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ABSTRACT: NF-xB inducing kinase (NIK) is vital for the induction ~ Allosteric-biased FBDD HO R?
of many immune responses, and as such, NIK dysregulation has been NMRf;‘;ﬁZ':]'t';g ol Fragment L
implicated in various inflammatory diseases and cancers. NIK has 1 NIK elaboration R

been pursued as a potential therapeutic target, and small-molecule a':?;ﬁ'dic 0
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However, despite the established chemical matter, NIK inhibitors OH

have not yet reached the clinic. With the goal of developing allosteric | Triage E¥'No competition with
Cl (0]

NIK ligands using a fragment-based NMR screening approach, we B/ATP analogue

report the identification and development of a series of allosteric, ::f’nh_laygzc::;:;r

fragment-sized NIK ligands that bind with micromolar potency and SPRK,: 130 M EX'Non-redox active
8

good ligand efficiency. LE 045
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he non-canonical NF-«B signaling pathway is vital for the
regulation of several immune responses such as apoptosis
and inflammation;' however, overactivation of the pathway has
been implicated in the pathogenesis and disease progression of
various immune disorders and blood cancers.” As the central
regulatory component of the pathway, NF-kB inducing kinase
(NIK) has garnered significant attention as a drug target.
Established NIK inhibitors target the ATP-binding site, and
they share a propargyl alcohol motif that extends into a small
hy(irc;phobic pocket behind the ATP-binding site (Figure
1.7
The therapeutic potential of inhibiting NIK has been
established for a variety of human diseases. For example, the
NIK inhibitor NIK SMI1 increased survival in a systemic lupus XT2 B022
erythematosus murine model.” Inhibition of NIK with B022
has been shown to rescue mice in a toxin-induced liver
inflammation model,” making NIK a promising target for diet-
induced metabolic disorders. Additionally, mangiferin, a
natural product NIK inhibitor, slows tumor growth and
induces apoptosis in a melanoma mouse model.” However,
despite these promising experimental data, no NIK inhibitor
has received FDA approval. Due to the inability of ATP-

Figure 1. Established active site-directed NIK inhibitors.>~°

discovery (FBDD) approaches have been used to discover
allosteric inhibitors of a variety of proteins,””"’ including
kinases.'#'” Recently, a FBDD approach was used to discover
novel allosteric binders of MEKI that utilized screening

‘CMedicinal

competitive NIK inhibitors to confer a clinically viable Received: ~September 21, 2023 Fﬁ'ﬁi“'ﬂﬁf@
candidate, we elected to explore alternative strategies for the Revised:  October 24, 2023 (.
development of NIK-targeted ligands and inhibitors. Accepted:  October 26, 2023 A

Targeting an allosteric site on NIK, as opposed to the highly Published: November 3, 2023

conserved ATP-binding site, may provide a viable strategy for
targeting this disease-relevant kinase. Fragment-based drug
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Figure 2. (A) Overview of the allosteric-biased fragment-based screen. (B) CPMG NMR with T, filtering competition experiment of 1. (C) SPR
sensorgrams of 1 with and without AMP-PNP. K, values shown represent the mean + SEM of two determinations.
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We

conditions to bias for allosteric binding modes.
envisioned using a similar approach in our studies.

We report here the utilization of an in-house fragment
library and NMR-based screening to develop allosteric NIK
binders. The fragment library consisted of 1056 fragments
purchased from the LifeChemicals high-solubility collection.
Ligand-observed NMR, using a standard CPMG pulse
sequence with T, filtering, was employed as the primary
screening method."” The individual fragments (dissolved in
DMSO-d,) were pooled into cocktails of five compounds and
were screened for binding to NIK. To bias for allosteric-
binding fragments, a non-hydrolyzable ATP analogue was
included in each sample to saturate the NIK orthosteric ATP-
binding site. Using this screening protocol, 97 primary hits
were identified.

Utilizing the same pulse sequence as before, individual hit
fragments were subjected to a competition experiment with
AMP-PNP. Three separate NMR spectra were collected for
each fragment (fragment alone, fragment with NIK, and
fragment with NIK and AMP-PNP). Hits were carried on if the
fragment had approximately 50% signal attenuation in the
presence of NIK and the signal attenuation was either
maintained or increased by adding AMP-PNP. If the signal
attenuation was lost upon adding AMP-PNP, then the
fragment was determined to be competing with the ATP
analogue and rejected. The resulting 63 hits were identified as
potential allosteric binders of NIK.

