signaling, interleukin production, metabolism (acetyl-

coenzyme A [CoA] production), and cell proliferation (Figure 3C).

Enriched ontology termswere frequently present atmultiple fold-

change thresholds of input B-ALL DASs (Table S5).

In addition to profiling differential chromatin accessibility,

global TF binding was also compared between B-ALL and

Pro-B cells. To identify differential TF binding, we performed

genome-wide TF footprint profiling12 using 810 TF motifs

comparing B-ALL patient samples and normal Pro-B cell sam-

ples across all B-ALL genomic regions of interest (217,240 re-

gions). Differential binding scores indicated the AP-1 family of

TFs (e.g., FOS, JUN) as themost prominent TFswith higher bind-

ing in B-ALL patient samples compared to normal Pro-B cells

(Figure 3D). In contrast, prominent TFs with higher binding in

Pro-B cells were those such as TFAP2A, KLF15, CTCFL,

ZBTB14, and EBF1.

To further demonstrate AP-1 TF occupancy in B-ALL acces-

sible chromatin sites, we performed CUT&RUN for FOSL2,

JUN, and JUNB in 697 and SUB15 human B-ALL cell lines (Fig-

ures 3E and S2). Collectively, we identified 56,650 (697: FOSL2 =

66,040, JUN = 47,381, JUNB = 4,730) and 61,121 (SUPB15:

FOSL2 = 106,961, JUN = 9,971, JUNB = 14,784) AP-1 binding

sites in 697 and SUPB15 cells, respectively, with a final merged

AP-1 region set including both 697 and SUPB15 regions of

88,650. Intersections with B-ALL accessible chromatin sites

from primary cells using the merged AP-1 regions identified

that 28% (61,090) of these sites were occupied by an AP-1 TF

in B-ALL cell lines (41,002 sites and 19% of all B-ALL accessible

chromatin sites from primary cells in 697; 45,685 sites and 21%

of all B-ALL accessible chromatin sites from primary cells in

SUPB15). Strikingly, our results further uncovered that 46% of

DASs with higher chromatin accessibility in B-ALL (i.e., B-ALL-

enriched DASs) also exhibit AP-1 TF occupancy (Figure 3F),

thereby supporting the activation of AP-1 TF-associated cis-reg-

ulatory in B-ALL. We determined that even though most AP-1-

occupied B-ALL-enriched DASs localized to promoter-distal re-

gions of the human genome (77%), there is a 2.7-fold enrichment

for AP-1 occupancy at B-ALL-enriched promoters compared to

B-ALL-enriched DASs devoid of AP-1 occupancy (Figure 3G;

16% vs. 6%). Further integration of AP-1-occupied B-ALL-

enriched DASs with promoter capture Hi-C in B-ALL cell lines

identified target genes that were enriched for cell cycle, auto-

phagy, and apoptotic signaling pathways (Table S6; example

in Figure 3H). Select B-ALL-enriched, promoter-distal DASs pre-

dicted to be AP-1 bound by TF footprinting within B-ALL patient

samples but not Pro-B cells were targeted for CRISPR-Cas9-

mediated genomic deletion in B-ALL cell lines (Figure S3). Vali-

dating their role as B-ALL cis-regulatory elements, analysis of

heterogeneous deletion pools identified effects on neighboring

gene expression and cellular proliferation (Figure S4).

As an extension of our TF footprinting data, we also integrated

B-ALL patient promoter capture Hi-C using the ABC enhancer

algorithm to refine identification of TF-target gene relationships

across top TFs and a cancer-implicated gene set.26 Specifically,
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Figure 2. B-ALL cell type of origin defined by chromatin accessibility

(A) Differentiation timeline of B cell progenitors from least differentiated to most differentiated. HSC, hematopoietic stem cell; MPP, multipotent progenitor cell;

LMPP, lymphoid-primed multipotent progenitor cell; CLP, common lymphoid progenitor cell; PreProB, prePro-B cell; ProB, Pro-B cell; CD19+CD20+, B cell.

(B) Heatmap using row-wise hierarchical clustering of B cell progenitor or B-ALL patient sample variance-stabilized ATAC-seq signal from DESeq2 across B cell

progenitor-defining chromatin loci. B cell progenitor groups most similar to B-ALL patient samples (preProB and ProB) are outlined in yellow.

(C) Confusion matrix showing number (listed) and percentage (color coded) of B cell progenitor truths and predictions for leave-one-out cross-validation of a

k-nearest-neighbor classifier model.

(D) Distribution of B cell progenitor classification across B-ALL patient samples using a k-nearest-neighbor classifier model trained with B cell progenitor data.
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Figure 3. Mapping differential accessibility between B-ALL and Pro-B cells

(A) Heatmap using row-wise hierarchical clustering of Pro-B cell or B-ALL patient sample variance-stabilized ATAC-seq signal as Z score across Pro-B cell and

B-ALL-enriched DASs. DASs within heatmap are >1 or <�1 log2-adjusted fold change.

(B) ATAC-seq signal-track examples of top Pro-B-cell-enriched DASs and B-ALL-enriched DASs on the UCSC genome browser. Flanking genomic regions are

included for context.

(C) Gene ontology analysis of DASs with higher accessibility in B-ALL (B-ALL enriched) at various log2-adjusted fold-change thresholds. All terms were significant

using both binomial and hypergeometric statistical tests.

(D) Differential TF footprinting between Pro-B cells and B-ALL patient samples across 217,240 B-ALL genomic regions of interest.

(E) FOSL2 CUT&RUN enrichment heatmaps at all B-ALL accessible chromatin sites (on left, N = 217,240 regions) and B-ALL-enriched DASs (on right, N = 23,273

regions) in SUPB15 (left enrichment heatmap) and 697 (right enrichment heatmap) cells. Total numbers of sites are shown below each heatmap. Rows in adjacent

pairs of heatmaps are unaligned.

(F) Number of B-ALL-enriched DASs overlapping AP-1 TF occupancy (FOSL2, JUN, and/or JUNB) in 697 (left), SUPB15 (middle), and both B-ALL cell lines (right).

Numbers of overlapping sites are shown in purple while non-overlapping sites are shown in yellow.

(G) Genome annotation of B-ALL-enriched DASs with AP-1 TF occupancy (left) or that are devoid of AP-1 TF occupancy (right).

(legend continued on next page)
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we focused on top TF footprints within B-ALL-enriched DASs

and the cancer-implicated gene targets of these DASs predicted

by the ABC enhancer algorithm. Concordant with global TF foot-

print and AP-1 TF occupancy analyses, we identified the AP-1

family as top TFs in this network. We also identified other top

TFs from TF footprinting, such as CEBP family TFs and BACH2

(Figure 3I). Other prominent top TFs include NFIC, XBP1,

TBX2, and numerous basic helix-loop-helix (bHLH) class TFs

(e.g., MYOG, MYF5 and HES5). Top expressed cancer-impli-

cated gene targets for each TF converged on notable genes

involved in cell signaling (SMAD3, PTPRJ), BCL6 regulation

(FBXO11, BCOR), and transcriptional regulation (RUNX1, ERG,

CUX1) (Figure 3I). Largely consistent results were further ob-

tained using promoter capture Hi-C data from B-ALL cell lines

(Figure S5). Collectively, these results highlight alterations of

signaling pathways and TF-binding networks that facilitate the

proliferative potential of B-ALL samples.

Identification of subtype-enriched chromatin
architecture
To better understand chromatin accessibility within B-ALL, inter-

subtype analyses were performed to identify DASs exhibiting

subtype-enriched signal (henceforth referred to as subtype-en-

riched DASs) in ten B-ALL molecular subtypes harboring

known molecular drivers (BCR::ABL1, DUX4-rearranged, ETV6::

RUNX1, high hyperdiploid, low hypodiploid, KMT2A-rearranged,

Ph-like, PAX5-altered, TCF3::PBX1, and ZNF384-rearranged;

Figures 4A–4C). For this analysis, we compared a single B-ALL

subtype cohort with all other B-ALL cell samples not belonging

to that subtype in pairwise fashion covering all subtypes using

DESeq2 differential analysis across the 217,240 B-ALL

accessible chromatin sites from primary cells. This approach

was utilized to emphasize high degrees of subtype enrichment

compared to the full spectrum of chromatin-accessibility vari-

ability in the remaining sample cohort. We identified between

452 and 10,590 DASs in each B-ALL subtype, with a total of

42,753 subtype-enriched DASs identified across all ten B-ALL

subtypes (log2 fold change >1 or <1, false discovery rate

[FDR] < 0.05; Figure 4B; Table S7). We annotated subtype-en-

riched DASs on a subtype basis and determined that a majority

of subtype-enriched DASs in each B-ALL subtype (87%, range

80%–90%) localized to promoter-distal regions of the genome

(intronic and distal intergenic; Figure S6) and 43%, on average

(range 39%–49%), localized to distal intergenic regions, thereby

emphasizing the importance of non-genic loci in defining B-ALL

chromatin heterogeneity.

To further evaluate subtype-enriched DASs, we determined

whether they displayed enrichment patterns that were consis-

tent with five established human B-ALL cell lines (697 =

TCF3::PBX1, JIH5 = ZNF384-rearranged, Nalm6 = DUX4-rear-
(H) IGV genome browser image showing a B-ALL-enriched DAS that maps to acc

capture Hi-C (PC-HiC) looping between the distal AP-1 occupied sites and the I

tracks are overlaid in the top panel. Signal tracks for FOSL2, JUN, and JUNB in

(I) TF and target gene network of DASs with higher accessibility in B-ALL (B-ALL-e

mean log2-adjusted fold-change transcription factor footprint signal. Target gene

cancer-implicated gene set ranked by the top expressed genes. Network connect

Select expansive and highly similar TF motif families are grouped (AP-1 and CEB
ranged, REH = ETV6::RUNX1, SEM = KMT2A-rearranged, and

SUPB15 = BCR::ABL1). Concordant with DASs in patient sam-

ples, subtype-enriched DASs exhibited the strongest (BCR-

ABL, DUX4-rearranged, ETV6::RUNX1, KMT2A-rearranged) or

second strongest (TCF3::PBX1) accessibility in the concordant

cell line that was representative of that subtype (Figure S7).

These data suggest that B-ALL cell lines exhibit chromatin

accessibility that is largely consistent with the primary B-ALL

cell sample from the corresponding subtype.

To further determine functional effects on gene expression, we

integrated subtype-enriched DASs with differentially expressed

genes (DEGs) uniquely upregulated (log2 fold change > 1,

FDR < 0.05) in each of the ten B-ALL molecular subtypes to

determine whether they were enriched near DEGs. We identified

a statistically significant enrichment of subtype-enriched DASs

near upregulated DEGs in nine of ten subtypes compared to total

expressed genes in the corresponding subtype and uncovered a

strong statistical trend in Ph-like B-ALL (Kolmogorov-Smirnov

test, p = 0.053; Figure S8). We additionally selected several

top differential DAS genomic regions for targeting with the

CRISPR interference (CRISPRi) dCas9-KRAB repressor as a

test of their effects on neighboring gene expression (Figures

4D and S9). Putative cis-regulatory elements were targeted

within a B-ALL cell line context corresponding to the origin of

the B-ALL subtype DASs (Nalm6 = DUX4-rearranged, SEM =

KMT2A-rearranged). These select DAS regions each demon-

strated repression of the corresponding nearby genes (LNX1,

MAP7, SENP6) when targeted with a dCas9-KRAB repressor,

indicating a genuine cis-regulatory element (Figure 4D). Conse-

quently, these data support the role of subtype-enriched DASs

in gene regulation and gene activation and further suggest that

differences in chromatin accessibility contribute to transcrip-

tomic differences among B-ALL subtypes.3,4 Collectively, these

results highlight extensive open chromatin heterogeneity among

B-ALL molecular subtypes.

