
High-precision mapping reveals the structure of odor coding in 
the human brain

Vivek Sagar1, Laura K. Shanahan2, Christina M. Zelano1, Jay A. Gottfried3,4, Thorsten 
Kahnt5,*

1Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 
60611, USA

2Department of Psychology, Rhodes College, Memphis, TN, USA

3Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA

4Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA

5National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA

Abstract

Odor perception is inherently subjective. Previous work has shown that odorous molecules evoke 

distributed activity patterns in olfactory cortices, but how these patterns map onto subjective odor 

percepts remains unclear. Here we collected neuroimaging responses to 160 odors from three 

individual subjects (18 hours/subject) to probe the neural coding scheme underlying idiosyncratic 

odor perception. We find that activity in orbitofrontal cortex (OFC) represents the fine-grained 

perceptual identity of odors over and above coarsely defined percepts, whereas this difference 

is less pronounced in piriform cortex (PirC) and amygdala. Furthermore, the implementation 

of perceptual encoding models enabled us to predict olfactory fMRI responses to novel odors, 

revealing that the dimensionality of the encoded perceptual spaces increases from PirC to OFC. 

Whereas encoding of lower-order dimensions generalizes across subjects, encoding of higher-

order dimensions is idiosyncratic. These results provide novel insights into cortical mechanisms of 

odor coding and suggest that subjective olfactory percepts reside in the OFC.

A rose is a rose is a rose, except when it’s not. In the case of vision, the connection between 

an object and its percept is highly stable1,2, and an experimenter presenting the picture 

of a rose flower can trust that their subjects will correctly identify the stimulus. In the 

olfactory system, by contrast, the mapping between the same object and its percept is far 
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more flexible3,4. The same odor can smell “fruity” and “floral” to one person and “musky” 

and “decayed” to another. This perceptual ambiguity favors the formation of idiosyncratic 

olfactory percepts (i.e., the unique and personal experience of perceiving a given odor), such 

that the same volatile molecule may smell different to different people5.

Given the challenge of representing a vast number of odorants and odor percepts6,7, the 

olfactory system cannot employ a simple one-to-one mapping between an odor stimulus 

and a localized neural response. Instead, as demonstrated in rodents, odor stimuli evoke 

distributed patterns of activity at the level of the olfactory bulb and cortex8–13. Work in both 

rodents and humans has shown that these distributed ensemble patterns discriminate among 

different odors, and that odor stimuli can be robustly decoded from neural activity in the 

piriform cortex (PirC), amygdala (AMY), and orbitofrontal cortex (OFC)10,14–16.

While the ensemble nature of olfactory coding has been well-established across species, we 

lack a fundamental understanding of the relationship between neural patterns and subjective 

odor perception. The human system is ideal for addressing this question, as it allows 

access to subjective perception in a way that is difficult to achieve in animals. Accordingly, 

in the current study, we collected high-resolution functional magnetic resonance imaging 

(fMRI) responses to 160 odors across 4,320 trials for each of three human subjects (i.e., 

high-precision imaging), who also provided detailed perceptual ratings for these stimuli.

We conceptualized odor percepts in a multidimensional space defined by subjective 

perceptual descriptors (e.g., fruity, floral, fishy, etc.)7,17,18. Similar to other sensory 

systems19–21, we hypothesized that olfactory brain areas employ a perceptual coding 

scheme. That is, activity patterns and odor percepts should be systematically related, such 

that the similarity between the activity patterns evoked by different odors is determined by 

their proximity in the perceptual space. We tested for such perceptual coding in olfactory 

areas using representational similarity analysis22,23, and compared this coding scheme to the 

encoding of molecular structure.

Importantly, we further hypothesized that this mapping between activity patterns and odor 

percepts results from the neural encoding of the dimensions defining the odor space. 

We tested for the encoding of specific dimensions using computational encoding models 

for neural system identification24. Importantly, rather than decoding the stimulus from 

neural activity, encoding models predict neural responses from explicitly hypothesized 

characteristics of the stimulus, yielding a description of the content of the neural code. 

Encoding models can be implemented at the level of fMRI, given a collection of neural 

responses to a sufficiently large set of stimuli25, in order to reveal population-level encoding 

across cortical areas20,26,27. We found that neural activity patterns represent idiosyncratic 

odor percepts by encoding the principal dimensions of perceptual odor spaces that reflect 

increasing levels of complexity and subjectivity across the major olfactory areas.
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RESULTS

Ensemble responses in olfactory areas represent odor stimuli

We implemented a high-precision imaging approach to uncover the neural coding scheme 

underlying idiosyncratic odor percepts. Specifically, we collected odor-evoked fMRI 

responses and perceptual ratings for a large set of olfactory stimuli (160 monomolecular 

odors) in three human subjects. We scanned each subject for 18 hours across 12 fMRI 

sessions, resulting in 4,320 trials per subject (27–30 trials per odor). On each trial, subjects 

were presented with one of the odorants and then rated it on one of 18 perceptual descriptors 

(Figure 1a and 1b). For subjects S2 and S3, we collected additional perceptual ratings 

across 5,760 trials outside of the MRI scanner to further characterize each subject’s multi-

dimensional odor percepts. These ratings were significantly correlated across independent 

sessions, demonstrating their reliability within each subject (Extended Data Figure 1a). 

Moreover, each odor was represented by a unique profile of perceptual descriptors 

(Extended Data Figure 1b), allowing us to reconstruct the olfactory perceptual space for 

each individual subject.

In a first step, we aimed to replicate previous findings10,11,14 15 showing that distributed 

patterns of odor-evoked activity in the frontal piriform cortex (PirF), temporal piriform 

cortex (PirT), amygdala (AMY), and orbitofrontal cortex (OFC) (Figure 1c) discriminate 

between different odor stimuli. In each of these brain areas, we used data from independent 

scanning sessions and compared correlations among the fMRI activity patterns evoked by 

“same” and “different” odors (i.e., Δr = same - different odors). We found that multi-voxel 

activity patterns evoked by the same odor stimulus were significantly more similar (across 

sessions) than those evoked by different odor stimuli (Δr>0, p<0.001, percentile bootstrap, 

Figure 1d). These initial findings demonstrate that odor stimuli are robustly represented in 

olfactory areas and OFC.

Ensemble responses represent fine-grained odor percepts

Having confirmed that activity patterns represent odor stimuli, we next examined whether 

these patterns reflect the molecular features of the odor stimuli or their evoked olfactory 

percepts. To this end, we used representational similarity analysis22,23 to test whether 

the similarity between odor-evoked activity patterns (i.e., neural similarity) mirrored the 

perceptual or molecular similarity among odor pairs (Figure 2a). This analysis revealed a 

significant correlation between neural and perceptual similarity in PirT, AMY, OFC, but not 

PirF (PirF, p=0.280; PirT, AMY, OFC, p=0.0000; percentile bootstrap, Figure 2b), which 

was significantly larger than the correlation with molecular similarity in PirT and OFC (PirF, 

p=0.177; PirT, p=0.030; AMY, p=0.084; OFC, p=0.0000, two-tailed bootstrap comparison 

Figure 2b). These findings demonstrate that odor-evoked activity patterns in PirT and OFC 

predominantly represent odor percepts over molecular structure.

To explore perceptual representations in a non-olfactory primary sensory area and to rule 

out potential biases in our analysis, we repeated these analyses in the auditory cortex (A1) 

and frontal white matter (wm), respectively. We obtained a small but significant effect in 

A1 (p=0.0003, Figure 2b) that was driven by odor intensity (Extended Data Figure 6a–b), 
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suggesting there is rudimentary olfactory information in other sensory areas. However, no 

significant effects were observed in the wm (p=0.696, percentile bootstrap, Figure 2b), 

ruling out biases in our analysis. Moreover, perceptual and molecular representations did not 

differ in these areas (A1, p=0.972; wm, p=0.671, two-tailed bootstrap comparison, Figure 

2b).

In a next step, we examined the granularity of perceptual information represented in these 

patterns. The perceptual similarity among odors can be defined at a coarse and a fine-grained 

level. At the coarse level, perceptual similarity is defined based on a small set of dominant 

descriptors. In contrast, at the fine-grained level, similarity is defined based on a larger set of 

descriptors, even if they are not dominant features of the percept. For example, peppermint 

and spearmint are similar at a coarse level since they are both rated highly on the “cool” 

dimension, but these odors differ at a fine-grained level since peppermint has an additional 

(but non-dominant) “spicy” note. Our goal was to test whether neural representations in 

different olfactory brain areas were more consistent with coarse or fine-grained perceptual 

similarity. To that end, we compared two perceptual similarity models. In the first model, 

we defined perceptual similarity in a coarse perceptual space, capturing only the extent 

to which two odors were rated highly on one common dominant perceptual descriptor 

(Figure 3a) (e.g., the product of ratings for peppermint and spearmint on the most common 

“cool” dimension). In the second model, we defined perceptual similarity in a fine-grained 

perceptual space that included 16 descriptors (e.g., the correlation between the perceptual 

ratings for peppermint and spearmint). Note, we excluded intensity and pleasantness from 

both analyses to ensure that results were not driven by these two valence-related descriptors. 

To illustrate this point: if the analysis included pleasantness, two odors such as apple and 

cinnamon would be considered coarsely similar because they are both highly pleasant, even 

though their percepts are considerably different. We also examined neural representations of 

pleasantness and intensity separately, as well as perceptual representations after regressing 

out intensity and pleasantness from the perceptual descriptors (Extended Data Figure 6a–b).

Comparing coarse and fine-grained perceptual representations revealed that fMRI responses 

in PirT, AMY, and OFC were significantly better explained by fine-grained compared 

to coarse perceptual similarity (p<0.005, bootstrap comparison, Figure 3b). This effect 

was most prominent in the OFC, where the difference was significantly larger compared 

to the other areas (p=0.0000, bootstrap comparison, Figure 3c, Extended Data Figure 

3), suggesting a key role for OFC in representing rich olfactory percepts. In fact, OFC 

was the only area in which the representation of fine-grained similarity significantly 

exceeded the coarse similarity in all three subjects (Extended Data Figure 3). This result 

remained significant when controlling for various factors (e.g., differences in ROI sizes, 

odor similarity in the molecular space, inclusion of intensity and pleasantness, exclusion 

of undetectable odors, differences in hemodynamic responses etc. Extended Data Figure 

4 and Supplementary Table 2). Moreover, representational similarity in OFC increased 

linearly when perceptual similarity was gradually transformed from coarse to fine-grained 

by progressively increasing the number of perceptual dimensions (Extended Data Figure 7).