The ligand-observed NMR experiments gave qualitative
binding data, but an orthogonal, quantitative experiment was
needed to confirm the binding of the hit compounds. Surface
plasmon resonance (SPR) with biotinylated NIK protein was
chosen to further triage the hit fragments. The 63 hits were
tested at five concentrations, and the responses were used to
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generate a binding curve. After SPR, 14 hits displayed a
binding affinity of less than 500 yM. Those 14 hits were then
evaluated by SPR in dose—response format in the presence of
saturating AMP-PNP, and the response was used to graph a
binding curve. After the full screening effort, one hit fragment
displayed similar affinity with and without AMP-PNP. Taking
all the results together, chromanol 1 was the sole hit from the
allosteric bias fragment screening effort (Figure 2). Given the
absence of known chemical matter for binding to an allosteric
site on NIK, the low hit rate was not unexpected.

The structure of 1 was interesting due to the central
chroman ring system. Although there are examples of
chromanol structures in biologically active compounds, it is
not overly common.'®'” Therefore, we thought it was
necessary to triage hit compound 1 to rule out false positive
results.

The solubility of 1 was determined by using a quantitative
NMR solubility assay. The hit fragment was determined to
have a solubility of at least 5 mM in an aqueous solution. To
rule out redox activity contributing to false positive results, a
plate-based redox assay was run with 1 and a known redox-
active molecule (NSC 663284) as a positive control. Hit
fragment 1 showed no redox activity in this assay. Finally, a
NMR-based aggregation assay was conducted to ensure that 1
was not aggregating in solution to give false positives during
screening. These triage experiments showed that 1 is a highly
soluble, non-redox-active and non-aggregating fragment that is
suitable to move forward and optimize (Figure 3).

Hit fragment 1 was resynthesized along with a small library
of analogues to test the tolerance of substituents on the 4-
position of the chromanol structure. The synthesis began by
acylating 3-chlorophenol to form 3a in moderate yield (48%):
a phenolic ester was formed in sity, and upon adding AICl; a

https://doi.org/10.1021/acsmedchemlett.3c00429
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Figure 3. (A) QNMR solubility experiment with 1. (B) Resazurin redox assay with 1. (C) NMR aggregation experiment with 1.

Fries phenolic ester rearrangement gave the desired
product.””*" Product 4a was subsequently afforded by an
intramolecular cyclization with EtOH and K,COj; in good yield
(61%). Grignard addition to the ketone of 4a yielded tertiary
alcohols 5—8 in varying yields (25—79%). Reduction of 4a
with NaBH, in MeOH yielded hit fragment 1 in high yield
(75%). Product 1 was then converted to the methoxy
derivative with iodomethane and NaH in THF in 68% yield
(Scheme 1). Final compounds were tested by SPR for their
binding affinity for NIK (Table 1).

Interestingly, all of the tertiary alcohols except for methyl
analogue S bind NIK with a Ky of less than 1 mM. The
cyclopropyl analogue 7 improved upon the binding affinity of
the parent hit by approximately 3-fold. The necessity for the
hydroxyl was shown by inactive methoxy analogue 9. These
data suggest that fragment elaboration on the 4-position of the
chromanol structure is permitted.

To investigate further growth vectors on hit fragment 1,
compounds were synthesized with a methyl walk around the
aromatic ring on the chromanol structure. The compounds
were synthesized by utilizing chemistry analogous to that used
for the synthesis of 1 (Scheme 2). Compounds 10—13 were
then tested for their affinity for NIK by SPR (Table 2). We
were surprised that the only fragment that showed binding was
the S-methyl derivative 10. Both series of compounds showed
that substituents are tolerated if pointing up on the chromanol
structure.

1817

Scheme 1. Synthesis of 1, 5—9

o) o)
/©\ L /@\)\Am LN m
cl OH
cl OH cl 0
3a 4a

2a
HO R
5 (R =Me) 79%
4a L 6 (R = Et) 42%
cl o 7 (R = cycloPr) 60%
8 (R=Ph) 25%
5-8

OH OMe
ool e e
Cl 0 Cl 0
1 9

“Reagents and conditions: (a) 3-chloropropionyl chloride, AICL,
90 °C, 2 h, 48%; (b) K,COs, EtOH, rt, 24 h, 61%; (c) RMgBr, THF,
0 — 70 °C, 24 h, 25—79%; (d) NaBH,, MeOH, 0 °C, 2 h, 75%; (e)
Mel, NaH, THE, rt, 3 h, 68%.