Mapping transcription factor drivers and gene-
regulatory networks in B-ALL subtypes
We performed TF footprint profiling for 810 TF motifs across all

B-ALL chromatin-accessibility sites (N = 217,240) using merged

ATAC-seq signal from tenB-ALL subtypeswith knownmolecular

drivers to identify subtype-enriched TF drivers. TF footprint

profiling12 identified between 4,303,155 and 5,441,937 bound

motifs in each B-ALL subtype, with 49,402,067 TF footprints at

815,992 unique genomic loci identified across all subtypes. Us-

ing these data, we next identified key TF footprints that were en-

riched in each subtype (i.e., subtype-enriched TF footprints) by

calculating differential footprint scores between every subtype-

subtype pair for each TF motif. The top median differential motif

scores for each subtype were selected as subtype-enriched TF
essible chromatin and sites of AP-1 TF occupancy in SUPB15 cells. Promoter

GFBP7 gene promoter is shown. B-ALL (red) and Pro-B (blue) cell ATAC-seq

SUBP15 cells are shown.

nriched). Network is subset for top TF footprints across DASs ranked by the top

s determined with B-ALL patient origin promoter capture Hi-C are subset for a

ions are colored as TFs (purple blocks) to target gene (green arrowheads) pairs.

P, AP1 family and CEBP family).
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Figure 4. Mapping differential accessibility among B-ALL molecular subtypes

(A) Heatmap of variance-stabilized ATAC-seq signal as Z score across subtype-enriched DASs. Enrichment patterns for each subtype DAS set are shown on

vertical axis and are grouped byB-ALL subtype patient sample on the horizontal axis. Ph-like and BCR-ABL subtype-enriched DASs are expanded on the right for

clarity.

(B) Pie chart shows the number and percentage of subtype-enriched DASs identified.

(C) ATAC-seq signal-track examples of subtype-enriched DASs on the UCSC Genome Browser.

(D) dCas9-KRAB repressor targeting schematic (left) and relative transcript levels for genes associated with subtype-enriched DASs in B-ALL cell lines (right).

Seventy-two hours after doxycycline (100 ng/mL) induction of SEM (KMT2A-rearranged) and NALM6 (DUX4-rearranged), B-ALL cell lines expressing doxycy-

cline-inducible dCas9-KRAB and transduced with negative control single-guide RNAs (sgRNAs) (non-coding and non-targeting) or sgRNAs targeting subtype-

enriched DASs (Enh1 and Enh2) are shown. Gene expression is normalized to the average of the two control sgRNAs (error bars denote ±standard error of the

mean). Significance was calculated by a two-sample t test of combined biological replicates for both control sgRNAs versus both DAS-targeting sgRNAs.

**p < 0.01; ***p < 0.001.
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footprints. This approach was utilized to emphasize differential

TF footprint motifs that were consistent and distinct for each

subtype rather than repetitive global trends (Figure 5A). Notably,

subtype-enriched TF footprints were identified for recognized TF

drivers such as DUX4 in DUX4-rearranged ALL and ZNF384 in

ZNF384-rearranged ALL. We also identified HOX family TFs

(HOXA9, HOXB9, HOXC9, and HOXD9) in KMT2A-rearranged

ALL, GATA family TFs (GATA2, GATA3, GATA4, GATA5, and

GATA6) in ZNF384-rearranged ALL, and nuclear receptor family

TFs (ESR1, ESR2, RARA, and THRB) in PAX5-altered ALL that all

had strong subtype-enriched TF footprints.

Because DNA consensus motifs can be highly redundant

within TF families, we integrated subtype-enriched TF footprints

with DEGs uniquely upregulated in each subtype to identify

candidate TFs from these TF families that are upregulated in

the corresponding B-ALL subtype. This analysis identified

HOXA9 and HOXC9, RARA, and GATA3 as upregulated genes

in KMT2A-rearranged, PAX5-altered, and ZNF384-rearranged

subtypes, respectively (Figure 5B). In addition, DUX4 (DUX4-re-

arranged) and MEIS1 (KMT2A-rearranged) were also identified

as upregulated TF genes with subtype-enriched TF footprints

(Figure S10).

To determine whether these upregulated TFs promote unique

chromatin-accessibility landscapes among B-ALL subtypes, we

also performed TF footprinting on subtype-enriched DASs by

comparing differential footprint scores between each B-ALL

subtype group and non-subtype patient sample group (Figures

5C and S11). These data also supported a role of DUX4 in

DUX4-rearranged ALL, ZNF384 and GATA3 in ZNF384-rear-

ranged ALL, and HOXA9 and MEIS1 in KMT2A-rearranged ALL

in the generation of subtype-specific chromatin landscapes (Fig-

ures 5C and S11). Additionally, our subtype versus non-subtype

findings for ETV6::RUNX1 further confirm the importance of fac-

tors binding GGAA DNA-sequence repeats (EWSR1-FLI1,

MA0149.1) as previously characterized for the ETV6::RUNX1

subtype27 (Figure S11). In complement to analysis of subtype-

enriched DASs, we also examined TF footprints among sub-

type-depleted DASs by again comparing each B-ALL subtype

group and non-subtype group. Transcriptional repressors such

as ZNF135, ZNF263, ZEB1, and ZEB2 had higher footprint

scores across subtype-depleted DASs for multiple subtypes,

suggesting a common set of TFs promoting subtype-depleted

DASs (Figure 5C and Data S1).

Predictive potential of B-ALL subtype-enriched DASs
We determined how well chromatin accessibility can predict

B-ALL subtypes by constructing a stepwise principal compo-

nent analysis-linear discriminant analysis (PCA-LDA) classifica-

tion model using the 42,753 subtype-enriched DAS ATAC-seq

read count matrix as initial input across ten B-ALL subtypes

harboring known molecular drivers (outlined in Figure 6A).

Notably, the constructed classification model was tested with

leave-one-out cross-validation at an accuracy of 89%. The

most common failure was incorrect classification of BCR::ABL1

and Ph-like subtypes (Figure 6B), as has been observed with

other ALL classification algorithms.28 Taking this into account

by grouping BCR::ABL1 and Ph-like subtype samples into a

common class yielded a recalculated cross-validation accuracy
of 91%. Visualization of B-ALL subtype separations using select

dimensions output by the LDA model demonstrates distinct

groupings of related subtypes emphasizing classification-model

performance (Figure 6C).

As a further validation of our classification model, we applied

the classification algorithm to a separate ATAC-seq validation

cohort comprising 24 B-ALL patient samples of known subtype

covering ETV6::RUNX1, DUX4-rearranged and hyperdiploid

subtypes from our previous work.29 The classification model

was able to assign the correct subtype with 100% accuracy

among the 24 B-ALL patient samples in the validation set. Clas-

sification-model performance was visualized by projecting the

validation cohort onto the original training model LDA dimen-

sions, yielding a distinct clustering of training samples with vali-

dation samples (Figure 6D). Collectively, these data support the

utility of chromatin structure and subtype-enriched DASs in

B-ALL subtype classification.

Mapping inherited DNA-sequence variants that impact
chromatin accessibility
To determine how germline variation impacts chromatin acces-

sibility, we identified chromatin-accessibility ATAC-QTLs in a

subset of 69 patient samples with available SNP genotyping in-

formation and allele-specific ATAC-seq read counting using

RASQUAL.30 In total, 9,080 ATAC-QTLs were identified repre-

senting both directionalities, with reference or alternative alleles

increasing chromatin accessibility (FDR < 0.1; Figure 7A; Table

S8). Manual quantification and scaling of allele-specific read

counts for select ATAC-QTLs identified with RASQUAL demon-

strated a clear concordance and directionality among individual

patient samples classified into genotype groups (Figure 7B). Vi-

sual inspection of merged read counts from patient samples

grouped into reference allele homozygote, heterozygote, or

alternative allele homozygote for select ATAC-QTLs further sup-

ports the high-quality nature of identifiedATAC-QTLs (Figure 7C).

We further determined that 218 ATAC-QTLs were also lead

expression QTL (eQTL) SNPs when compared to gene-tissue

expression (GTEx) eQTLs31 from relevant tissues (blood and

lymphoblastoid cells), with 85% also concordant for allele

over-representation directionality (Figure 7D; Table S9). ATAC-

QTLs were also compared with inherited genome-wide asso-

ciation study variants for ALL disease susceptibility, which

identified rs3824662 (GATA3)32 and rs17481869 (2p22.3)33 as

ATAC-QTLs that were associated with the risk of developing

B-ALL. Further supporting the validity of our methodology,

rs3824662 was also identified as an ATAC-QTL in ALL PDX sam-

ples,34 and we functionally validated differential allele-specific

activity for rs17481869 in multiple B-ALL cell lines (Figure S11).

To infer the impact of TF binding in control of chromatin acces-

sibility at ATAC-QTLs, we overlapped ATAC-QTL loci with TF

motifs determined as TF-bound by footprint profiling.12 Nearly

one-third (28.8%; 2,615/9,080 ATAC-QTLs) of these ATAC-

QTLs overlapped a TF-bound motif footprint across multiple

B-ALL subtypes, suggesting that most ATAC-QTLs do not

have a clear TF-binding mechanism regarding how they impact

chromatin accessibility. Analysis of bound TF motif footprint

prevalence at ATAC-QTLs identified several ETS family TFs

(EHF, ELF3, SPI1/PU.1, and SPIB), zinc-finger TFs (ZNF263,
Cell Genomics 3, 100442, December 13, 2023 9
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Figure 5. TF footprinting and gene-regulatory networks identify key TF drivers in B-ALL subtypes

(A) Heatmap list of the topmost consistently differential TF footprints between all pairwise subtype-subtype comparisons (y axis; labeled to the right of the

heatmap as TFmotif identifiers) enriched in ten B-ALL subtypes (x axis; labeled on top of heatmap as Z score of differential TF footprint signal output by TOBIAS).

(B) RNA-seq transcripts permillion (TPM) expression of key TFs with subtype-enriched footprints that are also upregulated in the corresponding subtype (colored)

versus all other subtypes (gray). DESeq2 differentially expressed gene FDR significance values are provided.

(C) Top TF footprints at DASs that are enriched (top) or depleted (bottom) in KMT2A-rearranged (left) and DUX4-rearranged (right) B-ALL. Differential footprint

score between merged subtype patient samples and non-subtype patient samples is provided on the x axis, and TF footprint significance is provided on the y

axis. Higher differential footprint scores indicate higher binding in themerged subtype group compared to all other merged non-subtype samples. TPM transcript

abundance of associated TF transcript in the merged subtype group is shown as both color and size of points.
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Figure 6. Classification model accurately predicts B-ALL subtypes
(A) Flow chart outlines process for PCA-LDA classification of B-ALL subtypes.

(B) Confusion matrix showing number (listed) and percentage (color coded) of B-ALL subtype truths and predictions for leave-one-out cross-validation.

(C) Three-dimensional plots showing clustering of B-ALL subtypes utilizing select dimensions from the LDA model.