A key motivation for our high-precision approach was the expectation that discriminating 

between odor coding at different levels of granularity requires many odors. To quantify the 
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number of odors needed, we compared neural representations of coarse and fine-grained 

perceptual similarity in the OFC in several randomly drawn subsets of our data, each with a 

different number of odors. This revealed that dissociating between neural representations of 

coarse and fine-grained perceptual similarity was only possible when at least 90 odors were 

included in the analysis (Figure 3d). This highlights the unique advantage of our approach 

to image responses to an extensive odor set, since smaller datasets would be insufficient 

to distinguish between neural representations of olfactory percepts with different levels of 

granularity.

Modeling odor responses using individual perceptual spaces

The previous analyses demonstrate that olfactory cortices represent odor percepts at different 

levels of granularity, such that fine-grained percepts are most prominently represented in 

the OFC. Taking this a step further, we sought to characterize the coding scheme that 

maps activity patterns onto odor percepts in the olfactory areas. To test our hypothesis that 

neural activity encodes the dimensions of perceptual odor spaces, we constructed individual 

encoding models with perceptual descriptor ratings as basis functions (i.e., garlic, mint, 

floral, fish, etc.). We then tested whether these models could accurately predict a given 

subject’s fMRI responses to novel odor stimuli, as based on their perceptual ratings (Figure 

4a). To train the model (Figure 4a, left), we used ridge regression to estimate voxel-wise 

encoding weights for individual perceptual features, such that features were weighted to fit 

fMRI activity optimally. For testing the model (Figure 4a, right), we used those encoding 

weights (derived from the training model) to predict fMRI responses in an out-of-sample 

set of test odors. We found that average prediction accuracy was significantly above chance 

in PirF, PirT, AMY, and OFC (p<0.05, FDR corrected, one sample t-test, Figure 4b–d), 

demonstrating that neural responses in these areas do represent the perceptual features 

included in the computational models.

To examine the degree to which neural encoding was specific for idiosyncratic perceptual 

spaces, we evaluated encoding models using perceptual ratings provided by different 

subjects. The prediction accuracy of the encoding model was higher when subject-specific 

rather than cross-subject descriptor ratings were used in the model (F1,15= 12.58, p=0.016, 

repeated measures 2-way anova, Extended Data Figure 10), suggesting that neural encoding 

reflects subjective rather than generic perceptual features.

Moreover, to reveal which brain areas encoded which perceptual features, we examined 

the distribution of encoding weights across brain areas. Interestingly, the feature weights 

of the encoding models differed substantially across brain areas, indicating that perceptual 

dimensions were not uniformly encoded. Specifically, PirF and PirT encoded very few 

perceptual features, most prominently intensity and chemical-like. In contrast, AMY and 

OFC encoded several additional features, including acidic, sweaty, fruity, and bakery (Figure 

4e). This suggests a progression in the complexity of odor percept encoding from the PirC to 

the OFC, and implicates OFC as a candidate region for representing detailed and subjective 

odor percepts.

To gain more insight into the architecture of the perceptual spaces encoded in different 

olfactory areas, we next sought to quantify their dimensionality. Because perceptual 
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descriptor ratings are often correlated (e.g., sweet and fruity are often rated similarly), the 

number of significant encoding weights may overestimate the dimensionality of the encoded 

perceptual space. We therefore determined the number of orthogonal perceptual dimensions 

encoded in each area by conducting a principal component analysis on the voxel-wise 

encoding weights. We then examined the number of components required to explain a given 

percentage of variance (Figure 4f). We defined the dimensionality of encoding (κ) based 

on the area under the resulting curve. This analysis revealed that the dimensionality of 

the encoded perceptual space differed significantly across areas, increasing from the PirC 

to AMY to OFC (p<0.05, FWE corrected, bootstrap comparison, Figure 4g). This finding 

shows that whereas PirC and AMY represent low-dimensional perceptual spaces, OFC 

represents a high-dimensional space that is capable of encoding a large number of unique 

and detailed odor percepts.

Encoding of idiosyncratic perceptual spaces in the OFC

The previous findings suggest that detailed olfactory experiences may be represented in 

high-dimensional perceptual odor spaces encoded in the OFC. In a final step, we sought 

to explicitly determine whether these perceptual spaces also reflect the idiosyncratic nature 

of odor perception. To address this, we compared perceptual encoding weights across all 

three subjects for each brain region of interest separately. We found that encoding weights 

were consistent across subjects in PirC and AMY, but more idiosyncratic in the OFC. 

Specifically, encoding weights in OFC generalized significantly less compared to those 

observed in the other olfactory regions on interest (p<0.05, FWE corrected, bootstrap 

comparison, Figure 5a). Interestingly, this lack of generalizability in OFC varied by the 

order of the perceptual dimensions. When considering cross-subject correlations for the 

first four principal components in this region (Figure 5b), we found that the first principal 

component was significantly more consistent across subjects compared to the subsequent 

components (F3,8 = 13.41, p=0.002, Figure 5c). Notably, the first principal component 

primarily reflected odor intensity (Figure 5d), indicating that while low-level perceptual 

dimensions in OFC were consistently encoded across subjects, higher-order dimensions 

reflected a higher level of individuality.

DISCUSSION

The olfactory system is tasked with synthesizing subjective odor percepts from the 

objective physiochemical properties of volatile molecules17,28, but the neural coding scheme 

underlying these percepts has remained elusive. Using a combination of computational 

modeling and high-precision functional mapping, we demonstrate that olfactory brain areas 

represent odors using a perceptual coding scheme. Most importantly, we show that this 

coding scheme increases in dimensionality and subjectivity from the PirC to OFC.

While neural ensemble coding of odors has been a prime focus of several studies9–15, a 

critical gap remains in our understanding of how subjective odor percepts are represented 

in the brain. Bridging this gap requires capturing perceptual and neural odor responses at 

a high level of granularity in individual subjects. However, pioneering work in the past 

has tended to (1) probe individual perceptual properties rather than multiple perceptual 
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dimensions in parallel16,29,30; (2) use small numbers of stimuli, often limited to a few 

unique odorants31,32; and (3) collect a relatively small number of neural responses across 

a large number of participants15,33. Here, we address this gap by implementing a high-

precision mapping approach34,35, which involved collecting detailed perceptual ratings and 

fMRI responses to a large set of 160 unique odorants in individual subjects over several 

experimental sessions. We used these ratings to characterize subjective odor percepts, 

which we subsequently mapped onto neural responses using computational modeling. This 

approach allowed us to make several important conceptual advances in our understanding of 

the human cortical mechanisms of olfactory coding.

First, we show that olfactory brain areas represent odor stimuli using a perceptual 

code. Although information about the molecular structure was significantly represented in 

PirC36,37, this was exceeded by encoding of perceptual information in PirT and OFC (Figure 

2a, b). Second, we examined encoding of information about the fine-grained perceptual 

identity of odors that is not otherwise explained by perceptual coding at a coarse level. 

Representing fine-grained perceptual identity requires high-dimensional perceptual spaces 

and was more prominently found in the OFC, suggesting that this brain region encodes 

richer and more subjective olfactory percepts (Figure 3a–d). Third, computational analysis 

using encoding models – by which perceptual features were directly mapped onto neural 

responses – suggests that the brain encodes odor percepts as a composition of principal 

perceptual dimensions (Figure 4a–e). Lastly, the dimensionality of the perceptual spaces 

increased from PirC and AMY to OFC (Figure 4f, g), with higher-order dimensions 

reflecting the subjective nature of olfactory perception (Figure 5).

It is worth noting that the conceptualization of coarse and fine-grained perceptual identity 

mirrors related ideas in the olfactory literature about odor category and identity. Indeed, 

odor stimuli can be grouped into perceptual classes or categories (e.g., citric, woody), 

based on their perceptual similarity along a small number of dominant perceptual notes that 

are broadly applicable across a large number of odors14,15,38. Here, our conceptualization 

of coarse odor similarity probes the representation of odor percepts in a low-dimensional 

space defined by their dominant perceptual notes, akin to odor category. In contrast, high 

dimensional odor representations capture the percept specifically pertaining to the identity of 

the odor object. We found that the difference between the neural representation of coarse and 

fine-grained perceptual identity increased from PirC to OFC. In addition, and compatible 

with previous work15,36, we observed a functional dissociation in PirC along the anterior-

posterior axis, such that posterior PirC (PirT) contained distinguishable representations of 

coarse and fine-grained odor percepts, whereas anterior PirC (PirF), despite being physically 

nearer to the OFC, did not. Of note, we found that representations of odor intensity 

were comparable in PirF and A1 (Extended Data Figures 5–6). Given odor intensity was 

related to sniff parameters (Extended Data Figures 6c–d), it is possible that these intensity-

related fMRI signals reflect residual sniff-related activity39,40. However, accounting for 

sniff parameters did not change our fMRI results in A1 or elsewhere (Extended Data 

Figures 6e–f), suggesting that rudimentary olfactory perceptual information is transmitted 

to other sensory areas, presumably to facilitate multi-sensory integration and associative 

learning41,42. The detailed description of how olfactory information is conveyed to other 

brain areas remains to be explored in future studies.
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Moreover, we found that lower-order perceptual dimensions in the PirC were stable across 

individuals, which may allow for generalization of basic odor categories and features. 

In contrast, higher-order dimensions in the OFC differed across individuals, suggesting 

that this region could facilitate fine discrimination and individuation. That is, higher-order 

perceptual dimensions could allow odor perception to be shaped by experience, learning, 

and context43–45 without abandoning the core character of the percept. This would allow 

us to perceive our olfactory environment in an individualized and dynamic way, while still 

maintaining a basic understanding of how the world smells to others.

A limitation of any encoding experiment is that neural encoding of the hypothesized 

stimulus features cannot be fully dissociated from other correlated variables46. For instance, 

perceptual features such as perceived pleasantness are associated with specific behaviors 

(e.g., approach or avoidance), and neural encoding may thus be driven by the percept, the 

behavior, or a combination of the two. The implication is that some brain areas may encode 

high-dimensional perceptual spaces because they also encode for the associated behaviors. 

Although perceptual representations in our data remained significant after regressing out 

features with high behavioral salience (such as intensity and pleasantness, Extended Data 

Figure 4e), we are unable to rule out whether higher dimensions encoded in OFC could 

still be partially driven by associated behaviors. Relatedly, it remains to be tested whether 

similar perceptual representational forms exist for other sensory modalities in areas such as 

the OFC47. Additionally, while it is difficult to quantify the extent to which semantics and 

verbal labels contribute to neural activity, we minimized such variability by training subjects 

extensively on the perceptual descriptors before the scanning sessions (see Methods).