To test for a synergistic effect of the derivatives displaying
micromolar binding affinity for NIK, a series of compounds
were synthesized with the 7-chloro and S-methyl groups, as
well as varying substituents at the 4-position (Table S1). We
were surprised that none of the analogues displayed enhanced
affinity and only phenyl derivative 18 showed a Kj of less than

https://doi.org/10.1021/acsmedchemlett.3c00429
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Table 1. NIK Affinity and LE of 1, 5—9

SPR Kq(uM) - AMP-PNP?

LE
Compound Structure SPR K (M) + AMP-PNP
OH
1 130 % 10. 045
214 £ 12
Cl (0}
HO Me
5 >1mM _
>1mM
(o] (0}
HO Et
6 206 * 0.50 037
583 £ 150
Cl (0]
HO
290 + 97
Cl (o)
O
8 0 572+ 170 0.25
O 369 + 110
(of] (0]
OMe
>1mM
Cl (o]

“K4 values shown represent the mean + SEM of two determinations.
PLE = 1.37pKy/HA (heavy atom count).

Scheme 2. Synthesis of 10—13“

o (o}
N a b
Me—— — T Cl —» 7R
= OH Me—,/ Me—,/
OH (o)
2b-d 3b-e 4b-e
OH
c
4b-e —> 7N
Me—,/
(o)
10-13

“Reagents and conditions: (a) 3-chloropropionyl chloride, AlCl;, 90—
120 °C, 2—24 h, 19-72%; (b) K,CO,, EtOH, rt, 24 h, 28—73%; (c)
NaBH,, MeOH, 0 °C, 2 h, 55—66%.

1 mM (Table 3). We hypothesize that steric bulk on that side
of the chromanol structure, along with the rigidity of the ring
system, was not optimal for binding.

One possible solution is the addition of rotatable bonds on
this fragment series, which may permit a more favorable
conformation for binding. To test this hypothesis, we
synthesized ring-opened analogues where the bond between
C-2 and C-3 was disconnected and measured their binding
affinity by SPR (Table S2). Only cyclopropyl 21 showed
binding of less than 1 mM (Table 3); however, the affinity of
21 for NIK was similar to that of 1. Currently we are pursuing
fragment—NIK co-structure studies to better understand the
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Table 2. NIK Affinity and LE of 10—13

SPR Kg¢(uM) - AMP-PNP* | b
Compound Structure SPR K (M) + AMP-PNP
Me OH
134 +£13 0.45
(o}
OH
Me >1mM
n \©\)j >1mM -
O
OH
>1mM
Me (0]
OH
>1mM
3 >1mM -
(¢}
Me

“Kg values shown represent the mean + SEM of two determinations.
PLE = 1.37pK /HA (heavy atom count).

Table 3. NIK Affinity and LE of 18 and 21

a
Compound Structure ggs ﬁzzﬂm; +‘:\“|’\III':’-2’TIF;’ LE®
Me OH O

367 £ 23 0.25

18 O 717 £ 46

Cl (0]
Me OH
150 £ 53
(o] OMe

“K4 values shown represent the mean + SEM of two determinations.
PLE = 1.37pK,/HA (heavy atom count).

allosteric binding pocket on NIK and the binding mode of
these chromanol-based fragments, which will better inform the
rational design of new compounds.

In conclusion, we have reported chromanol analogues that
bind to NIK in the micromolar range and do not show
competition with the non-hydrolyzable ATP analogue (AMP-
PNP). Growth of these chromanol compounds at the 4-
position gave promising results, with fragment 7 showing a 3-
fold improved binding affinity over parent hit fragment 1. This
class of chromanol analogues provides evidence that NIK
possesses allosteric binding sites that are amenable to small-
molecule targeting. Ongoing efforts are focused on structurally
enabling this project, as well as defining features on the
chromanol chemotype that may be modified/elaborated to
improve NIK-targeting potency. The development of high-
affinity, NIK-targeting ligands even in the absence of enzymatic
inhibition would enable therapeutic approaches to regulate this
biomedically important kinase by targeted protein degradation,
which is currently under investigation by our team.
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