(D) LDA clustering of validation cohort B-ALL patient samples with training samples after processing with the classification algorithm. Validation samples for each

subtype group are shown in black. Data are provided for DUX4-rearranged (left), ETV6::RUNX1 (center), and hyperdiploid (right) B-ALL.
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Figure 7. Identification of ATAC-QTLs impacting chromatin accessibility

(A) ATAC-QTL effect size (x axis) and significance (y axis) is plotted for all significant ATAC-QTLs (FDR < 0.1).

(B) Examples of allele-specific effects on ATAC-seq read count at ATAC-QTLs between samples from the three genotype groups. Homoz_REF, homozygous

reference allele; Heteroz_REFALT, heterozygous; Homoz_ALT, homozygous alternative allele.

(legend continued on next page)
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ZNF460, ZNF740, and ZNF148), and CTCF as the most altered

motifs leading to differences in chromatin accessibility between

alleles (Figure 7E). Notably, we also identified PAX5 and IKZF1,

which have known roles in B cell development and leuke-

mogenesis.35–38 Collectively, these data identify inherited DNA-

sequence variants contributing to chromatin heterogeneity

among B-ALL subtypes and indicate specific TFs of interest for

further exploration of ATAC-QTLs.

DISCUSSION

Our study provides a large-scale examination of chromatin

accessibility in the B-ALL genome across an expansive set of

B-ALL subtypes. We further integrated these data with ChIP-

seq histone modification enrichment in primary B-ALL cells

and three-dimensional chromatin looping data using promoter

capture Hi-C in multiple patient samples and B-ALL cell lines.

Our data demonstrate that most regions of chromatin accessi-

bility harbor activating chromatin marks consistent with cis-reg-

ulatory elements involved in gene regulation, and we further

confirmed direct looping to gene promoters for approximately

50% of accessible chromatin sites. However, this does not rule

out more transient chromatin looping interactions difficult to

detect by current chromatin conformation capture genomic

techniques.

Extensive epigenomic reprogramming was uncovered be-

tween B cell progenitors and B-ALL, and cell-of-origin analyses

identified Pro-B cells as the most common cell of origin. Our

comparison of B-ALL and Pro-B cell chromatin accessibility sug-

gests epigenomic reprogramming that is, in part, associatedwith

AP-1 TF occupancy. We further identify disruptions to normal B

cell function through the activation of Toll-like receptor signaling

and interleukin production. Acetyl-CoA synthesis was also iden-

tified as an enriched gene ontology term when comparing B-ALL

and Pro-B cells. Metabolic alterations in cancer are well known,

particularly acetyl-CoA synthesis alterations, which have been

previously reported in cancer.39

We further examined accessible chromatin landscapes

among diverse molecular subtypes of B-ALL. Collectively, we

identified 42,753 subtype-enriched DASs, which strikingly repre-

sent 20% of analyzed accessible chromatin sites across a pan-

subtype B-ALL genome. Subtype-enriched DASs were enriched

near upregulated DEGs in the corresponding subtype, support-

ing their role in gene activation. Moreover, comparisons between

subtype-enriched DASs and chromatin-accessibility data from

cell lines identified largely consistent patterns. We further identi-

fied candidate TFs that exhibited strong subtype specificity

through TF footprinting analyses and validated some of these

findings using transcriptomic data from primary B-ALL cells.

Collectively, these analyses highlighted a putative role for

HOXA9 and MEIS1 in KMT2A-rearranged ALL, GATA3 in

ZNF384-rearranged ALL, and RARA in PAX5-altered B-ALL.
(C) UCSC browser ATAC-seq signal tracks of merged BAM files from patients wit

ATAC-QTLs aremarked by an asterisk. Homoz_REF, homozygous reference allele

(D) Scatterplot of effect size for SNPs significant as both ATAC-QTLs (x axis) an

(E) Abundance of top TF-bound motifs overlapping ATAC-QTLs. TF-bound moti

resents highly similar TF motifs based on sequence grouped into motif families v
We further confirmed the previously reported roles of DUX4

and ZNF384 in DUX4-rearranged and ZNF384-rearranged

ALLs, respectively, and our more focused analysis of subtype-

enriched DASs confirmed many of these TF hits. Concordant

with our findings, previous studies have identified the co-upre-

gulation of HOXA9 and MEIS1 in KMT2A-rearranged leukemias

and further support that these TFs are key drivers of leukemo-

genesis.40–42 Our identification of numerous HOX TFs with en-

riched footprints in KMT2A-rearranged ALL is also consistent

with observations of HOX gene dysregulation in this subtype.43

Further supporting our results, ZNF384 fusion proteins in

ZNF384-rearranged ALL are known to upregulate GATA3

expression.44,45 Although a direct role for RARA in PAX5-altered

B-ALL has not been established, previous work has identified

PAX5 as a target gene of the PLZF-RARA fusion protein in acute

promyelocytic leukemia.46 Moreover, both RARA and PAX5

genes can form fusions with PML in acute promyelocytic leuke-

mia47 and ALL,48 respectively. While PAX5-altered ALL has not

been well connected to RARA nuclear receptor signaling, there

has been previous work treating IKZF1-mutated BCR-ABL1

ALL with RARA and RXR agonists that suppressed a self-

renewal phenotype.49 Collectively, these data warrant further

investigation of RARA and RXR signaling in PAX5-altered ALL.

In addition to key subtype-enriched TF footprints identified

within accessible chromatin sites, we also assessed subtype-

depleted DASs and identified numerous TFs that have been

shown to act as repressors, such as ZNF135, ZNF263, ZEB1,

and ZEB2. Intriguingly, several studies have supported a role

for these repressors in cancers such as neuroblastoma and

AML demonstrating enhanced tumorigenic phenotypes.50,51

Our observations support a more detailed examination of these

repressive TFs in the occlusion of accessible chromatin sites in

B-ALL.

Supporting the utility of chromatin accessibility in B-ALL clas-

sification, subtype-enriched DASs predicted subtypes with 89%

accuracy. As a comparison to chromatin accessibility, transcrip-

tional profiling using ALLSorts correctly assigned B-ALL sub-

types with 92% accuracy.28 However, this RNA-sequencing

(RNA-seq) dataset included over 1,223 transcriptomes from 18

subtypes, representing a considerably larger dataset for model

development. We therefore suspect that additional chromatin-

accessibility profiling across more B-ALL subtypes and incr-

eased sample sizes will lead to even better subtype prediction

that will rival transcriptomic profiling and, importantly, incorpo-

rate intergenic heterogeneity that can elucidate cis-regulatory

drivers of B-ALL leukemogenesis.

To identify the role of inherited DNA-sequence variation on the

B-ALL chromatin landscape, we mapped over 9,000 ATAC-

QTLs (FDR < 0.1). A large subset of ATAC-QTLs mapped to TF

footprints and was concordant in allelic biases with GTEx

lead eQTLs. We additionally identified several key TFs that

appear to impact ATAC-QTL signal and chromatin accessibility,
h distinct genotypes at ARL11 (top panel) and TTC7B (bottom panel) gene loci.

; Heteroz_REFALT, heterozygous; Homoz_ALT, homozygous alternative allele.

d GTEx lead eQTL (y axis).

fs on the x axis were grouped into families (TOBIAS Motif Family), which rep-

ia TOBIAS motif clustering.

Cell Genomics 3, 100442, December 13, 2023 13



Resource
ll

OPEN ACCESS
including a subset known to impact B cell development and

leukemogenesis, such as PAX5 and IKZF1.35–38 In addition, we

identified ZNF263 as a top hit, which is consistent with our

demonstration of enrichment for this transcriptional repressor

at subtype-depleted DASs. Further validating our analysis, we

functionally validated a variant (rs17481869; 2p22.3) associated

with susceptibility to ALL.33 Collectively, this analysis suggests

that chromatin accessibility is additionally modified by inherited

DNA-sequence variation, thereby further contributing to

increased chromatin heterogeneity in B-ALL.

Overall, our data support pronounced changes in chromatin

accessibility between B-ALL and precursor B cells as well as

among B-ALL subtypes. Our results further support the role of

diverse TFs and inherited genetic variants in modulating and

promoting differences in chromatin accessibility among B-ALL

subtypes. Ultimately, these diverse chromatin architectures

contribute to unique gene-regulatory networks and transcrip-

tional programs. Our work therefore provides a valuable

resource to the cancer genomics research community and can

be further used to better understand biological as well as clinical

differences among B-ALL subtypes.

Limitations of the study
Our study provides a valuable resource for the genomics and

cancer research communities. Because this work represents a

resource, a key limitation is the lack of mechanistic insights

with extensive experimental validation. Indeed, many of our an-

alyses, such as comparisons with B-ALL cell lines and B-ALL

RNA-seq datasets, were performed to validate the accuracy

and robustness of our ATAC-seq data. Our identification of

Pro-B cells as the most common cell of origin was identified in

mouse models,52 and a role for AP-1 TFs in B-ALL was also

described in KMT2A-rearranged ALL.53 We also identified

known B-ALL molecular drivers (e.g., DUX4 and ZNF384 in

DUX4-rearranged and ZNF384-rearranged ALL, respectively)

and previously documented gene-regulatory alterations in

B-ALL (e.g., HOXA9 and MEIS1 activity in KMT2A-rearranged

ALL). Collectively, these data support the validity of our ATAC-

seq dataset. We further mapped key TF-target gene interactions

that are enriched in B-ALL compared to progenitor B cells. Addi-

tional work, including the generation of H3K27ac ChIP-seq and

promoter capture Hi-C data in Pro-B cells and other B cell pro-

genitors, is required to establish the extent of regulatory rewiring

in B-ALL by these TFs.We also identifiedmultiple additional TFs,

including transcriptional repressors, in driving unique chromatin

architectures among B-ALL subtypes. Additional experimenta-

tion is likewise required to validate the roles for these TFs in

maintaining or establishing chromatin architecture and in sub-

type biology. Our classificationmodel was able to predict molec-

ular subtypes with high accuracy. We believe that additional

ATAC-seq datasets, including data from rarer subtypes not inter-

rogated in this study, will improve the accuracy of chromatin

accessibility in discriminating B-ALL molecular subtypes.

Further functional experimentation is also required to validate

the effects of ATAC-QTLs on TF-binding events and neighboring

gene expression and to determine whether these inherited ge-

netic variants are associated with additional B-ALL cellular phe-

notypes or even clinical phenotypes in patients.
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Lassen, C., Råde, J., Fontes, M., Mörse, H., et al. (2005). Molecular signa-

tures in childhood acute leukemia and their correlations to expression pat-

terns in normal hematopoietic subpopulations. Proc. Natl. Acad. Sci. USA

102, 19069–19074. https://doi.org/10.1073/pnas.0506637102.

5. Figueroa, M.E., Chen, S.C., Andersson, A.K., Phillips, L.A., Li, Y., Sotzen,

J., Kundu, M., Downing, J.R., Melnick, A., and Mullighan, C.G. (2013). In-

tegrated genetic and epigenetic analysis of childhood acute lymphoblastic

leukemia. J. Clin. Invest. 123, 3099–3111. https://doi.org/10.1172/

JCI66203.

6. Almamun, M., Levinson, B.T., van Swaay, A.C., Johnson, N.T., McKay,

S.D., Arthur, G.L., Davis, J.W., and Taylor, K.H. (2015). Integrated methyl-

ome and transcriptome analysis reveals novel regulatory elements in pe-

diatric acute lymphoblastic leukemia. Epigenetics 10, 882–890. https://

doi.org/10.1080/15592294.2015.1078050.