Intriguingly, our results challenge the view that perceptual odor identity, at its finest level of 

granularity, is generated in the olfactory bulb48 or in PirC10,14, whereas OFC contributes to 

olfaction indirectly by supporting secondary cognitive functions related to reward, context, 

and decision-making49–51. Instead, our findings suggest that while PirC encodes basic odor 

category15,16,52,53, it is OFC – at its core – that represents the subjective identity of unique 

odor percepts. In other words, OFC’s contribution to olfaction is not limited to cognitive 

and affective operations when confronted with a given odor percept54–56. Rather, OFC may 

meaningfully and actively shape the very odor percept itself. This proposal is in line with 

classic non-human primate work suggesting that individuation of odor coding increases from 

the olfactory bulb to olfactory cortex to OFC57, and may explain why OFC lesions diminish 

odor discrimination but not the simple detection of odors58,59. By revealing this perceptual 

coding scheme, our findings provide fundamental insights into the cortical mechanisms 

of odor processing and suggest that how we perceive our olfactory environment critically 

depends on the architecture of the olfactory spaces encoded in OFC.

METHODS

Subjects:

The study was approved by Northwestern University’s Institutional Review Board. Data 

from three healthy human subjects (2 females ages 23–24, 1 male age 24) were included 

in this manuscript. Subjects were right-handed, native English speakers with normal or 

corrected to normal vision. Subjects provided informed consent to participate in the study 
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and reported no history of prior psychiatric or neurological disorders, no significant medical 

disorders, and no smell and taste dysfunction. In addition, subjects did not have a history 

of sinusitis or allergic rhinitis and were not using medications that could affect alertness. 

Data from one additional subject were not included due to a psychiatric disorder that 

was disclosed after data collection was completed. No statistical methods were used to 

pre-determine sample sizes but our sample sizes are similar to those reported in previous 

publications on encoding models of sensory perception26,27. Subjects received monetary 

compensation amounting to $40 per hour for sessions involving fMRI (18 hours), $20 per 

hour for behavioral sessions outside the scanner (12–16 hours) and a study completion 

bonus of $300.

Odor stimuli and presentation:

We used a total of 160 unique monomolecular odor stimuli per subject in this study. We 

selected the odor stimuli based on the previously published database used in the DREAM 

olfaction challenge17,60. Odors were prepared with mineral oil or water as the solvent and 

varied in concentrations ranging from 0.001% to 10% (vol/vol) for liquid compounds and 

0.1 M for solid compounds. Odor stimuli were delivered directly to the nose using a custom-

built computer-controlled olfactometer equipped with two mass flow controllers (Alicat, 

Tucson, Arizona). Odors were further diluted with odorless air during delivery and presented 

through nasal masks (Phillips Respironics) at a constant flow rate of 4.8 L/min. Breathing 

rate was monitored through breathing belts affixed to the chest, in subject 1 or through a 

pneumotachograph device and spirometer, in subjects 2 and 3 (AD instruments, Colorado) 

(see Odor-evoked responses and nuisance regressors for details about sniff measurements).

Experimental design:

On their first visit, we tested subjects’ olfactory sensitivity using the Sniffin’ Sticks 

threshold test (Burghardt, Wedel, Germany). Subsequently, all subjects participated in 12 

fMRI sessions (separate visits). Subjects S2 and S3 also participated in 10 additional 

behavioral sessions during which they rated the odors outside the scanner (Extended Data 

Figure 2a). During the first two of these behavioral sessions, S2 and S3 were presented with 

a list of perceptual descriptors used in the study (e.g., fishy, fruity, etc.), and they smelled 

80 training odors (flagged in the behavioral data table [see data availability statement]) and 

rated each of them on 1 of the 16 descriptors (5 odors per descriptor). Specifically, for 

each descriptor (except edibility and familiarity), we chose 3 odors that were rated high 

and 2 odors that were rated low for that descriptor by S1 (14 odors were selected based 

on perceptual ratings in the DREAM dataset). This training assured that subjects were well 

acquainted with perceptual descriptors before they were scanned, and that the descriptors 

were interpreted similarly across subjects. In each of the remaining 8 behavioral sessions, 

subjects rated a set of 40 odors on all perceptual descriptors. Subjects rated odors that they 

could detect using a self-paced rating task. Behavioral ratings outside the scanner were not 

acquired for subject S1.

The 160 odors used per subject were divided into 4 odor sets, each containing 40 odors. 

Each set was presented in 3 different fMRI sessions, resulting in a total of 12 fMRI sessions. 

Each fMRI session consisted of 4 separate fMRI runs (20.5 minutes each), during which 10 
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odors were presented at least 9 times each. Thus, the experiment consisted of a total of at 

least 4320 odor trials per subject. The composition of odor sets was kept constant across 

sessions but within each set, the assignment of odors to fMRI runs was randomized across 

sessions (i.e., a different subset of 10 out of 40 odors was presented in each fMRI run across 

sessions). This ensured that, in each session, a given odor was presented in the context of 

different odors. Further, in each fMRI run, odors were presented in a pseudorandomized 

order to reduce any systematic bias in odor ratings based on preceding odors and biases in 

neural similarity due to task structure61.

On each trial of the first and second sessions of a given odor set, subjects were instructed to 

fixate on a central cross and make a consistent sniff when the cross changed color. Subjects 

reported whether they could smell the odor by pressing a button. If they indicated they could 

smell the odor, they were asked to rate it on one of the perceptual descriptors. Only one 

perceptual descriptor was rated on each trial. Subjects reported the rating on a horizontal 

scale with a button press. For S2 and S3, the starting position and orientation of the scale 

were randomized at every trial to minimize confounds related to motor responses. In total, 

up to 3 ratings per descriptor and odor were acquired in each subject. In the third session of 

a given odor set, S2 and S3 were not asked to provide any ratings.

The percentage of odors with low detectability (undetectable in more than 80% of trials) 

were 28% for S1, 0% for S2 and 13% for S3, respectively. The rated intensity of the 

undetectable odors for S1 was significantly lower than that of the detectable odors (p < 

0.001, t-test). Since odors were not rated on undetectable trials, ratings from behavioral 

sessions outside the scanner were used for subjects S2 and S3. Ratings acquired inside 

the scanner were significantly correlated with those obtained in the behavioral sessions for 

S2 and S3 (Extended Data Figure 1b). For S1, since behavioral ratings were not acquired 

outside the scanner, ratings were interpolated from the publicly available DREAM dataset 

for undetectable odors. The average correlation of ratings for detectable odors for S1 with 

that in the DREAM dataset was r = 0.405 (p<0.001, t-test). Excluding odors with low 

detectability had no qualitative impact on the results from the coarse vs. fine RSA and the 

encoding model (Extended Data Figure 4d). For all subjects, the final set of behavioral 

ratings used in the fMRI analyses was the average of all ratings acquired during the study 

(i.e., ratings acquired during scanning sessions for S1, and ratings acquired during scanning 

and behavioral sessions for S2 and S3). The same experimental setup (olfactometer and 

odor-delivery apparatus) was used inside and outside the scanner. Subjects were blinded 

with respect to the order of the conditions. Double blinding was not relevant to this study 

since the investigator’s knowledge of which odor was presented in each trial could not 

influence the behavioral or neural data or any subsequent analyses based on those data.

Perceptual descriptors:

Eighteen descriptors were used to characterize the perceptual feature space for each 

subject. The descriptors were selected based on recent studies in which chemical properties 

of molecules are mapped to perceptual properties of odors17. The chosen perceptual 

dimensions were: pleasantness, intensity, fishy, burnt, sour, decayed, musky, fruity, sweaty, 

cool, floral, sweet, warm, bakery, and, spicy. In addition to these common descriptors, 
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S1 rated acidic, garlic and chemical-like, whereas S2 and S3 rated ammonia, edibility 

and familiarity. Each subject therefore rated odors on 18 out of 21 perceptual descriptors. 

Ratings were normalized between [−1, 1] where the bounds correspond to the limits of the 

rating scale. We quantified the discriminability, reliability, and generalizability of perceptual 

odor ratings (Extended Data Figure 1). We quantified the discriminability for each odor pair 

in this perceptual feature space by computing the distance (supremum norm) between each 

odor pair along the most dissimilar dimension and computed the percentage of odor pairs for 

which the distance exceeded 1 standard deviation. Reliability for descriptors was quantified 

by computing Pearson’s r across different sessions of descriptor ratings for each subject. 

For the representational similarity analyses (see below) and to study the generalizability of 

perceptual ratings across subjects, we computed perceptual similarity matrices consisting 

of the correlations among the perceptual ratings for all odor pairs. The off-diagonal upper 

triangle entries of the similarity matrices were extracted to obtain vectors of perceptual 

similarities p for all pairs of distinct odors. We obtained the generalizability of perceptual 

ratings by calculating the correlation of perceptual similarity p across different subjects 

(Extended Data Figure 1c–d).

MRI data acquisition and preprocessing:

We used a 3-Tesla PRISMA system (Siemens, Munich, Germany) with a 64-channel head/

neck coil to acquire gradient echo T2* weighted echoplanar images. The imaging sequence 

was optimized for signal recovery in olfactory areas (repetition time = 1.4 seconds, echo 

time = 22ms, matrix size = 104×96 voxels, flip angle = 80°, slices per image = 42, 

in-plane resolution = 2×2mm, slice thickness = 2mm, acquisition angle= 30° rostral to 

the inter-commissural line, multiband factor = 2). To further optimize the spatiotemporal 

coverage in S2 and S3, small adjustment to the scanning sequence were made (repetition 

time = 1.4 seconds, echo time = 24ms, flip angle = 70°, matrix size = 122×102 voxels, slices 

per image = 38, in-plane resolution = 1.7×1.7mm, slice thickness = 2mm, acquisition angle 

= 30° rostral to the intercommissural line, multiband factor = 3). A set of high-resolution T1 

weighed anatomical images (1mm3 isotropic) were acquired using an MP-RAGE sequence 

to identify anatomical regions of interest (ROIs). Ten whole-brain echo planar images were 

also acquired in each session to optimize the coregistration of functional and anatomical 

scans. All subjects wore custom-made 3D-milled Styrofoam headcases (Caseforge Co., 

Berkeley, California) to minimize head motion during imaging. Headcases conformed to the 

MR coil on the outside and the shape of subjects’ heads on the inside.

Images were preprocessed using statistical parametric mapping software (SPM12) in 

MATLAB. Functional images were realigned and coregistered to the average T1 anatomical 

image, and then images were smoothed using a 2mm3 isotropic Gaussian filter. All analyses 

were performed in the subjects’ native space.