7. Klemm, S.L., Shipony, Z., and Greenleaf, W.J. (2019). Chromatin accessi-

bility and the regulatory epigenome. Nat. Rev. Genet. 20, 207–220. https://

doi.org/10.1038/s41576-018-0089-8.

8. Bhagwat, A.S., Lu, B., and Vakoc, C.R. (2018). Enhancer dysfunction in

leukemia. Blood 131, 1795–1804. https://doi.org/10.1182/blood-2017-

11-737379.

9. Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y., and Greenleaf,

W.J. (2013). Transposition of native chromatin for fast and sensitive

epigenomic profiling of open chromatin, DNA-binding proteins and nucle-

osome position. Nat. Methods 10, 1213–1218. https://doi.org/10.1038/

nmeth.2688.

10. Corces, M.R., Buenrostro, J.D.,Wu, B., Greenside, P.G., Chan, S.M., Koe-

nig, J.L., Snyder, M.P., Pritchard, J.K., Kundaje, A., Greenleaf, W.J., et al.

(2016). Lineage-specific and single-cell chromatin accessibility charts hu-

man hematopoiesis and leukemia evolution. Nat. Genet. 48, 1193–1203.

https://doi.org/10.1038/ng.3646.

11. Boyle, A.P., Davis, S., Shulha, H.P., Meltzer, P., Margulies, E.H., Weng, Z.,

Furey, T.S., and Crawford, G.E. (2008). High-resolutionmapping and char-

acterization of open chromatin across the genome. Cell 132, 311–322.

https://doi.org/10.1016/j.cell.2007.12.014.

12. Bentsen, M., Goymann, P., Schultheis, H., Klee, K., Petrova, A., Wiegandt,

R., Fust, A., Preussner, J., Kuenne, C., Braun, T., et al. (2020). ATAC-seq

footprinting unravels kinetics of transcription factor binding during zygotic

genome activation. Nat. Commun. 11, 4267. https://doi.org/10.1038/

s41467-020-18035-1.
13. Gusmao, E.G., Allhoff, M., Zenke, M., and Costa, I.G. (2016). Analysis of

computational footprinting methods for DNase sequencing experiments.

Nat. Methods 13, 303–309. https://doi.org/10.1038/nmeth.3772.

14. Zhang, K., Hocker, J.D., Miller, M., Hou, X., Chiou, J., Poirion, O.B., Qiu, Y.,

Li, Y.E., Gaulton, K.J., Wang, A., et al. (2021). A single-cell atlas of chro-

matin accessibility in the human genome. Cell 184, 5985–6001.e19.

https://doi.org/10.1016/j.cell.2021.10.024.

15. Corces, M.R., Granja, J.M., Shams, S., Louie, B.H., Seoane, J.A., Zhou,

W., Silva, T.C., Groeneveld, C., Wong, C.K., Cho, S.W., et al. (2018). The

chromatin accessibility landscape of primary human cancers. Science

362, eaav1898. https://doi.org/10.1126/science.aav1898.

16. Cejas, P., Xie, Y., Font-Tello, A., Lim, K., Syamala, S., Qiu, X., Tewari, A.K.,

Shah, N., Nguyen, H.M., Patel, R.A., et al. (2021). Subtype heterogeneity

and epigenetic convergence in neuroendocrine prostate cancer. Nat.

Commun. 12, 5775. https://doi.org/10.1038/s41467-021-26042-z.

17. Roadmap Epigenomics Consortium; Kundaje, A., Meuleman,W., Ernst, J.,

Bilenky, M., Yen, A., Heravi-Moussavi, A., Kheradpour, P., Zhang, Z.,

Wang, J., et al. (2015). Integrative analysis of 111 reference human epige-

nomes. Nature 518, 317–330. https://doi.org/10.1038/nature14248.

18. Creyghton, M.P., Cheng, A.W., Welstead, G.G., Kooistra, T., Carey, B.W.,

Steine, E.J., Hanna, J., Lodato, M.A., Frampton, G.M., Sharp, P.A., et al.

(2010). Histone H3K27ac separates active from poised enhancers and

predicts developmental state. Proc. Natl. Acad. Sci. USA 107, 21931–

21936. https://doi.org/10.1073/pnas.1016071107.

19. Heintzman, N.D., Stuart, R.K., Hon, G., Fu, Y., Ching, C.W., Hawkins, R.D.,

Barrera, L.O., Van Calcar, S., Qu, C., Ching, K.A., et al. (2007). Distinct and

predictive chromatin signatures of transcriptional promoters and en-

hancers in the human genome. Nat. Genet. 39, 311–318. https://doi.org/

10.1038/ng1966.

20. Hoffman, B.G., Robertson, G., Zavaglia, B., Beach, M., Cullum, R., Lee, S.,

Soukhatcheva, G., Li, L., Wederell, E.D., Thiessen, N., et al. (2010). Locus

co-occupancy, nucleosome positioning, and H3K4me1 regulate the func-

tionality of FOXA2-HNF4A-and PDX1-bound loci in islets and liver.

Genome Res. 20, 1037–1051. https://doi.org/10.1101/gr.104356.109.

21. Mifsud, B., Tavares-Cadete, F., Young, A.N., Sugar, R., Schoenfelder, S.,

Ferreira, L.,Wingett, S.W., Andrews, S., Grey,W., Ewels, P.A., et al. (2015).

Mapping long-range promoter contacts in human cells with high-resolu-

tion capture Hi-C. Nat. Genet. 47, 598–606. https://doi.org/10.1038/

ng.3286.

22. Sondka, Z., Bamford, S., Cole, C.G., Ward, S.A., Dunham, I., and Forbes,

S.A. (2018). The COSMIC Cancer Gene Census: describing genetic

dysfunction across all human cancers. Nat. Rev. Cancer 18, 696–705.

https://doi.org/10.1038/s41568-018-0060-1.

23. ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium (2020).

Pan-cancer analysis of whole genomes. Nature 578, 82–93. https://doi.

org/10.1038/s41586-020-1969-6.

24. Jackson, T.R., Ling, R.E., and Roy, A. (2021). The Origin of B-cells: Human

Fetal B Cell Development and Implications for the Pathogenesis of Child-

hood Acute Lymphoblastic Leukemia. Front. Immunol. 12, 637975.

https://doi.org/10.3389/fimmu.2021.637975.

25. O’Byrne, S., Elliott, N., Rice, S., Buck, G., Fordham, N., Garnett, C., God-

frey, L., Crump, N.T., Wright, G., Inglott, S., et al. (2019). Discovery of a

CD10-negative B-progenitor in human fetal life identifies unique

ontogeny-related developmental programs. Blood 134, 1059–1071.

https://doi.org/10.1182/blood.2019001289.

26. Fulco, C.P., Nasser, J., Jones, T.R., Munson, G., Bergman, D.T., Subra-

manian, V., Grossman, S.R., Anyoha, R., Doughty, B.R., Patwardhan,

T.A., et al. (2019). Activity-by-contact model of enhancer-promoter regu-

lation from thousands of CRISPR perturbations. Nat. Genet. 51, 1664–

1669. https://doi.org/10.1038/s41588-019-0538-0.

27. Kodgule, R., Goldman, J.W., Monovich, A.C., Saari, T., Aguilar, A.R., Hall,

C.N., Rajesh, N., Gupta, J., Chu, S.C.A., Ye, L., et al. (2023). ETV6 Defi-

ciency Unlocks ERG-Dependent Microsatellite Enhancers to Drive
Cell Genomics 3, 100442, December 13, 2023 15

https://doi.org/10.1182/blood-2014-12-580001
https://doi.org/10.1172/JCI61203
https://doi.org/10.1172/JCI61203
https://doi.org/10.1038/ncomms11790
https://doi.org/10.1038/ncomms11790
https://doi.org/10.1073/pnas.0506637102
https://doi.org/10.1172/JCI66203
https://doi.org/10.1172/JCI66203
https://doi.org/10.1080/15592294.2015.1078050
https://doi.org/10.1080/15592294.2015.1078050
https://doi.org/10.1038/s41576-018-0089-8
https://doi.org/10.1038/s41576-018-0089-8
https://doi.org/10.1182/blood-2017-11-737379
https://doi.org/10.1182/blood-2017-11-737379
https://doi.org/10.1038/nmeth.2688
https://doi.org/10.1038/nmeth.2688
https://doi.org/10.1038/ng.3646
https://doi.org/10.1016/j.cell.2007.12.014
https://doi.org/10.1038/s41467-020-18035-1
https://doi.org/10.1038/s41467-020-18035-1
https://doi.org/10.1038/nmeth.3772
https://doi.org/10.1016/j.cell.2021.10.024
https://doi.org/10.1126/science.aav1898
https://doi.org/10.1038/s41467-021-26042-z
https://doi.org/10.1038/nature14248
https://doi.org/10.1073/pnas.1016071107
https://doi.org/10.1038/ng1966
https://doi.org/10.1038/ng1966
https://doi.org/10.1101/gr.104356.109
https://doi.org/10.1038/ng.3286
https://doi.org/10.1038/ng.3286
https://doi.org/10.1038/s41568-018-0060-1
https://doi.org/10.1038/s41586-020-1969-6
https://doi.org/10.1038/s41586-020-1969-6
https://doi.org/10.3389/fimmu.2021.637975
https://doi.org/10.1182/blood.2019001289
https://doi.org/10.1038/s41588-019-0538-0


Resource
ll

OPEN ACCESS
Aberrant Gene Activation in B-Lymphoblastic Leukemia. Blood Cancer

Discov. 4, 34–53. https://doi.org/10.1158/2643-3230.BCD-21-0224.

28. Schmidt, B., Brown, L.M., Ryland, G.L., Lonsdale, A., Kosasih, H.J., Lu-

dlow, L.E., Majewski, I.J., Blombery, P., Ekert, P.G., Davidson, N.M.,

and Oshlack, A. (2022). ALLSorts: an RNA-Seq subtype classifier for

B-cell acute lymphoblastic leukemia. Blood Adv. 6, 4093–4097. https://

doi.org/10.1182/bloodadvances.2021005894.

29. Diedrich, J.D., Dong, Q., Ferguson, D.C., Bergeron, B.P., Autry, R.J., Qian,

M., Yang, W., Smith, C., Papizan, J.B., Connelly, J.P., et al. (2021).

Profiling chromatin accessibility in pediatric acute lymphoblastic leukemia

identifies subtype-specific chromatin landscapes and gene regulatory

networks. Leukemia 35, 3078–3091. https://doi.org/10.1038/s41375-

021-01209-1.

30. Kumasaka, N., Knights, A.J., and Gaffney, D.J. (2016). Fine-mapping

cellular QTLs with RASQUAL and ATAC-seq. Nat. Genet. 48, 206–213.

https://doi.org/10.1038/ng.3467.

31. GTEx Consortium (2017). Genetic effects on gene expression across hu-

man tissues. Nature 550, 204–213. https://doi.org/10.1038/nature24277.

32. Perez-Andreu, V., Roberts, K.G., Harvey, R.C., Yang, W., Cheng, C., Pei,

D., Xu, H., Gastier-Foster, J., E, S., Lim, J.Y.S., et al. (2013). Inherited

GATA3 variants are associated with Ph-like childhood acute lympho-

blastic leukemia and risk of relapse. Nat. Genet. 45, 1494–1498. https://

doi.org/10.1038/ng.2803.