Anatomical regions of interest (ROIs):

T1 anatomical images obtained from all scanning sessions were coregistered and averaged to 

generate an average structural image for each subject. We constructed masks of anatomical 

ROIs based on Montreal Neurological Institute (MNI) masks used in previous studies62,63, 

including frontal piriform cortex (PirF), temporal piriform cortex (PirT), amygdala (AMY), 
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and orbitofrontal cortex (OFC). PirC, AMY and OFC are widely known to be involved 

in olfactory perception64,65. While hippocampus and entorhinal cortex may play important 

roles in olfactory memory, in contrast to PirC, AMY and OFC, lesions to the hippocampus 

are less likely to produce olfactory deficits66, and so we decided not to focus on these 

region for this study. The MNI masks were inverse-normalized to native space using each 

subject’s average T1 anatomical image, and the resulting masks were manually refined 

to fit the anatomical boundaries in native space using ITK snap. All further analysis of 

the fMRI data was restricted to gray matter voxels (derived using segmentation of the T1 

anatomical image) in these ROIs. We confirmed that the temporal signal to noise ratio67 was 

comparable across areas (Extended Data Figure 2d). As a control, we repeated the analyses 

in the primary auditory cortex (Heschl’s area in AAL Atlas), and voxels in the white matter 

lateral to the anterior cingulate cortex. Sizes of all ROIs are listed in Supplementary Table 1.

Odor-evoked responses and nuisance regressors:

To obtain the mean odor-evoked activity for each voxel, we first constructed a set of 

single-subject general linear models (GLMs). All fMRI volumes from a given subject were 

concatenated in a single design matrix that included a single covariate of event-related odor 

onsets (i.e., time points where subjects were instructed to make a sniff response to odors). 

Translation and rotation parameters estimated during the realignment procedure were used 

as nuisance regressors to account for motion-related effects. We also included additional 

nuisance regressors to account for steep fluctuations in signal quality across volumes. 

Following previous work68–70, we computed the mean difference between the average signal 

in odd and even slices (interleaved slice order), as well as the variance of the average signal 

across slices for each volume. Both of these measures are highly sensitive to head motion 

that occurs within a single volume, and volumes with high values in these measures are 

likely corrupted by head motion. We flagged volumes for which the slice difference and 

variability measures exceeded 5 units of signal-to-noise ratio (mean/standard deviation), 

and then added volume-specific dummy regressors to the GLM, effectively excluding those 

volumes from the GLM estimation.

In order to account for sniff-related effects, sniff traces obtained from breathing 

measurements were included in the GLM as nuisance regressors. Breathing rate was 

monitored through breathing belts affixed to the chest in S1 or through a pneumotachograph 

device and spirometer (AD instruments, Colorado) in S2 and S3. For all subjects, we used 

three sets of breathing regressors – breathing trace (volume of air in the chest), sniff trace 

(air flow at the nasal mask) and the squared amplitude of sniff trace. The breathing trace 

was obtained directly from the breathing belt (S1) or by computing the temporal integral 

of the trace obtained from the spirometer (S2, S3). Similarly, the sniff trace was obtained 

directly from the spirometer (S2, S3) or by computing the temporal derivative of the trace 

obtained from the breathing belt (S1). The sniff covariates were appended as regressors 

to the GLM, and voxel-wise responses were estimated using the AR(1) regression model 

with non-sphericity correction in SPM12. We computed trial-wise sniff volumes and sniff 

durations for further analyses using the BreathMetrics toolbox71.
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For all gray matter voxels in each olfactory ROI, we computed a t-contrast on the sniff onset 

regressor, and all following analyses were restricted to voxels with significant odor-evoked 

activity (two-tailed paired t test, t39991=3.09, p<0.001). We computed the across-session 

reliability (i.e., correlation) of odor-evoked fMRI activity in each ROI (Extended Data 

Figure 2f). In all ROIs except PirF in S3, reliability was significant. We excluded PirF S3 

from dimensionality analyses. Data distribution was assumed to be normal but this was not 

formally tested.

Finite Impulse Response (FIR) model and HRF estimation:

To estimate a scalar response for each odor and voxel, while accounting for voxel-specific 

hemodynamic differences, we constructed a Finite Impulse Response (FIR) model. For each 

subject, a single regressor per odor with onset times at odor delivery was convolved with 11 

FIR kernels spanning 11 seconds. Nuisance regressors as defined in the average odor-evoked 

GLM, were included in the design matrix. An AR(1) regression model was computed with 

SPM12. Odor-evoked voxel traces obtained from the FIR model were temporally smoothed 

with a moving window of 1 second. For each ROI a in a subject, we obtained a Va×N×T 
matrix of odor responses from the FIR model, where Va is the number of voxels in region a, 

N is the total number of odors (i.e., 160), and T are the total FIR components evaluated per 

odor and voxel.

The FIR traces for ROIs are shown in Extended Data Figure 2b. For all analyses except 

the decoding analysis in Figure 1d, we used the time bin corresponding to the peak of 

the FIR response. In all areas, the peak time bins were at least 4 seconds after the odor 

onset. We restricted further analyses to 6 seconds after odor onset to avoid confounding 

odor-evoked responses with responses to the rating task, which started 5.5 seconds after odor 

onset (Extended Data Figure 2a). To obtain independent estimates for the pattern correlation 

analysis in Figure 1d, we estimated odor-evoked responses from one third of the data. To 

reduce the degrees of freedom in analyzing this reduced dataset, and to avoid introducing 

biases due to potentially different optimal time bins across different sessions, we used the 

same canonical HRF for all sessions in the pattern correlation analysis.

Pattern Correlation Analysis:

We performed a pattern-based correlation analysis to test for odor-specific information in 

the neural activity patterns in each brain area. We first computed the correlation between 

the activity patterns of all odor pairs (including the correlation of an odor to itself) across 

two sessions, resulting in session-specific neural similarity matrices ηa,ij for ROI a and 

sessions i and j. The matrix consists of correlations between responses to the same odor 

in session i vs. session j on the diagonal entries and correlations between responses to 

different odors on the off-diagonal entries. We Fisher’s Z-transformed 1
2 ln 1 + r

1 − r  and 

averaged these matrices across all session pairs i,j to obtain an average session-wise neural 

similarity matrix ηa. We then estimated two quantities: Ron=Z-transformed Pearson’s r 
between odor responses in two sessions for the same odor (the on-diagonal entries of ηa) 

and Roff= Z-transformed Pearson’s r between odor responses in two sessions for different 

odors (the off-diagonal entries of ηa). Pattern correlation difference was defined as Δr = 
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mean(Ron)-mean(Roff), averaged across sessions and subjects, and tested for significance 

using a two-tailed percentile bootstrap (10000 samples). We tested the average correlation 

difference against the null hypothesis that the pattern correlation difference was equal to 0.

Neural similarity matrix:

As input to the representational similarity analysis (see below), we computed a neural 

similarity matrix μa for ROI α, using odor responses estimated from all odor trials. This 

neural similarity matrix consisted of all odor responses across all sessions. Specifically, we 

first identified the peak FIR component between 4–6 seconds (see Finite Impulse Response 

(FIR) model and HRF estimation) in all areas and subjects. We then computed the Pearson’s 

correlation between responses at the peak FIR time bin, across voxels in area α for each 

pair of odors (12,720 unique pairs total). This resulted in a symmetric correlation matrix 

μa. We obtained pairwise similarity vectors, μa, from the off-diagonal entries in the upper 

triangle of the correlation matrix. For visualization purposes (Extended Data Figure 2e), 

a k-means algorithm was used to sort odors into 4 clusters based on odor responses as 

features. To minimize biases in the neural similarity matrix imposed by the task structure, 

experimental conditions (odors presented) were randomized across runs and sessions. In 

addition, we regressed out two task-based similarity matrices from μa. In the first binary 

matrix, an element was assigned the value of 1 if two odors belonged to the same scanning 

session and 0 otherwise. The second matrix quantified the number of runs in which two 

odors were presented within the same run.

Perceptual and Molecular RSA:

To quantify the neural representation of odor percepts and molecular odor structure, 

we implemented different representational similarity analyses (RSA). The perceptual 

representational similarity in an area a (rp,a) was defined as the correlation between pairwise 

odor similarity measured in the neural space and the perceptual space. More specifically, 

for each subject and ROI, we computed the perceptual representational similarity rp,a as the 

Spearman’s rank correlation r between the neural similarity μa and perceptual similarity 

p across all odor pairs. We used Spearman’s rank correlation instead of Pearson’s r 

following recommendations in the literature72, as the relationship between perceptual and 

neural similarities can only be assumed to be monotonic but not strictly linear. Similar 

to computing the perceptual similarity of odors, we quantified similarity in the molecular 

space. For this, we used the 4,869 physiochemical descriptors from the DREAM olfaction 

challenge17,60. Following Keller et al., we used a principal component analysis (PCA) 

to reduce the full log-transformed chemical space into a reduced space of 40 principal 

components. To define molecular similarity m for the molecular RSA, we constructed a 

matrix of pairwise Pearson’s correlations of these 40 principal components for all pairs 

of odors. We evaluated molecular representational similarity rm,a as the Spearman’s rank 

correlation between μa and m. rm,a and rp,a were computed separately for each ROI α and in 

each subject. rm,a and rp,a were averaged across subjects and statistical tests were performed 

using bootstrap analyses (see RSA statistical analyses, methods).
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Coarse and fine-grained RSA:

To further probe whether perceptual representations in olfactory ROIs were driven by coarse 

or fine-grained odor percepts, we constructed another perceptual representational similarity 

model, but with 2 modifications. First, to probe fine-grained perceptual representations, we 

computed pf odor similarity in the perceptual space without intensity and pleasantness as 

perceptual dimensions. Second, to compute coarse similarity pc, we assumed that if two 

odors belong to the same coarse dimension, then the odor ratings on the feature most related 

to their mutual dimension would have a high product. Along those lines, and based on 

similar ideas in other studies73, we unwrapped the Pearson’s correlation of odor ratings 

in the perceptual space in the form of element-wise product of ratings. We then identified 

the perceptual feature for which the product of perceptual ratings for the two odors was 

the highest. We defined pc as the product of ratings for the identified feature. We then 

evaluated coarse (or fine-grained) representational similarity rc,a (or rf,a) as the Spearman’s 

rank correlation r between neural similarity for region a, μa and pc (or pf). We used the 

bootstrap procedure to test the null hypothesis rc,a = rf,a (in each ROI a). Similar to the RSA 

comprising of perceptual and molecular similarities, we used Spearman’s rank correlation. 