33. Vijayakrishnan, J., Studd, J., Broderick, P., Kinnersley, B., Holroyd, A.,

Law, P.J., Kumar, R., Allan, J.M., Harrison, C.J., Moorman, A.V., et al.

(2018). Genome-wide association study identifies susceptibility loci for

B-cell childhood acute lymphoblastic leukemia. Nat. Commun. 9, 1340.

https://doi.org/10.1038/s41467-018-03178-z.

34. Yang, H., Zhang, H., Luan, Y., Liu, T., Yang, W., Roberts, K.G., Qian, M.X.,

Zhang, B., Yang, W., Perez-Andreu, V., et al. (2022). Noncoding genetic

variation in GATA3 increases acute lymphoblastic leukemia risk through

local and global changes in chromatin conformation. Nat. Genet. 54,

170–179. https://doi.org/10.1038/s41588-021-00993-x.

35. Medvedovic, J., Ebert, A., Tagoh, H., and Busslinger, M. (2011). Pax5: a

master regulator of B cell development and leukemogenesis. Adv.

Immunol. 111, 179–206. https://doi.org/10.1016/B978-0-12-385991-4.

00005-2.

36. Gu, Z., Churchman, M.L., Roberts, K.G., Moore, I., Zhou, X., Nakitandwe,

J., Hagiwara, K., Pelletier, S., Gingras, S., Berns, H., et al. (2019). PAX5-

driven subtypes of B-progenitor acute lymphoblastic leukemia. Nat.

Genet. 51, 296–307. https://doi.org/10.1038/s41588-018-0315-5.

37. Mullighan, C.G., Su, X., Zhang, J., Radtke, I., Phillips, L.A.A., Miller, C.B.,

Ma, J., Liu, W., Cheng, C., Schulman, B.A., et al. (2009). Deletion of IKZF1

and prognosis in acute lymphoblastic leukemia. N. Engl. J. Med. 360,

470–480. https://doi.org/10.1056/NEJMoa0808253.

38. Churchman, M.L., Qian, M., Te Kronnie, G., Zhang, R., Yang, W., Zhang,

H., Lana, T., Tedrick, P., Baskin, R., Verbist, K., et al. (2018). Germline Ge-

netic IKZF1 Variation and Predisposition to Childhood Acute Lympho-

blastic Leukemia. Cancer Cell 33, 937–948.e8. https://doi.org/10.1016/j.

ccell.2018.03.021.

39. Guertin, D.A., and Wellen, K.E. (2023). Acetyl-CoA metabolism in cancer.

Nat. Rev. Cancer 23, 156–172. https://doi.org/10.1038/s41568-022-

00543-5.

40. Collins,C.,Wang, J.,Miao,H.,Bronstein, J.,Nawer,H., Xu, T., Figueroa,M.,

Muntean, A.G., and Hess, J.L. (2014). C/EBPalpha is an essential collabo-

rator in Hoxa9/Meis1-mediated leukemogenesis. Proc. Natl. Acad. Sci.

USA 111, 9899–9904. https://doi.org/10.1073/pnas.1402238111.

41. Sun, Y., Zhou, B., Mao, F., Xu, J., Miao, H., Zou, Z., Phuc Khoa, L.T., Jang,

Y., Cai, S., Witkin, M., et al. (2018). HOXA9 Reprograms the Enhancer

Landscape to Promote Leukemogenesis. Cancer Cell 34, 643–658.e5.

https://doi.org/10.1016/j.ccell.2018.08.018.

42. Miyamoto, R., Kanai, A., Okuda, H., Komata, Y., Takahashi, S., Matsui, H.,

Inaba, T., and Yokoyama, A. (2021). HOXA9 promotes MYC-mediated
16 Cell Genomics 3, 100442, December 13, 2023
leukemogenesis by maintaining gene expression for multiple anti-

apoptotic pathways. Elife 10, e64148. https://doi.org/10.7554/eLife.

64148.

43. Ferrando, A.A., Armstrong, S.A., Neuberg, D.S., Sallan, S.E., Silverman,

L.B., Korsmeyer, S.J., and Look, A.T. (2003). Gene expression signatures

in MLL-rearranged T-lineage and B-precursor acute leukemias: domi-

nance of HOX dysregulation. Blood 102, 262–268. https://doi.org/10.

1182/blood-2002-10-3221.

44. Qian, M., Zhang, H., Kham, S.K.Y., Liu, S., Jiang, C., Zhao, X., Lu, Y.,

Goodings, C., Lin, T.N., Zhang, R., et al. (2017). Whole-transcriptome

sequencing identifies a distinct subtype of acute lymphoblastic leukemia

with predominant genomic abnormalities of EP300 andCREBBP. Genome

Res. 27, 185–195. https://doi.org/10.1101/gr.209163.116.

45. Yaguchi, A., Ishibashi, T., Terada, K., Ueno-Yokohata, H., Saito, Y., Fuji-

mura, J., Shimizu, T., Ohki, K., Manabe, A., and Kiyokawa, N. (2017).

EP300-ZNF384 fusion gene product up-regulates GATA3 gene expres-

sion and induces hematopoietic stem cell gene expression signature in

B-cell precursor acute lymphoblastic leukemia cells. Int. J. Hematol.

106, 269–281. https://doi.org/10.1007/s12185-017-2220-6.

46. Spicuglia, S., Vincent-Fabert, C., Benoukraf, T., Tibéri, G., Saurin, A.J., Za-

carias-Cabeza, J., Grimwade, D., Mills, K., Calmels, B., Bertucci, F., et al.

(2011). Characterisation of genome-wide PLZF/RARA target genes. PLoS

One 6, e24176. https://doi.org/10.1371/journal.pone.0024176.

47. Chen, Z., and Chen, S.J. (1992). RARA and PML genes in acute promye-

locytic leukemia. Leuk. Lymphoma 8, 253–260. https://doi.org/10.3109/

10428199209051004.

48. Kurahashi, S., Hayakawa, F., Miyata, Y., Yasuda, T., Minami, Y., Tsuzuki,

S., Abe, A., and Naoe, T. (2011). PAX5-PML acts as a dual dominant-nega-

tive form of both PAX5 and PML. Oncogene 30, 1822–1830. https://doi.

org/10.1038/onc.2010.554.

49. Churchman, M.L., Low, J., Qu, C., Paietta, E.M., Kasper, L.H., Chang, Y.,

Payne-Turner, D., Althoff, M.J., Song, G., Chen, S.C., et al. (2015). Efficacy

of Retinoids in IKZF1-Mutated BCR-ABL1 Acute Lymphoblastic Leuke-

mia. Cancer Cell 28, 343–356. https://doi.org/10.1016/j.ccell.2015.

07.016.

50. Yu, Z., Feng, J., Wang, W., Deng, Z., Zhang, Y., Xiao, L., Wang, Z., Liu, C.,

Liu, Q., Chen, S., and Wu, M. (2020). The EGFR-ZNF263 signaling axis si-

lences SIX3 in glioblastoma epigenetically. Oncogene 39, 3163–3178.

https://doi.org/10.1038/s41388-020-1206-7.

51. Li, H., Mar, B.G., Zhang, H., Puram, R.V., Vazquez, F., Weir, B.A., Hahn,

W.C., Ebert, B., and Pellman, D. (2017). The EMT regulator ZEB2 is a novel

dependency of human and murine acute myeloid leukemia. Blood 129,

497–508. https://doi.org/10.1182/blood-2016-05-714493.

52. Weidemann, R.R., Behrendt, R., Schoedel, K.B., M€uller, W., Roers, A., and

Gerbaulet, A. (2017). Constitutive Kit activity triggers B-cell acute lympho-

blastic leukemia-like disease in mice. Exp. Hematol. 45, 45–55.e6. https://

doi.org/10.1016/j.exphem.2016.09.005.

53. Tejedor, J.R., Bueno, C., Vinyoles, M., Petazzi, P., Agraz-Doblas, A.,

Cobo, I., Torres-Ruiz, R., Bayón, G.F., Pérez, R.F., López-Tamargo, S.,
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Antibodies

H3K27Ac Rabbit pAb Active Motif #39133; RRID:AB_2561016

Fra2 (D2F1E) Rabbit mAb Cell Signaling #19967, Lot: 2; RRID:AB_2722526

JUN/c-Jun CUTANATM CUT&RUN Antibody Epicypher 13-2019, Lot: 22070001-85

JunB (C37F9) Rabbit mAb Cell Signaling #3753, Lot: 2; RRID:AB_2130002

CUTANATM Rabbit IgG CUT&RUN

Negative Control Antibody

Epicypher 13–0042; RRID:AB_2923178

Biological samples

Patient B-ALL cell samples St. Jude Children’s

Research Hospital

https://Stjude.org

Patient B-ALL cell samples ECOG-ACRIN Cancer

Research Group

https://ecog-acrin.org/

Patient B-ALL cell samples The Alliance for Clinical

Trials in Oncology

https://allianceforclinicaltrialsinoncology.

org/main/

Patient B-ALL cell samples MD Anderson Cancer Center https://www.mdanderson.org/

Patient B-ALL cell samples Cook Children’s Medical Center https://www.cookchildrens.org/

Patient B-ALL cell samples Lucile Packard

Children’s Hospital

https://www.stanfordchildrens.org/

en/lucile-packard-childrens-hospital

Patient B-ALL cell samples The University of Chicago https://www.uchicago.edu

Patient B-ALL samples Novant Health Hemby

Children’s Hospital

https://www.novanthealth.org/

locations/medical-centers/

hemby-childrens-hospital/

Patient B-ALL cell samples Children’s Hospital of Michigan https://www.childrensdmc.org/

Critical commercial assays

Cutana CUT&RUN kit v3.0 Epicypher 14–1048

Human promoter capture Hi-C kit Arima A510008, A303010, A302010

Illumina Tagment DNAEnzyme andBuffer Large Kit Illumina 20034198

Dual Luciferase Reporter Assay System Promega E1960

PowerPlex Fusion STR Promega DC2402

MycoScope PCR detection kit Genlantis MY01050

Deposited data

Progenitor B cell ATAC-seq Corces et al.10; O’Byrne et al.25 GEO: GSE122989, GSE74912

B-ALL cell line ATAC-seq and H3K27ac ChIP-seq

tracks associated with dCas9-KRAB targeting

Kodgule et al.27 GEO: GSE186942

B-ALL cell sample histone modification ChIP-seq

datasets (H3K27ac, H3K4me1 and H3K27me3)

Blueprint Epigenome

Consortium

https://www.blueprint-epigenome.eu/

Patient B-ALL samples (validation cohort) Diedrich et al.29 GEO: GSE161501

Patient B-ALL cell sample ATAC-seq This paper GEO: GSE211631

Patient B-ALL cell sample ChIP-seq This paper GEO: GSE211631

Patient B-ALL cell sample promoter capture Hi-C This paper GEO: GSE211631

B-ALL cell line promoter capture Hi-C This paper GEO: GSE211631

B-ALL cell line AP-1 factor CUT&RUN This paper GEO: GSE211631

Patient B-ALL cell sample RNA-seq data St. Jude Children’s

Research Hospital

St. Jude Cloud

Patient B-ALL cell sample Variant Call

Frequency (VCF) genotyping data

St. Jude Children’s

Research Hospital

St. Jude Cloud
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Experimental models: Cell lines

697 B-ALL cells DSMZ ACC 42; RRID:CVCL_0079

BALL1 B-ALL cells DSMZ ACC 742; RRID:CVCL_1075

Nalm6 B-ALL cells ATCC CRL-3273; RRID:CVCL_0092

REH B-ALL cells ATCC CRL-8286; RRID:CVCL_1650

RS4; 11 B-ALL cells ATCC CRL-1873; RRID:CVCL_0093

SEM B-ALL cells DSMZ ACC 546; RRID:CVCL_0095

SUP-B15 B-ALL cells ATCC CRL-1929; RRID:CVCL_0103

JIH-5 B-ALL cells DSMZ ACC 788; RRID:CVCL_EQ76

Oligonucleotides

CRISPR-Cas9 deletion DNA oligo sequences This paper See Table S10

dCas9-KRAB CRISPRi DNA oligo sequences This paper See Table S11

rs17481869 luciferase assay DNA oligo sequences This paper See Table S12

Recombinant DNA

TRE3-KRABdCas9-IRES-GFP Fulco et al.54 Addgene #85556

sgOpti Fulco et al.54 Addgene #85681

pLVX-EF1alpha-Tet3G Clontech 631359

pGL4.23 Promega E841A

pRL-TK renilla Promega E2231

Software and algorithms

Arima CHiC pipeline (v1.4) Arima Genomics https://github.com/ArimaGenomics/CHiC

FlashFry McKenna et al.55 https://github.com/mckennalab/FlashFry

ChIPseeker (v1.30.3) Yu et al.56 https://bioconductor.org/packages/

release/bioc/html/ChIPseeker.html

DESeq2 (v1.34.0) Love et al.57 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

Pheatmap (v1.0.12) Kolde58 https://github.com/raivokolde/pheatmap

Clusterprofiler (v4.2.2) Yu et al.59 https://bioconductor.org/packages/

release/bioc/html/clusterProfiler.html

ATACseqQC (v1.18.1) Ou et al.60 https://bioconductor.org/packages/

release/bioc/html/ATACseqQC.html

ggplot2 (v3.3.6) Wickham61 https://github.com/tidyverse/ggplot2

Michigan Imputation Server (v1.6.5) Das et al.62 https://imputationserver.sph.umich.edu/

RASQUAL (v1.1) Kumasaka et al.30 https://github.com/natsuhiko/rasqual

TrimGalore (v0.6.6) Krueger63 https://github.com/FelixKrueger/

TrimGalore

Bowtie2 (v2.2.9) Langmead and Salzberg64 http://bowtie-bio.sourceforge.

net/bowtie2/index.shtml

Samtools (v1.2) Li et al.65 http://samtools.sourceforge.net/

Picard (v1.141) Broad Institute66 https://github.com/broadinstitute/picard

MACS2 (v2.1.1) Zhang et al.67 https://github.com/macs3-

project/MACS/wiki/Install-macs2

Bedtools (v2.30.0) Quinlan and Hall68 https://github.com/arq5x/bedtools2

nondetects Sherina et al.69 https://www.bioconductor.org/packages/

release/bioc/html/nondetects.html

Primer-Blast Ye et al.70 http://www.ncbi.nlm.nih.gov/

tools/primer-blast

CHiCAGO (v1.22.0) Freire-Pritchett et al.71 https://www.bioconductor.org/

packages/devel/bioc/vignettes/

Chicago/inst/doc/Chicago.html

(Continued on next page)
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HiCup (v0.8.0) Wingett et al.72 https://www.bioinformatics.

babraham.ac.uk/projects/hicup/

nextflow-core cutandrun pipeline (v2.0.0) Meers et al.73 https://github.com/nf-core/cutandrun

R (v4.1.0) R Core Team74 https://www.R-project.org/

TOBIAS (v0.12.11) Bentsen et al.12 https://github.com/loosolab/TOBIAS

Cutadapt (v1.18) Martin75 https://github.com/marcelm/cutadapt/

Fastqc (v0.11.9) Andrews76 https://www.bioinformatics.

babraham.ac.uk/projects/fastqc/

Deeptools (v3.5.0) Ramirez et al.77 https://deeptools.readthedocs.

io/en/develop/index.html

ABC-Enhancer-Gene-Prediction Fulco et al.26 https://github.com/broadinstitute/

ABC-Enhancer-Gene-Prediction

GREAT McLean et al.78 https://great.stanford.edu/

great/public/html/

Custom code This paper https://github.com/Savic-Lab/B-ALL_

Chromatin_Landscape/and https://doi.

org/10.5281/zenodo.10018584
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Lead contact
Further information and requests for resources, including associating patient ATAC-seq data with other functional genomic data

(e.g., RNA-seq) from the same patient biospecimens that are available on St. Jude Cloud (https://www.stjude.cloud/), should be

directed to and will be fulfilled by the lead contact, Daniel Savic (daniel.savic@stjude.org)

Materials availability
Cell lines and plasmids generated in this study are available upon request from the lead contact.

Data and code availability
ATAC-seq, H3K27ac ChIP-seq, CUT&RUN-seq, and promoter capture Hi-C from patient or cell line origin biospecimens have been

deposited to NCBI Gene Expression Omnibus (GEO: GSE211631). Key code used in the analysis of data is available at: https://

github.com/Savic-Lab/B-ALL_Chromatin_Landscape and https://doi.org/10.5281/zenodo.10018584. In the event of lead contact

unavailability, guidance for acquiring additional data associated with patient samples can be requested from Kristine Crews

(kristine.crews@stjude.org).

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human subjects
Patient samples were obtained from: St. Jude Children’s Research Hospital (Memphis, Tennessee), ECOG-ACRIN Cancer Research

Group, The Alliance for Clinical Trials in Oncology, MD Anderson Cancer Center (Houston, Texas), Cook Children’s Medical Center

(Fort Worth, Texas), Lucile Packard Children’s Hospital (Palo Alto, California), The University of Chicago (Chicago, Illinois), Novant

Health Hemby Children’s Hospital (Charlotte, North Carolina) and Children’s Hospital of Michigan (Detroit, Michigan). A list of patient

biospecimens is provided in Table S1. All patients or their legal guardians provided written informed consent. The use of these sam-

ples was approved by the institutional review board at St. Jude Children’s Research Hospital. Sample size estimation was not per-

formed prior to analyses. Patient samples were allocated to experimental groups (general B-ALL or B-ALL subtypes) based upon a

combination of immunophenotype, cytogenetic and RNA transcript profiling. Detailed demographics of human patient samples were

not available to incorporate into analyses. Differential chromatin accessibility loci localized to sex chromosomes should be utilized

with caution.

Cell lines
ALL cell lines utilized in this study (SUPB15, 697, BALL1, SEM, REH, Nalm6, RS411, JIH5) were cultured in RPMI 1640 medium

(GibCo 2492873) supplemented with 1% GlutaMAX (GibCo 35050061) 10% FBS and maintained at a target cell density in the range

of 1 – 3x106 cells/mL. JIH5 cells were cultured in the same medium containing 20% FBS. Cell lines were authenticated with

PowerPlex Fusion STR (Promega) profiling and screened for mycoplasma using the MycoScope PCR detection kit (Genlantis).
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ATAC-seq
ATAC-seq using the Fast-ATAC10 protocol was performed on 10,000 fresh primary ALL cells. Briefly, 10,000 cells were pelleted in a

1.5 mL Eppendorf low-bind sample tube (#022431021) and resuspended in 25 mL of transposase mix (25 mL TD buffer, 2.5 mL TDE1,

0.5 mL 1% digitonin, and 22 mL nuclease free water; see key resources table). Transposase reactions were incubated in 1.5mL Ep-

pendorf low-bind sample tubes at 37�C on a thermomixer set at 300 rpm. DNA was then purified using the MinElute PCR Purification

Kit and eluted in 10 mL of elution buffer. Libraries were indexed and amplified using NEBNext 2x PCR master mix (New England Bio-

labs, M0541L). Amplified DNA libraries were sequenced on a Nova-seq 6000 or NovaSeq X+ (Illumina) using 150bp paired-end

sequencing. Adapter trimming was performed using TrimGalore (v0.6.6)63 with command options ‘‘–fastqc –paired’’. Read mapping

was performed using Bowtie2 (v2.2.9)64 and hg19 genome index with custom command options ‘‘-X 2000 -S’’. Read quality filtering

was performed with Samtools65 with the ‘‘view’’ command and options ‘‘-q 20 -b’’. Sorting was performed with Picard (v1.141)66 us-

ing the ‘‘SortSam’’ command and options ‘‘SORT_ORDER = coordinate’’. Mitochondrial reads were removed using Samtools ‘‘view’’

command combined with command line filtering, ‘‘samtools view -h bam | awk ’{if($3 ! = "chrM"){print $0}}’ | samtools view -b

- > bam’’. Peak calling was performed with MACS267 (v2.1.1 using command and options ‘‘macs2 callpeak -t bam -f BAMPE -g

hs –nomodel –extsize 200 –SPMR -B’’.

ChIP-seq
H3K27ac ChIP-seq was performed as previously described79 on 20 million fresh primary ALL cells. Briefly, cells were crosslinked

using 1% formaldehyde (diluted from sigma F87750) at room temp for 10 min. Crosslinking was stopped with 2.5M glycine (final con-

centration 0.125M). 5mg anti-H3K27Ac antibody (H3K27ac Rabbit pAb, Active Motif #39133) was bound to 200ul of protein G dyna-

beads (Invitrogen 10003D) overnight in 0.5% BSA/PBS. 20M fixed cells were lysed in 1mL Farnham lysis buffer (5mM PIPES pH 8,

85mM KCl, 0.5% NP40, 1x protease inhibitors (Roche 11836170001)) and passed through an 18G needle 10x. Nuclei were resus-

pended in 275ul of RIPA buffer (1x PBS, 1% NP40, 0.5% Sodium Deoxycholate, 0.1% SDS, 1x protease inhibitors) and sonicated

using a Diagenode Bioruptor Plus on high power in 1.5mL tubes for 25 cycles (30s on/30s off). 5% input samples were taken, and

the remaining sonicated chromatin was rotated with the antibody/protein G beads overnight at 4C. The next morning the beads

were washed 5x with ice-cold LiCl buffer (100mM Tris pH 7.5, 500mM LiCL, 1% NP40, 1% sodium deoxycholate) and 1x with

ice-cold TE buffer (10mM Tris pH 7.5, 1mM EDTA). DNA was then eluted from the beads using elution buffer (1% SDS, 0.1 M

NaHCO3) at 65
�C, vortexing 4x over 1 h. The eluted DNA and input DNA samples were then incubated at 65�C overnight to reverse

crosslinks. DNA was purified using the QIAquick PCR purification kit (Qiagen 28104). DNA quantification was performed using the

PicoGreen assay (Molecular Probes, Eugene, OR, P-7581). Sequencing libraries were generated from ChIP and input DNA by using

the KAPA Hyper Prep kit (Roche, Basel, Switzerland, # 7962363001) according to the included manufacturer’s specifications, and

quality was determined by using the Agilent TapeStation with D1000 screentape.

Amplified DNA libraries were sequenced on a Nova-seq 6000 or NovaSeq X+ (Illumina) using 150bp single-end sequencing.