However, using Pearson’s r for rc,a (or rf,a) leads to qualitatively similar results (Extended 

Data Figure 4f and Supplementary Table 2).

Further, to quantify the extent by which the neural similarity explained by pf: rf,a exceeds rc,a 

we computed rfc,a = rf,a - rc,a in each ROI a and tested the null hypothesis, rfc,a = rfc,a’ for 

two ROIs a and a’ (e.g. PirF vs PirT), using the bootstrap procedure. Further, to determine 

the minimum number of odors needed to observe representational similarity differences in 

OFC, we computed rfc,a and its corresponding t-value (rfc,a > 0) for different datasets with 

randomly drawn odors (ranging from 5 to 160 odors). To test whether rc,a increased relative 

to rf,a when more descriptors were added, we implemented an additional analysis in which 

rc,a was computed using increasing numbers of descriptors. We then quantified the linear 

increase in rc,a as a function of number of included descriptors (Extended Data Figure 7).

We conducted further analyses to rule out alternate explanations for our RSA results. First, 

we repeated the analyses after including intensity and pleasantness to examine that results 

are not explained by the exclusion of these features (Extended Data Figure 4a). We also 

studied the representation of intensity and pleasantness separately and quantified the effect 

of removing these descriptors from the analyses (Extended Data Figure 6). Second, to 

account for potential statistical biases due to differences in ROI size we repeated these 

analyses based on the same number of voxels per ROI. In each subject and in each 

bootstrap sample, neural similarity μa was computed based on a fixed number of voxels. 

This generated a conservative estimate of RSA effects, adjusted for differences in size, 

based on restricted sampling of 70 voxels in all areas and subjects (the smallest ROI with 

significant odor-evoked activity in our data (PirT in S2; PirF, S3 was not considered for 

further analyses due to poor across-session reliability [Extended Data Figure 2f]) (Extended 

Data Figure 4b). Third, we examined the possibility that differences in coarse and fine-

grained identity RSA reflected the differences in odor encoding not in the perceptual but in 

the correlated molecular space. Similar to the molecular RSA, we used 4869 physiochemical 

descriptors used in the DREAM olfaction challenge17 and computed odor similarities in 

Sagar et al. Page 15

Nat Neurosci. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the physiochemical space. We then regressed out molecular similarity information from pc 

and pf and computed the RSA using the residual perceptual similarities (Extended Data 

Figure 4c). Fourth, we performed an analysis excluding any odors that were not reliably 

detected by subjects (Extended Data Figure 4d). Fifth, to account for differences due to 

hemodynamic responses, we repeated the analysis using the same time-bin (5s after stimulus 

onset) in all areas and subjects to extract odor responses (Extended Data Figure 4e). Lastly, 

we computed representational similarity based on Pearson’s r instead of Spearman’s rank 

correlation (Extended Data Figure 4f).

We observed a correlation of sniff volume and duration with odor intensity for some subjects 

(Extended Data Figure 4c–d). We therefore performed additional analyses to ensure that the 

results are not driven by sniff-related effects. Specifically, we regressed out similarities in 

sniff volume and duration from perceptual similarities. We observed similar results when the 

sniff effects were regressed from intensity, pleasantness, coarse and fine-grained similarities 

(Extended Data Figure 4e–h).

Statistical analyses for RSA results:

We computed the confidence intervals for all RSA results using a percentile bootstrap 

approach. This included molecular (rm,a), perceptual (rp,a), coarse perceptual (rc,a), and 

fine-grained perceptual (rf,a) similarities. Given there were 160 odors per subject, there 

were 12,720 unique odor pairs. To create the sampling distribution of the mean correlation 

between the neural and perceptual/molecular similarities, we drew 10,000 bootstrap 

samples. For each of these 10,000 iterations, we randomly sampled 12,720 odor pairs 

with replacement and computed the correlation between neural and chemical/perceptual 

similarity.

We computed 95% confidence intervals for all RSA results using the bootstrap distribution. 

For coarse (rc,a) and fine-grained representational similarities (rf,a) we also tested the null 

hypotheses that rc,a= rf,a (two-tailed percentile bootstrap comparison). We combined the 

bootstrap samples across subjects to obtain the mean rc,a and rf,a. To compare region-wise 

differences, we quantified the increase in fine-grained perceptual similarity beyond coarse 

perceptual similarity as rfc,a = rf,a - rc,a in each ROI a and tested the null hypothesis (rfc,a = 

rfc,a’) for two ROIs a and a’ using a two-tailed percentile bootstrap comparison. To ensure 

that our results were not affected by biases in the percentile bootstrap approach, we also 

performed permutation tests (Extended Data Figure 5).

Encoding Models:

We implemented voxel-wise encoding models to examine the specific dimensions of 

perceptual odor encoding. We focused on gray matter voxels in the previously described 

anatomically defined ROIs, and further constrained the analysis to voxels that displayed 

significant odor-evoked activity (t39991=3.09, p<0.001). We modeled the voxel-wise activity 

as a linear combination of perceptual features as basis functions. Specifically, we used the 

FIR component at the peak of the average odor response for each voxel (i) to estimate the 

vector of odor (o) responses, voi. We then trained a ridge regularized general linear model 

to estimate voi using the perceptual bases (bjo) of the odors. More specifically, we used 
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leave-one-out cross-validation to predict the voxel activity in response to odors that were not 

included in model training. To optimize the estimation of training weights for dimensionality 

and subjectivity analyses (see below), we trained the model in 160 folds, using 159 odors 

for odor training and one left-out odor as test odor. Thus, data from a subset of the training 

odors were partially acquired within the same scanning run as data from the test odor. In 

each fold of cross-validation, the model trained a set of weights wij for the j-th perceptual 

feature per voxel i, with the residual ζi.

voi = ∑j wijbjo + ζi

We renormalized the response to the test odor based on the mean and standard deviation of 

odor activity from the training data. We used Pearson’s r to correlate the model predictions 

with the matched voxel response to obtain a prediction accuracy score r for each voxel. 

Encoding model performance was computed using a Fisher’s z-transform of prediction 

accuracies. We then used t-values (one-tailed one sample t test) of the prediction accuracies 

to obtained p-values pertaining to the null hypothesis that mean(r)≤0. Then, we performed 

a voxel-wise false detection rate (FDR) correction of the p-values using the Benjamini-

Hochberg procedure. Finally, we generated voxel-wise maps of prediction accuracy, with 

a threshold of p< 0.05 (one-sample t-test, FDR corrected). We also computed the mean 

prediction accuracy and the fraction of voxels with significant prediction accuracy for each 

ROI on an individual subject basis.

To account for potential biases introduced by the task structure, we performed control 

analyses with principal components of subjective perceptual spaces. We constructed 

encoding models with 14 principal components that together explained at least 90% of 

the variance in the perceptual space. Similar to the original encoding model, we computed 

the prediction accuracy and dimensionality estimation for our ROIs (Extended Data Figure 

8a–c).

To account for potential confounds due to the fact that fMRI responses to a subset of the 

training odors were partially acquired in the same fMRI run as the test odors, we performed 

additional control analyses in which training and test odors were chosen from entirely 

independent scanning sessions. Specifically, we implemented a 4-fold cross-validation in 

which 3 sets of odors (40 odors per set) were used to train the encoding model. The 

left-out odor set, which was collected in independent scanning sessions, was used as the 

test set. Similar to the previous encoding model, we computed the prediction accuracy and 

dimensionality estimation for our ROIs (Extended Data Figure 8d–f).

Significance test for model coefficients:

For voxels with significant prediction accuracy, we sought to examine whether the 

perceptual feature-j was significantly encoded in a given ROI. For voxel i and perceptual 

feature j each N-fold of cross-validation resulted in one set of wij. We therefore obtained 

model weights wijN. from all folds of cross-validation. We defined the functional profile Wij 

for each voxel i and feature j as the mean(wijN) divided by the standard deviation(wijN), 
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where the mean and standard deviation were taken across the N-folds. We assumed that the 

quantitative impact of perceptual feature encoding on neural activity would be determined 

by the absolute value of Wij and not by its sign. We therefore did not discriminate whether 

perceptual features were mapped to an increase or decrease in the BOLD response. In each 

ROI a, we determined whether the absolute weight for descriptor j, averaged across voxels 

in a, was significantly greater than the absolute weight assigned to the smallest descriptor 

j0,a. We used bootstrapping across voxels to test the null hypothesis for the average subject: 

mean(Wij) ≤ mean(Wij0,a) (two-tailed percentile bootstrap comparison). We then applied a 

family-wise error (FWE) correction to account for multiple tests of pairwise comparisons for 

any two arbitrary perceptual features. However, since the explicit quantification depends on 

the precise distribution of Wij, number of voxels in an area, and collinearity of descriptors, 

this method could only provide a qualitative description of dimensionality.

Dimensionality of encoding:

To quantify the dimensionality of encoding for each ROI, we performed a principal 

component analysis (PCA) of Wij. where voxels were included as observations and model 

features were included as variables. We restricted the PCA to voxels with significant 

prediction accuracy (p< 0.05, uncorrected). We computed the cumulative percentage of 

variance explained by the first 12 principal components of Wij. To compare differences in 

dimensionality across areas, we examined the number of principal components needed to 

explain a fixed amount of variance. To that end, we considered the cumulative percentage 

of variance explained as a function of the number of principal components. From this 

curve, we defined a dimensionality parameter κ proportional to the area under the curve 

and normalized to 0 corresponding to the theoretical case when the first component explains 

100% of the variance (κ 0) and 1 corresponding to the case when all components explain 

equal variance (κ 1). Thus,

κ = K0 − K
K0 − K1

.

For each subject, the statistical difference in κ across ROIs was tested for significance 

by a two-tailed bootstrap comparison. Specifically, we obtained cumulative variance and 

κ for the mean subject from the combined subject-wise bootstraps with 10,000 samples. 

Since bootstrapped estimates on PCA are not always stable, we made two adjustments. 

First, we only computed the cumulative percentage of variance explained by the principal 

components since cumulative quantification is robust to small changes in the order of 

principal components. Second, we ensured that the rank of the bootstrapped Wij exceeded 

the number of principal components computed for each bootstrap estimation. We also 

excluded PirF in S3 since this was the only ROI where the number of voxels with significant 

prediction accuracy was less than the 18 perceptual features in the model.

To account for the possibility that the results were biased by the differences in the number of 

voxels in each ROI, we computed another dimensionality parameter adjusted for size, κadj. 

κadj was based on PCA of Wij with the same number of voxels drawn with replacement 

from each ROI and subject. We restricted the size of sampling to 25 based on the minimum 
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number of gray-matter voxels in an ROI with significant odor-evoked activity and significant 

encoding prediction accuracy in our data (Extended Data Figure 9).

Generalizability of perceptual encoding:

We examined the similarity in encoding profiles across subjects to quantify idiosyncrasy 

in perceptual encoding. We probed whether inter-subject correlations of encoding weights 

in one area were more consistent across subjects than that in other areas. To that end, we 

computed the Pearson’s correlation between the weight profile in a voxel for one subject 

and that of voxels in the same ROI the remaining two subjects. We obtained a bootstrapped 

estimate of this correlation. The bootstrapping was restricted to the same number of voxel 

pairs in all ROIs (i.e., 2500 voxel pairs) to minimize bias due to size differences across 

ROIs. Since encoding weights were least generalizable in OFC, we performed post-hoc 

analyses to further examine whether a subset of encoding dimensions drove idiosyncrasies 

in OFC. Specifically, we measured the inter-subject generalizability of specific principal 

components of encoding weights in OFC. To align principal components from different 

subjects, we sorted the principal components using the stable marriage algorithm74. We then 

evaluated inter-subject Pearson’s correlations between OFC principal components and tested 

for component-specific differences in generalizability. We also examined the coefficients of 

the principal components based on the perceptual descriptors to qualitatively highlight the 

extent to which each perceptual feature contributed to the generalizability of encoding in the 

OFC.

Computing resources:

All analyses were performed in MATLAB R2016b and R2020b. The task was designed 

using COGENT 2000. This research was supported in part through the computational 

resources and staff contributions provided for the Quest high performance computing facility 

at Northwestern University, which is jointly supported by the Office of the Provost, the 

Office for Research, and Northwestern University Information Technology.
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Extended Data

Extended Data Figure 1: Perceptual odor descriptors and ratings.
a, Reliability of perceptual ratings. In each subject and for each descriptor, reliability 

of the perceptual descriptor is computed by correlating perceptual ratings for the same 

odor acquired in different sessions. Gray line indicates threshold for statistical significance 

(r>0.131, threshold p=0.05, n = 3 subjects, 160 odors/subject, one tailed t-test) and dots 

are individual subjects. Reliability is computed between different fMRI sessions for S1. 

For S2 and S3, the average ratings acquired in two behavioral sessions outside the scanner 

were correlated with ratings acquired inside the scanner (S2, r=0.589; S3, r=0.660, n = 

3 subjects, 160 odors/subject,). The correlation of odor-wise descriptor ratings (averaged 

across odors) between S2 and S3 was 0.377. b, Histogram of discriminability of odors 

for the average subject. Discriminability between two odors is the absolute difference 

(in standard deviations) of the perceptual feature with maximum difference. c, Perceptual 

similarity matrices for all subjects. Each cell in the matrix depicts the correlation between 

the perceptual ratings of two odors. For illustration, rows and columns are sorted using 

k-means, independently for each subject. d, Generalizability of perceptual ratings across 

subjects is computed as the correlation between the (off-diagonal entries of) the perceptual 

similarity matrices of two subjects and averaged across all subject pairs (r=0.168, p=0.0000, 

n = 3 subjects, 12720 odor pairs/subject, two-tailed t-test). Dots indicate subject pairs. The 

gray line indicates the threshold for statistical significance (r>0.022, threshold p=0.05, n = 3 

subjects, 12720 odor pairs/subject, two-tailed t-test). Errorbars indicate 95% C.I.
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Extended Data Figure 2: Neural responses to odors.
a, Task design comprising of self-paced behavioral task (top-panel) to acquire at least two 

sets of ratings per odor per descriptor and fMRI task (bottom panel) to rate the odors. S1 

provided ratings in all fMRI sessions, whereas S2 and S3 did not rate odors in the third 

fMRI session. b, Odor-evoked fMRI response in each ROI for each subject. Shaded areas 

depict 95% C.I. for the mean (black lines) per subject. Peaks in all areas occurred at least 

4 seconds after odor presentation. Analyses were restricted to up to 6 seconds to avoid 

confounding the neural activity with the perceptual rating task. For OFC in S3, BOLD 

response does not return to baseline, highlighting individual and inter-regional variability 

in the shape of the hemodynamic response. c, Mean percentage of gray matter voxels 

with significant odor-evoked responses for each ROI. Error bars depict 95% C.I. and lines 

depict individual subjects (n=3 subjects, 160 odors/subject). d, Average temporal signal to 

noise ratio (t-snr: mean/standard deviation of the voxel time-series) in an ROI. Bars denote 

mean effects and errorbars are s.e.m. across subjects (n=3 subjects, 160 odors/subject). 

t-snr did not differ significantly across areas (F3,8=0.39, p=0.78, one way ANOVA). e, 

Neural similarity matrices for each ROI in each subject. Each cell in the matrix depicts 

the correlation between the multi-voxel response patterns of two odors. For illustration 

purposes, rows and columns are sorted using k-means (4 total clusters), independently for 

each subject. f, Correlation of neural activity patterns evoked by the same odor in different 

sessions (pattern reliability), averaged across odors and subjects. Error bars indicate s.e.m. 
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across subjects. Pattern reliability is significant in all areas and in all subjects (r>0, p=0.000, 

Wilcoxon signed rank test, (n=3 subjects, 12720 odor pairs/subject)), except PirF in S3 

(r=0.04, p=0.086, Wilcoxon signed rank test, (n=3 subjects, 12720 odor pairs/subject)). g, 
Pattern reliability separately measured between sessions 1 and 2, sessions 2 and 3, and 

sessions 1 and 3. Pattern reliability between sessions 1 and 2 and 2 and 3 is not significantly 

different from pattern reliability between sessions 1 and 3 (F1,6=0.02, p=0.90, repeated 

measures 2-way ANOVA with session pairs and ROI as factors). There was no significant 

main effect of ROI (F3,6=2.07, p=0.206), and no significant interaction (F3,6=2.12, p=0.198), 

suggesting that odor-evoked activity patterns remained stable across fMRI sessions. Error 

bars indicate 95% C.I. For all tests, n=3 subjects, 12720 odor pairs/subject.

Extended Data Figure 3: Representational similarity analysis (RSA) for individual subjects.
RSA analysis based on coarse and fine-grained perceptual similarity for individual subjects. 

Correlations were taken across 12,720 odor pairs. a, Bars depict the Spearman rank-

correlation between neural and coarse perceptual similarity (rc hatched) or fine-grained 

perceptual similarity matrices (rf solid), for individual subjects. Bars indicate mean 

correlation and error bars depict 95% C.I. (perc. bootstrap). In all subjects, fine-grained 

and coarse perceptual representational similarity is significant in AMY and OFC. In subject 

S1, representation of fine-grained perceptual similarity is significantly higher than coarse 

perceptual similarity in OFC, but not in any other area (PirF, rc=0.010, p=0.132, rf=0.012, 

p=0.075 p(rf>rc)=0.692; PirT, rc=0.016, p=0.022, rf=0.017, p=0.019, p(rf>rc)=0.932; 

AMY, rc=0.018, p=0.002, rf=0.025, p=0.0000, p(rf>rc)=0.127; OFC, rc=0.037, p=0.0000, 

rf=0.061, p=0.0000, p(rf>rc)=0.0000; A1, rc=0.005, p=0.472, rf=−0.0001, p=0.988, 

p(rf>rc)=0.312; wm, rc=0.006, p=0.351, rf=−0.002, p=0.721, p(rf>rc)=0.057, two-tailed 

bootstrap comparison). In subject S2, representation of fine-grained perceptual similarity 

is significantly higher than coarse perceptual similarity in OFC, but not in other 

areas (PirF, rc=−0.005, p=0.442, rf=−0.013, p=0.050, p(rf>rc)=0.060; PirT, rc=0.002, 

p=0.793, rf=0.009, p=0.223, p(rf>rc)=0.095; AMY, rc=0.026, p=0.0000, rf=0.030, p=0.0000, 

p(rf>rc)=0.290; OFC, rc=0.051, p=0.0000, rf=0.067, p=0.0000, p(rf>rc)=0.0000; A1, 
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rc=0.012, p=0.076, rf=0.016, p=0.015, p(rf>rc)=0.290; wm, rc=−0.003, p=0.619, rf=−0.006, 

p=0.330, p(rf>rc)=0.463, two-tailed bootstrap comparison). In subject S3, representation of 

fine-grained perceptual similarity is significantly higher than coarse perceptual similarity in 

PirT, AMY and OFC, but not in PirF, A1 and wm (PirF, rc=0.007, p=0.295, rf=0.0002, 

p=0.960, p(rf>rc)=0.177; PirT, rc=0.026, p=0.0000, rf=0.039, p=0.0000, p(rf>rc)=0.009; 

AMY, rc=0.030, p=0.0000, rf=0.041, p=0.0000, p(rf>rc)=0.018; OFC, rc=0.101, p=0.0000, 

rf=0.122, p=0.0000, p(rf>rc)=0.0000; A1, rc=−0.0002, p=0.976, rf=0.005, p=0.460, 

p(rf>rc)=0.282; wm, rc=0.005, p=0.476, rf=−0.002, p=0.771, p(rf>rc)=0.553, two-tailed 

bootstrap comparison). Thus, OFC is the only ROI where the fine-grained RSA exceeds 

the coarse RSA in all three subjects. b, Difference between the neural representation of 

fine-grained and coarse perceptual similarity in a (r). Bars depict mean correlation difference 

in each subject, error bars depict 95% C.I. (perc. bootstrap). The difference is significantly 

larger in OFC than in PirF in all subjects (OFC-PirF all subjects, p=0.0000), in PirT for 

S1 (p=0.0012) but not S2 (p=0.106) or S3 (p=0.211) and in AMY for S1 (p=0.0012) and 

S2 (p=0.025) but not in S3 (p=0.171) (two-tailed bootstrap comparison, 12720 odor pairs). 