Adapter trimming was performed using TrimGalore (v0.6.6) with command options ‘‘–fastqc’’. Read mapping was performed using

Bowtie2 (v2.2.9)64 and hg19 genome index with custom command options ‘‘-X 2000 -S’’. Read quality filtering was performed with

Samtools with the ‘‘view’’ command and options ‘‘-q 20 -b’’. Sorting was performed with Picard (v1.141) using the ‘‘SortSam’’ com-

mand and options ‘‘SORT_ORDER = coordinate’’. Mitochondrial reads were removed using Samtools ‘‘view’’ command combined

with command line filtering, ‘‘samtools view -h bam | awk ’{if($3 ! = "chrM"){print $0}}’ | samtools view -b - > bam’’. Peak calling was

performed with MACS267 (v2.1.1) using command and options ‘‘macs2 callpeak -t bam -f BAM -g hs –nomodel –extsize 200

–SPMR -B’’.

CUT&RUN
CUT&RUN was performed using the Epicypher Cutana CUT&RUN kit v3.0 (14–1048) according to the manufacturer’s instructions.

Briefly, 500k cells were bound to ConA beads at room temperature in wash buffer for 10 min. Bead-bound cells were suspended in

antibody binding buffer containing 0.01% digitonin and incubated overnight at 4�C on Nutator (Fisher Scientific S06622) 0.5 mg of

each respective antibody (See key resources table). The nextmorning bead bound cells were washed twicewith cell permeabilization

buffer containing 0.01%digitonin to remove excess/unbound antibody. pAG-MNasewas then added and allowed to bind the primary

antibody for 10 min at room temperature. Immediately after binding, bead bound cells were washed twice with cell permeabilization

buffer to remove excess/unbound pAG-MNase. Targeted chromatin digestion was started with the addition of 1 mL 100 mM calcium

chloride and incubated for 2 h at 4�C. The digestion was stopped with the addition of stop buffer containing 0.5 ng per sample of E.

Coli spike-in. Fragments were then released for 10min at 37�C. The supernatant was then removed and subjected toDNApurification

using the columns and buffers included in the kit. CUT&RUN DNA was quantified using the Quant-iT PicoGreen ds DNA assay

(ThermoFisher). Libraries were prepared with HyperPrep Library Preparation Kit (Roche PN 07962363001) with modified PCR

conditions:

Step 1 98C for 45s.

Step 2 98C for 15s.

Step 3 60C for 10s.
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Step 4 72C for 1min.

Repeat steps 2–4. 13 cycles for input >5 ng, 15 cycles for input <5 ng)

Step 4 72C for 1min.

Libraries were analyzed for insert size distribution using the 2100BioAnalyzer High Sensitivity kit (Agilent), 4200 TapeStation D1000

ScreenTape assay (Agilent), or 5300 Fragment Analyzer NGS fragment kit (Agilent). Libraries were quantified using the Quant-iT

PicoGreen ds DNA assay (ThermoFisher) or by low pass sequencing with a MiSeq nano kit (Illumina). Paired-end sequencing was

performed on a NovaSeq 6000 or NovaSeq X+ (Illumina). Data analysis of CUT&RUN samples was performed using Nextflow

(2.10.6) and nextflow-core cutandrun pipeline (2.0.0) 74.

Promoter capture Hi-C
Arima promoter capture Hi-C (Arima product #s: A510008, A303010, A302010) was performed on B-ALL cell lines (697, Nalm6,

RS411, REH, SUPB15, BALL1, SEM) or B-ALL patient samples (n = 10; BCR-ABL1, ETV6-RUNX1, KMT2A-rearranged, Ph-like,

TCF3-PBX1 and B-other subytpes) according to the manufacturers provided instructions using unspecified proprietary buffers, so-

lutions, enzymes, and reagents. Briefly, 10 million ALL cells were harvested, suspended in 5mL RT PBS which was brought to 2%

formaldehyde by adding 37% methanol-stabilized paraformaldehyde for a 10-min fixation. For patient samples 1.5 to 5 million cells

were fixed in 1% formaldehyde for 10 min. The amount of fixed cell suspension equal to 5mg of cell DNA was used for HiC. Cells were

lysed with Lysis Buffer and conditioned with Conditioning Solution before their DNA was digested in a cocktail consisting of Buffer A,

Enzyme 1, and Enzyme 2. The digested, fixed chromatin was biotinylated using Buffer B and Enzyme B before being ligated using

Buffer C and Enzyme C. The fixed, biotinylated, ligated DNA was then subjected to reversal of crosslinking and digestion of proteins

before being purified. 100ul containing 1500ug of purified large proximally ligated DNAwas fragmented for 24 cycles (30s on/30s off)

using a Diagenode Bioruptor Plus bath sonicator. The fragmented DNAwas then subjected to two-sided size selection targeting frag-

ments between 200 and 600bp using AMPure XPDNApurification beads. Size selected DNAwas then subjected to biotin enrichment

using T1 streptavidin beads. Bead bound, enriched HiC DNAwas then subjected to Arima library prep. Briefly, the sample underwent

end repair followed by adapter ligation, at which point the sample was then subjected to 10 cycles of PCR amplification. The library

DNA was then purified using AMPure XP DNA purification beads. The HiC library was then subjected to Arima promoter capture

enrichment. The library was precleared of biotinylated DNA using T1 streptavidin beads before being subjected to promoter enrich-

ment with biotinylated RNA probes. After washing, the captured fragments were then amplified an additional 13 PCR cycles.

Amplified DNA libraries were sequenced on a Nova-seq 6000 or NovaSeq X+ (Illumina) using 150bp paired-end sequencing. Anal-

ysis of promoter capture HiC data was performed using the Arima CHiC pipeline (v1.4, https://github.com/ArimaGenomics/CHiC).

Briefly, this pipeline uses HiCUP v0.8.072 for mapping and quality assessment of promoter capture HiC data and CHiCAGO80 to iden-

tify significant looping interactions in the promoter capture HiC data using 3kb resolution and adjusted p value <0.05. Files were pro-

cessed at 3kb resolution with command ‘‘bash Arima-CHiC-v1.4.sh’’ with key custom options including: ‘‘-W 1 -Y 1 -Z 1 -P 1 -day

Digest_hg19_Arima.txt -b human_GW_PC_S3207364_S3207414_hg19.uniq.bed -R hg19_chicago_input_3kb.rmap -B hg19_chica-

go_input_3kb.baitmap -O hg19’’. The following input files: hiccup genome digest (Digest_hg19_Arima.txt), probe design file (hu-

man_GW_PC_S3207364_S3207414_hg19.uniq.bed), rmap file (hg19_chicago_input_3kb.rmap), baitmap file (hg19_chicago_in-

put_3kb.baitmap) and corresponding hg19 3kb resolution CHiCAGO design files (*.npb, *.poe, *.nbpb) were sourced from Arima

FTP server (ftp://ftp-arimagenomics.sdsc.edu/pub/ARIMA_Capture_HiC_Settings/). All significant intrachromosomal chromatin in-

teractions spanning less than 2Mb were concatenated from all B-ALL cell lines to create a comprehensive library of pan-B-ALL

cell line promoter capture chromatin loops. Genomic regions representing separate loop ends were compiled to facilitate overlap

determinations with B-ALL patient chromatin accessible regions of interest using ‘‘bedtools intersect’’.

Functional genomic data
Transcriptomic and SNP genotyping data from B-ALL patient samples were obtained from St. Jude Children’s Research Hospital.

Normal B cell ATAC-seq10,25 were downloaded from NCBI (GSE122989 and GSE74912). B-ALL cell line ATAC-seq and H3K27ac

tracks associated with dCas9-KRAB repressor targeting or CRISPR/Cas9 deletions and investigation were downloaded from

GEO under accession numbers GSE186942 27 and GSE129066.29 B-ALL cell histone modification ChIP-seq datasets (H3K27ac,

H3K4me1 and H3K27me3) were downloaded from the Blueprint Epigenome Consortium (https://www.blueprint-epigenome.eu/).

B-ALL ATAC-seq data in 24 patient samples used for validation of our classification model were downloaded from GEO under the

accession number GSE161501.29 Expression quantitative trait loci (eQTL) data was obtained from previous studies.29

ATAC-seq regions of interest selection
Accessible chromatin sites analyzed throughout this work were selected using a reproducible ATAC-seq peak summit approach as

follows. Peak summits were generated for each subtype on a subtype-merged basis and narrowPeak regions for each individual pa-

tient sample. Any subtype-merged peak summit not reproducible among multiple individual patient sample narrowPeaks was

excluded for analysis. All reproducible, subtype-merged summits were then extended upstream and downstream to an interval

size of 301bp and merged if overlapping. Finally, any interval overlapping hg19 blacklist regions were eliminated yielding the final

set of ATAC-seq regions of interest used in further analysis. The ChIPseeker56 R-package was used for genomic annotation of all
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genomic intervals throughout this work. Three B-ALL subtype patient samples (IKZF1 N159Y, iAMP21 and ETV6::RUNX1-Like) were

included in B-ALL versus Pro-B cell analyses but were excluded from additional studies due to limited sample size.

B cell progenitor versus B-ALL cell comparisons
All samples were required to pass an ATAC-seq quality score cutoff to be included in analysis. ATAC-seq quality scores were deter-

mined by calculating ATAC-seq read enrichment around transcription start sites. Normal progenitor cells were sourced from NCBI

GEO (GSE122989 and GSE74912). In total, 185,135 merged peak intervals from progenitors were used as starting input across the

differentiating cell types. These merged peaks were subsequently windowed into 250bp intervals (520,095) to better detect subtle

differences between progenitors. DESeq257 using theWald statistical test across these 520,095 250bp regions was utilized to calcu-

late differential chromatin accessibility between B cell progenitors cells comparing a single progenitor to all other progenitors as a

collective group. 42,344 out of 520,095 genomic intervals were identified (p-adjusted filter of <0.005 and an absolute value log2(fold

change)R 1) as distinctive for B cell progenitors, approximately 8% of the total.57 Heatmap of hierarchical clustering between B cell

progenitor cells and B-ALL samples were generated using the pheatmap R-package and variance stabilized ATAC-seq signal from

DESeq2. DESeq257 using the Wald statistical test on the merged set of 217,240 B-ALL accessible chromatin sites was utilized to

calculate differential chromatin accessibility between normal Pro-B cells and B-ALL patient samples. Differential chromatin acces-

sibility between normal Pro-B cells and B-ALL patient samples was defined as chromatin regions passing a p-adjusted filter of <0.05

and an absolute value log2(fold change) R 1. A variance stabilized transform function within DESeq2 was applied to the ATAC-seq

read counts matrix and Z score signal across all samples at Pro-B cell and B-ALL enriched DASs was used for hierarchical clustering

using the pheatmap R-package.58 Code for heatmap generated between Pro-B and B-ALL cells used: pheatmap(ProB_vs_BALL_

results_vst_prog_ALL, color = plasma(11), cellwidth = 3, cellheight = NA, cluster_rows = T, cluster_cols = F, scale = "none", show_

rownames = FALSE, show_colnames = FALSE, annotation_col = prog_BALL_anno_df2, annotation_colors = ann_colors2, gaps_

col = c(3)). The Genomic Regions Enrichment of Annotations Tool (GREAT)78 was used to identify candidate target gene sets and

ontologies associated with DASs. TOBIAS12 was used to identify TF footprints at accessible chromatin sites.