The difference between the coarse and fine-grained RSA is maximum in OFC across areas 

for all subjects. Further, OFC is the only area where the difference between the coarse and 

fine-grained RSA is significant across all subjects.
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Extended Data Figure 4: Control analyses for RSA.
We performed control RSAs in olfactory ROIs as well as control areas A1 (primary auditory 

cortex) and wm (white matter voxels). For statistics on subject-wise results, see Extended 

Data Table 2. a, (Top panel) bars depict the Spearman rank-correlation between neural and 

coarse (rc hatched) or fine-grained perceptual similarity matrices (rf solid), averaged across 

subjects, adjusted to include intensity and pleasantness. rf>rc in all areas except PirF, A1 

and wm. All p-values are based on null hypothesis rc = rf, tested using two tailed bootstrap 

comparison (PirF, rc=0.005, rf=0.005, p=0.992; PirT, rc=0.022, rf=0.035, p=0.0000; AMY, 

rc=0.040, rf=0.059, p=0.0000; OFC, rc=0.084, rf=0.120, p=0.0000; A1, rc =0.014, rf =0.015, 

p=0.734; wm, rc =0.008, rf =0.002, p=0.03). Note that in wm, rc significantly exceeds rf 

(i.e., rc>rf), which is the opposite of what is expected and found in olfactory brain areas, 

and testing rf>rc using a one-tailed test is not significant (p=0.97). (Bottom panel) Difference 

between the fine-grained and coarse representational similarity in a, top panel (r). Difference 
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is significantly higher in OFC than in PirF, PirT, AMY, A1 or wm (all areas, p=0.0000, 

two-tailed bootstrap comparison). b, (Top panel) bars depict the Spearman rank correlation 

between neural and coarse (rc hatched) or fine-grained perceptual similarity matrices (rf 

solid), averaged across subjects, adjusted to account for differences in size of the ROI. 70 

voxels were chosen with replacement from each ROI and subject to construct the neural 

similarity matrix. rf>rc only in the OFC and not other areas (PirF, rc=0.004, rf=0.000, 

p=0.196; PirT, rc=0.012, rf=0.018, p=0.080; AMY, rc=0.019, rf=0.026, p=0.077; OFC, 

rc=0.049, rf=0.064, p=0.0000; A1, rc =0.005, rf =0.006, p=0.745; wm, rc =0.002, rf =−0.002, 

p=0.172). (Bottom panel) Difference between the fine-grained and coarse representational 

similarity in b, top panel (r). Difference is significantly higher in OFC than in PirF, A1 or 

wm (p=0.0000) and trending for PirT (p=0.053) and AMY (p=0.074). c, (Top panel) bars 

depict the Spearman rank correlation between neural and coarse (rc hatched) or fine-grained 

perceptual similarity matrices (rf solid), averaged across subjects, adjusted to account for 

perceptual correlations with molecular features. 4869 molecular features were used to 

construct the molecular similarity matrix. Molecular similarity was regressed out from both 

fine-grained and coarse perceptual similarity matrices. rf>rc in all areas except PirF, A1 and 

wm (PirF, rc=0.003, rf=−0.000, p=0.113; PirT, rc=0.013, rf=0.020, p=0.010; AMY, rc=0.021, 

rf=0.029, p=0.002; OFC, rc=0.058, rf=0.078, p=0.0000; A1, rc =0.004, rf =0.006, p=0.538; 

wm, rc =0.002, rf =−0.003, p=0.060). (Bottom panel) Difference between the fine-grained 

and coarse representational similarity in c, top panel (r). Difference is significantly higher 

in OFC than all areas (PirF, A1, wm, p=0.0000; PirT, p=0.0004; AMY, p=0.0002). d, (Top 

panel) bars depict the Spearman rank correlation between neural and coarse (rc hatched) 

or fine-grained perceptual similarity matrices (rf solid), averaged across subjects, after 

excluding odors with low detectability. rf>rc all areas except wm (PirF, rc=0.002, rf=−0.007, 

p=0.005; PirT, rc=0.006, rf=0.015, p=0.008; AMY, rc=0.021, rf=0.030, p=0.007; OFC, 

rc=0.051, rf=0.078, p=0.0000; A1, rc =0.000, rf =0.087, p=0.049; wm, rc =−0.001, rf =0.000, 

p=0.701). (Bottom panel) Difference between the fine-grained and coarse representational 

similarity in d, top panel (r). Difference is significantly higher in OFC than all areas (PirF, 

AMY, A1, wm p=0.0000; PirT, p=0.0001;). e, (Top panel) bars depict the Spearman rank 

correlation between neural and coarse (rc hatched) or fine-grained perceptual similarity 

matrices (rf solid), averaged across subjects when neural responses were extracted from the 

same time bin (5 second after odor onset) in all areas and subjects. rf>rc in PirT, AMY 

and OFC but not other areas (PirF, rc=−0.001, rf=0.002, p=0.184; PirT, rc=0.013, rf=0.020, 

p=0.012; AMY, rc=0.030, rf=0.038, p=0.002; OFC, rc=0.060, rf=0.081, p=0.0000; A1, rc 

=0.002, rf =0.002, p=0.859; wm, rc =0.000, rf =0.001, p=0.733). (Bottom panel) Difference 

between the fine-grained and coarse representational similarity in e, top panel (r). Difference 

is significantly higher in OFC than all areas (all areas, p=0.0000). f, (Top panel) bars depict 

the Pearson’s (instead of Spearman) correlation between neural and coarse (rc hatched) or 

fine-grained perceptual similarity matrices (rf solid), averaged across subjects. rf>rc only in 

PirT, AMY and OFC but not other areas (PirF, rc=0.002, rf=0.002, p=0.97; PirT, rc=0.016, 

rf=0.022, p=0.046; AMY, rc=0.027, rf=0.037, p=0.002; OFC, rc=0.070, rf=0.093, p=0.0000; 

A1, rc =0.005, rf =0.008, p=0.360; wm, rc =0.002, rf =0.000, p=0.364). (Bottom panel) 

Difference between the fine-grained and coarse representational similarity in f, top panel 

(r). Difference is significantly higher in OFC than all areas (all areas, p=0.0000). For all 
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panels, error bars depict 95% C.I. (perc. bootstrap) and comparisons are based on two tailed 

bootstrap comparison., n=3 subjects, 12720 odor pairs/subject.

Extended Data Figure 5: Statistical control analyses for RSA.
a, To account for potential statistical biases in the bootstrap procedure, we performed 

additional permutation tests for perceptual and molecular RSA effects (Figure 2b). For this, 

we generated null distributions by randomly shuffling perceptual and molecular ratings 

across odors. Plots show the means and 95% C.I. for the null distributions of perceptual 

and molecular RSA effects, which were (as expected) not significantly different from zero 

in any area for any subject (p>0.2, all areas, all subjects). Solid lines indicate 95% C.I. 

for perceptual RSA and dashed lines indicate 95% C.I. (two tailed percentile bootstrap) 

for molecular RSA. Importantly, we used these null distributions to compute p-values for 

the perceptual and molecular RSA shown in Figure 2b, confirming that rp is significant in 

PirT (p=0.0000), AMY (p=0.0000), OFC (p=0.0000), A1 (p=0.008) but not PirF (p=0.308) 

or wm (p = 0.733). Moreover, rp significantly exceeds rm in OFC (p=0.0000) but not in 

PirF (p=0.288), PirT (p=0.102), AMY (p=0.173), A1 (p = 0.99) or wm (0.741, two tailed 

permutation test). To further test for biases in the bootstrap approach, we tested whether the 

number of odor pairs selected in each bootstrap affects the results. That is, we computed 

the correlation between the number of unique odor pairs in each bootstrap and rp and rm 

which was not significant in most areas and subjects (all areas, p>0.05, one sample t-test) 

except AMY in S1 (p = 0.035, one sample t-test). b, To account for potential statistical 

biases in the bootstrap procedure, we performed additional permutation tests for coarse and 

fine-grained perceptual RSA effects (Figure 3b). Similar to the analysis described in panel a, 

we generated null distributions by randomly shuffling perceptual ratings across odors. Plots 

show the means and 95% C.I. (two tailed percentile bootstrap) for the null distributions of 

coarse and fine-grained perceptual RSA effects, which were (as expected) not significantly 

different from zero in any area for any subject (p>0.2, all areas, all subjects). Solid lines 

indicate 95% C.I. for fine-grained RSA and dashed lines indicate 95% C.I. for coarse RSA. 

Importantly, we used these null distributions to compute p-values for the coarse and fine-

grained perceptual RSA effects shown in Figure 3b, confirming that rc is significant in PirT 

(p=0.006), AMY (p=0.0000), OFC (p=0.0000), but not PirF (p=0.401), A1 (p=0.280) or wm 

(p = 0.589), whereas rf is significant PirT (p=0.0003), AMY (p=0.0000), OFC (p=0.0000), 

but not PirF (p=0.98), A1 (p=0.182) or wm (p = 0.660). Moreover, rf > rc is significant in 

AMY (p=0.0232), OFC (p=0.0000) and trending in PirT (p = 0.051), but not significant in 

PirF (p=0.198), A1 (p = 0.651) or wm (0.147, two tailed permutation test). c, To further 

validate our RSA results, we compared rc and rf in olfactory areas to rc and rf in our 

control area A1. All olfactory areas (except PirF) had significantly larger representational 
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similarities for fine-grained (rf) odor percepts than A1 (difference between representational 

similarities in the ROI and A1 denoted by ROI-A1, (rc: PirF-A1, p = 0.794; PirT-A1, p = 

0.058; AMY-A1, p =0.0000; OFC-A1, p =0.0000; wm-A1, p = 0.601; rf : PirF-A1 , p = 

0.161; PirT-A1 , p = 0.002; AMY-A1, p = 0.0000; OFC-A1, p = 0.0000; wm-A1, p = 0.086, 

two tailed bootstrap comparison). For all panels, bars indicate mean effects and error bars 

depict 95% C.I. (perc. bootstrap), n=3 subjects, 12720 odor pairs/subject.

Extended Data Figure 6: RSA control analyses for intensity, pleasantness and sniff evoked 
activity.
a, We examined representational similarities based exclusively on intensity or pleasantness. 