Subtype-enriched chromatin accessibility analysis
DESeq257 using theWald statistical test was utilized to calculate differential chromatin accessibility among B-ALL subtypes. Cohorts

representing a single subtype were compared to all other B-ALL patient samples not belonging to the single subtype as a collective

group. This pairwise comparison was completed for all subtypes and samples with sufficient sample numbers (N > 1). Subtype-en-

riched chromatin accessible regions were required to pass filters of p-adjusted <0.05 and an absolute value log2(fold change) R 1.

Subtype-enriched regions were additionally required to be exclusively differential in a single subtype, regions appearing as differen-

tial in multiple subtypes were excluded. A variance stabilized transform function within DESeq2 was applied to the ATAC-seq read

countsmatrix specific to subtype-enriched loci prior to visualization with the pheatmap R-package. TOBIAS12was used to identify TF

footprints at accessible chromatin sites. The Principal Component Analysis-Linear Discriminant Analysis (PCA-LDA) subtype classi-

fication model was constructed stepwise by first PCA transformation of subtype-enriched ATAC-seq counts, then applying LDA on

an optimized number of principal components.

Transcription factor-target gene network analysis
Enhancer and target gene prediction for network construction was analyzed with the ABC enhancer algorithm (https://github.com/

broadinstitute/ABC-Enhancer-Gene-Prediction) 26. In brief, inputs for the ABC enhancer algorithm included, B-ALL enriched DASs,

mergedB-ALLpatient ATAC-seq,H3K27AcChIP-seq, Arimapromoter captureHi-C contact countswith ABCscore threshold at 0.04.

ATAC-QTL identification
VCF (Variant Call Frequency) files were sourced from St. Jude Children’s Research Hospital genotyping. Variants in this dataset rep-

resented a mixture of both directly genotyped and imputed variants. Imputation was performed via the Michigan imputation server

(version 1.6.5) usingminimac4 for imputation, eagle-2.4 for phasing and the TOPMed reference panel. The final variant list for analysis

with RASQUAL30was restricted to variants within B-ALL open chromatin regions yielding 914,406 variant SNPs in total. Allele specific

ATAC-seq read counting for open chromatin region SNPs was performed with the RASQUAL supplied helper script which utilizes the

GATK ASEReadCounter tool. All SNPs were required to have an imputation quality R2 of R 0.80 for final inclusion after running

RASQUAL. Significant ATAC-QTLs for each region were identified with a genome-wide computed FDR of 10%.

CRISPR-Cas9 deletion of cis-regulatory elements
Targeted deletion pools were generated using CRISPR-Cas9 technology. Briefly, 500,000 parental cells from the corresponding cell

line (Nalm6, 697 or SUPB15) were transiently transfected with two precomplexed ribonuclear protein (RNPs) consisting of 75 pmol of

each chemically modified sgRNA (Synthego) and 60 pmol of 3X NLS SpCas9 protein (St. Jude Protein Production Core) via nucle-

ofection (Lonza, 4D-Nucleofector X-unit) using solution P3 and program CV-104 for Nalm6, CA-137 for 697, CM-138 for SUPB15

cells in a small (20ml) cuvette according to the manufacturer’s recommended protocol (see Table S10). Three days post nucleofec-

tion, cell pellets of approximately 10,000 cells were lysed and used to generate deletion specific amplicons that were run on a 1%

agarose gel and sequenced via targeted next generation sequencing as previously described.81 Final pools were authenticated using
Cell Genomics 3, 100442, December 13, 2023 e6

https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction
https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction


Resource
ll

OPEN ACCESS
the PowerPlex Fusion System (Promega) performed at the Hartwell Center (St. Jude) and tested negative for mycoplasma by the

MycoAlertPlus Mycoplasma Detection Kit (Lonza). Editing construct sequences and relevant primers are listed in the table below.

qPCR on cDNA from deleted and wild-type parental cells was performed using TaqMan probes for SLC2A9 (Hs01119178_m1,

ThermoFisher), CDK14 (Hs00953416_m1, ThermoFisher) and SH3BP5L (Hs00944382_m1, ThermoFisher).

For gene expression measurements, parental (WT) and cis-regulatory element-deleted cells (Del) were cultured in RPMI 1640 me-

dia (supplemented with 10% FBS, 1% Penicillin/Streptomycin, and 1% L-Glutamine). Cells were collected and lysed with RLT/BME

mixture (1000 mL:10 mL) and processed for total RNA extraction (Qiagen #74104). cDNA synthesis was done using the High-Capacity

RNA-to-cDNA kit (Applied Biosystems #4387406). TaqMan Fast AdvancedMaster Mix (Applied Biosystems #4444557) and TaqMan

Gene Expression Assays probe (Thermo) were used to prepare RT-PCR reactions. Taqman probes used include: Hs00944382_m1

(SH3BP5L), Hs01119178_m1 (SLC2A9), Hs00953418_m1 (CDK14) and Hs00427620_m1 (TBP, endogenous control). The recom-

mended Taqman Fast Advanced Master Mix PCR conditions were used to run the samples and the samples were run on a

QuantStudio3 Real-Time PCR system.

For cell proliferation analyses, parental (WT) and cis-regulatory element-deleted cells (Del) were cultured in RPMI 1640media (sup-

plemented with 10% FBS, 1% Penicillin/Streptomycin, and 1% L-Glutamine) and plated on a 96 well plate using 0.23 10̂ 5 cells per

well (n = 3 per group). Cells proliferation wasmeasured for up to 17 days by adding freshmedia and expanding cells when confluence

was reached. Absolute cell count was done by Trypan blue method using TC20 automated cell counter (Bio-Rad, #1450102) at

different time points.

CRISPRi dCas9-KRAB enhancer targeting
Putative subtype-specific enhancer regions were selected based DESeq2 output parameters including: log2FoldChange >2, base-

Mean >10, a lfcSE <20% of the log2FoldChange value, and autosomal chromosome location.

To design sgRNAs targeting enhancers, we used FlashFry55 to identify and score all candidate sgRNAs in a 2-kb window centered

on ATAC-Seq peaks of interest. Candidates were kept that met the following scoring criteria: Doench2014OnTarget > 0.1,

Hsu2013 > 50, JostCRISPRi_specificityscore > 0.1, dangerous_GC = = ‘‘NONE,’’ dangerous_polyT = = ‘‘NONE,’’ dangerous_in_ge-

nome = = ‘‘IN_GENOME = 1’’, otCount <500. The final sgRNAs used for experiments were selected on the bases of shortest distance

to ATAC and highest on-target score. Additional, previously described27 non-targeting (non-complementary to human genome) and

non-coding (region of the human genome without regulatory relevance) sgRNA were selected as negative controls. 2 sgRNAs were

selected for each putative enhancer (see Table S11). Complementary oligonucleotides encoding sgRNA sequences plus appropriate

overhangs were synthesized (IDT), annealed, and cloned into BsmBI-digested sgOpti (Addgene #85681).

CRISPRi-ready SEM and Nalm6 cell populations with dox-inducible dCas9-KRAB and a GFP reporter (i.e., CiG) were generated as

follows. Cells were transduced with lentivirus produced from TRE3-KRABdCas9-IRES-GFP and pLVX-EF1alpha-Tet3G vectors.

Cells were serially sorted for GFP+ cells after doxycycline induction, for GFP-negative cells without doxycycline induction, and again

for GFP+ cells after doxycycline induction.

For enhancer-targeting sgRNA experiments, SEM-CiG and NALM6-CiG cells were transduced with control and repeat enhancer-

targeting sgRNA lentivirus by spinfection (see Table S11 for sgRNA sequences). Cells were treated 48 h after transduction with

1 mg/mL puromycin and 100 ng/mL doxycycline for an additional 72 h and were harvested (5 days after transduction) for RNA extrac-

tion and RT-qPCR. RT-qPCR primers against target genes in proximity to proposed subtype-specific enhancers were designed by

Primer-Blast70 with following settings modifications: GC clamp = 1, Exon Junction Span = ‘‘Primer must span an exon-exon junc-

tion’’. Gene targets were selected by proximity to putative enhancers and evidence of promoter-enhancer linkage. For each sgRNA

treatment, 2 biological replicates and 3 RT-qPCR technical replicates per biological replicates were generated. Undetermined

(undetected) values for technical replicates were imputed utilizing the ‘qpcrImpute’ method from the R package ‘nondetects’.69

RT-qPCR data were analyzed by the delta-delta Ct (2–DDCt) method, averaging technical replicates. Biological replicate gene

expression changes were pooled into negative control and enhancer knockdown groups (n = 2 sgRNAs x 2 biological replicates = 4)

for determination of significance of gene knockdown by two-sample t test with unequal variance.

Luciferase reporter assays
A 301-bp fragment of DNA sequence centered on reference or the alternative alleles of rs17481869 (see Table S12) was cloned up-

stream of theminimal promoter into the pGL4.23 vector (Promega, E841A). Tenmillion Nalm6, 697 or SUPB15 cell line were co-trans-

fected with test DNA sequence-cloned pGL4.23 luciferase and renilla plasmid constructs using the Neon transfection system

(Thermo Fisher Scientific, MPK5000) with cell line optimized transfection parameters (Nalm6 = 1600V, 20ms, 1p; 697 = 1600V,

10ms, 3p; SUPB15 = 1450V, 20ms, 2p). After 24 h, firefly luciferase and renilla activity was measured on a BioTek Cytation1 plate

reader (Agilent) using the Dual Luciferase Reporter Assay System (Promega, E1960). Luciferase activity was calculated as the ratio

of firefly luciferase to Renilla luciferase activity.

Design of graphical abstract
The graphical abstract for this article was createdwith BioRender.com under a subscription plan for the Department of Pharmacy and

Pharmaceutical Sciences at St. Jude Children’s Research Hospital, that includes publishing rights for journals and additional aca-

demic purposes.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Initial chromatin accessibility intervals for individual cell line and patient samples before merging were filtered using the MACS2 nar-

rowPeak file reported Benjamini-Hochberg corrected p value (q-value) requiring a q-value <0.05. Differential chromatin accessibility

among B cell progenitor defining genomic loci was determined with DESeq2 using the Wald statistical test (covariates: none)

requiring a Benjamini-Hochberg corrected p value < 0.005 and log2FoldChangeR 1 or%1. Differential chromatin accessible regions

were not required to be unique to a single progenitor comparison. Differential chromatin accessibility comparing B-ALL patient sam-

ples with normal Pro-B samples was determined with DESeq2 using theWald statistical test (covariates: none) requiring a Benjamini-

Hochberg corrected p value < 0.05 and log2FoldChange R 1 or %1. Differential chromatin accessibility comparing singular B-ALL

subtypes with all other B-ALL subtype samples was determined with DESeq2 using the Wald statistical test (covariates: TSS enrich-

ment, hospital site of origin, and sequencing run) requiring a Benjamini-Hochberg corrected p value < 0.05 and log2FoldChangeR 1

or %1. Regions demonstrating subtype enriched or depleted chromatin accessibility were required to be singularly unique to that

subtype and not observed in any other subtype comparison. Patient samples representing ALL subtypes with only a single sample

were excluded from subtype focused chromatin accessibility analyses. Additional details of quantification and statistical analyses

can be found in methods details, figure legends and the github repository.

ADDITIONAL RESOURCES

Additional data about patient samples utilized in this study may be requested through the St. Jude Cloud data portals: https://

platform.stjude.cloud/. A subset of patient samples in this study are associated with clinical trial TOT17 (NCI-2017-00582).
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