The intensity RSA is significant in all areas (PirF, PirT, AMY, OFC, A1, p=0.0000; wm, 

p = 0.033), while the pleasantness RSA is significant only in the olfactory areas: PirF, 

PirT, AMY and OFC but not A1 or wm (PirF, p = 0.002; PirT, AMY, OFC, p=0.0000; 

A1, p = 0.105; wm, p = 0.42, two tailed bootstrap comparison, n=3 subjects, 12720 

odor pairs/subject). b, RSA results when intensity or pleasantness is regressed out of the 

perceptual descriptor ratings. Two RSA models were constructed: one without intensity and 

one without pleasantness. The RSA without intensity is significant in PirT, AMY and OFC 

but not PirF, A1 or wm (PirF, p = 0.345; PirT, p = 0.006; AMY, p=0.0000; OFC, p=0.0000; 

A1, p = 0.903; wm, p = 0.125). The RSA without pleasantness is significant in PirF, PirT, 

AMY, OFC, A1 but not wm (PirF, p = 0.039; PirT, AMY, OFC, A1, p =0.0000; wm, p = 

0.778, two tailed bootstrap comparison). This suggests that perceptual encoding does not 

exclusively rely on intensity and/or pleasantness in olfactory areas (PirT, AMY or OFC) 

and that RSA results in the A1 control area are exclusively driven by odor intensity. For 

all tests, n=3 subjects, 12720 odor pairs/subject. c, Pearson’s correlation of intensity ratings 

and sniff volumes (averaged across all trials) across 160 odors for each subject. d, Pearson’s 

correlation of intensity ratings and sniff durations (averaged across all trials) across 160 
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odors for each subject. e, Regressing odor similarity based on sniff volume from intensity 

and pleasantness similarity and computing the residual RSA for intensity and pleasantness 

(similar to a). The intensity RSA is significant in all areas (PirF, PirT, AMY, OFC, A1, 

p=0.0000, two-tailed boostrap comparison) except wm, p = 0.128, while the pleasantness 

RSA is significant only in the olfactory areas: PirF, PirT, AMY and OFC but not A1 or wm 

(PirF, p = 0.001; PirT, p = 0.002; AMY, OFC, p=0.0000; A1, p = 0.639; wm, p = 0.543, 

n=3 subjects, 12720 odor pairs/subject). f, Regressing odor similarity based on sniff duration 

from intensity and pleasantness similarity and computing the residual RSA for intensity and 

pleasantness (similar to a). The intensity RSA is significant in all areas (PirF, PirT, AMY, 

OFC, p=0.0000; A1,p = 0.001, two tailed boostrap comparison) except wm, p = 0.392, 

while the pleasantness RSA is significant only in the olfactory areas: PirF, PirT, AMY and 

OFC but not A1 or wm (PirF, p = 0.005; PirT, p = 0.044; AMY, p=0.004; OFC, p=0.0000; 

A1, p = 0.616; wm, p = 0.792, n=3 subjects, 12720 odor pairs/subject). g, We regressed 

odor similarity based on sniff volume from coarse and fine-grained perceptual similarity and 

computed the residual RSA. Results are similar to Figure 3b. rf>rc in all areas except PirF, 

A1 and wm (PirF, rc=0.002, rf=−0.001, p=0.150; PirT, rc=0.012, rf=0.018, p=0.019; AMY, 

rc=0.021, rf=0.029, p=0.004; OFC, rc=0.059, rf=0.098, p=0.0000; A1, rc =0.003, rf =0.004, 

p=0.638; wm, rc =0.002, rf =−0.003, p=0.055). h, We regressed odor similarity based on 

sniff duration from coarse and fine-grained perceptual similarity and computed the residual 

RSA. Results are similar to Figure 3b. rf>rc in all areas except PirF, A1 and wm (PirF, 

rc=0.003, rf=−0.001, p=0.090; PirT, rc=0.012, rf=0.018, p=0.006; AMY, rc=0.020, rf=0.027, 

p=0.003; OFC, rc=0.057, rf=0.077, p=0.0000; A1, rc =0.003, rf =0.004, p=0.680; wm, rc 

=0.002, rf =−0.003, p=0.063). In all panels, error bars indicate 95% C.I.

Extended Data Figure 7: RSA for increasing numbers of perceptual descriptors.
a Perceptual representational similarity as a function of the number of perceptual descriptors 

used in estimating perceptual similarity. The case when only 1 descriptor is used 

corresponds to coarse representational similarity while the case when 16 descriptors are used 
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corresponds to fine-grained representational similarity (Figure 3b). b, Slope of perceptual 

representational similarity as a function of number of perceptual descriptors used. Error bars 

are s.e.m. across subjects. Slopes are maximal for OFC in all subjects (F3,8=6.99, p=0.013, 

one way ANOVA, n = 3 subjects). This indicates that fine-grained representational similarity 

in the OFC increases as additional descriptors are added in the model.

Extended Data Figure 8: Control analyses for encoding models.
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a, Mean prediction accuracy of the encoding model using 14 orthogonal principal 

components (explaining at least 90% of the variance) of the perceptual descriptors as basis 

functions. B, Percentage of odor-responsive gray matter voxels with significant prediction 

accuracy (threshold p=0.05, one-tailed one-sample t-test, FDR corrected) with PCA basis. 

c, Dimensionality of encoding for the encoding model with PCA basis. Dimensionality of 

encoding increases from PirF to OFC (p=0.000, FWE against the null hypothesis κ(PirF)= 

κ(PirT)= κ(AMY)= κ(OFC), two-tailed bootstrap comparison). d, Mean prediction accuracy 

of the encoding model with 4-fold cross-validation where training and test odors came 

from independent scanning sessions. e, Percentage of odor-responsive gray matter voxels 

with significant prediction accuracy (threshold p=0.05, one-tailed one-sample t-test, FDR 

corrected) for encoding model with 4-fold cross-validation. f, Dimensionality of encoding 

for the encoding model with 4-fold cross-validation. Dimensionality of encoding increases 

from PirF to OFC (p=0.000, FWE against the null hypothesis κ(PirF)= κ(PirT)= κ(AMY)= 

κ(OFC), two-tailed bootstrap comparison). g, Prediction accuracy of encoding model with 

shuffled perceptual ratings is not significant for any area in any subject (p > 0.1, all areas, all 

subjects, two tailed shuffle test). h, Mean prediction accuracy of the encoding model without 

odors with low detectability is significantly greater than zero in all ROIs and subjects 

(except PirF in subject S1, p=0.65, PirF S3, p=0.03, remaining areas/subjects p=0.0000, two 

sided Wilcoxon signed rank test). These results are qualitatively similar to those obtained 

when odors with low detectability are included (Figure 4c). i, Mean prediction accuracy of 

encoding model in primary auditory cortex (A1) and white matter (wm) (A1, mean r= 0.027; 

wm mean r = 0.045) are much lower than those observed in olfactory areas (Figure. 4c). 

j, Percentage of voxels in A1 and wm that show significant prediction accuracy (threshold 

p=0.05, one-tailed one-sample t-test, FDR corrected). For all panels, bars indicate mean 

effects and error bars indicate 95% C.I.. All tests were based on n=3 subjects, 160 odors/

subject.
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Extended Data Figure 9: Dimensionality of encoded perceptual spaces for individual subjects.
a, Cumulative percentage of explained variance in the voxel-wise encoding weights as a 

function of the number of principal components, for individual subjects. b, Dimensionality 

parameter (κ) is proportional to area under the curve in a and reflects the number of 

principal components required to explain a given percentage of variance explained in each 

subject. Bars depict mean effect and error bars depict 95% C.I. (perc. bootstrap) across 

n=3 subjects. The dimensionality of perceptual encoding is maximum in OFC in each 

subject and significantly different across areas (p=0.000 (FWE corrected) against the null 

hypothesis κ(PirF)= κ(PirT)= κ(AMY)= κ(OFC), two-tailed bootstrap comparison, n=3 

subjects, 160 odors/subject). c, Dimensionality estimation adjusted for differences in ROI 

size. 25 voxels were chosen with replacement from each ROI to estimate the principal 

components in each bootstrap. d, Adjusted dimensionality increases from PirF to PirT to 

AMY and to OFC. Adjusted dimensionality is maximum in OFC and significantly different 

across areas (p=0.002 (FWE corrected) against the null hypothesis κ(PirF)= κ(PirT)= 

κ(AMY)= κ(OFC), two-tailed bootstrap comparison, n=3 subjects, 160 odors/subject). Error 

bars indicate 95% C.I. e Average PCA coefficients of perceptual feature weights for different 

principal components in PirF, PirT and AMY. PC1 is primarily driven by intensity, whereas 

subsequent components are more heterogeneous in all ROIs.
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Extended Data Figure 10: Subject-specific and cross-subject encoding model.
a, Mean prediction accuracy of encoding models based on fMRI data and perceptual ratings 

provided by the same subject (subject-specific encoding model [EM], dark) and fMRI data 

and ratings provided by different subjects (cross-subject EM, light bars). Subject-specific 

encoding models have a significantly higher prediction accuracy compared to cross-subject 

encoding models (F1,15=12.58, p=0.016, repeated measures 2-way ANOVA with subjective-

specific vs. cross-subject and ROI as factors). There was no significant main effect of ROI 

(F3,15=0.62, p=0.615), and no significant interaction (F3,15=0.84, p=0.494). b, Differences 

between the prediction accuracy of subject-specific and cross-subject encoding models. 

All encoding models were based on 14 principal components of perceptual ratings that 

explained at least 90% of variance. Lines depict individual subject pairs. Error bars are 

s.e.m. across all six subject pairs.
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Figure 1. Neural activity patterns in olfactory brain areas represent odor stimuli.
a, Trial structure. During fMRI scanning, subjects were cued to sniff on each trial. If 

they reported detecting an odor (Extended Data Figure 2), they rated the odor on one 

of the perceptual descriptors listed in panel 1b. Odors were presented 27–30 times in 

pseudorandomized order across multiple sessions, and only one descriptor rating was 

obtained on each trial (see Methods). b, Perceptual ratings for two example odors (methyl 

tributyrate and 2-methyl-1-butanol). Subjects rated odors on 18 perceptual descriptors (note 

that these were drawn from a total of 21 descriptors, see Methods section for details). S1 

rated 2-methyl-1-butanol as sweaty and decayed, but S2 found the same odor to be pleasant 

and floral, highlighting the substantial variability in odor perception across individuals. 

c, Anatomical regions of interest (ROIs) shown for subject S1 (PirF: frontal piriform 

cortex, PirT: temporal piriform cortex, AMY: amygdala, OFC: orbitofrontal cortex, A1: 

Auditory Cortex, wm: White Matter). In each of the olfactory ROIs, significant odor-evoked 

activity was observed with similar temporal signal-to-noise ratio in the voxel time series 

(Extended Data Figure 2). Shaded area shows field of view for scanning. d, Difference 

between pattern correlation (Δr) among activity patterns evoked by the same minus different 

odors in different fMRI sessions. Multi-voxel patterns were more similar (across sessions) 
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when comparing responses evoked by the same odor vs. different odors in all four ROIs 

(Δr>0, p=0.0000 in all areas, n = 3 subjects, 12720 odor pairs/subject, two-tailed percentile 

bootstrap; p=0.0000 in all areas, n=3 subjects, 12720 odor pairs/subject, two sample t-test). 

Bars depict mean correlation difference and error bars depict 95% confidence intervals. S1, 

S2, and S3 indicate subjects 1, 2, and 3.
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Figure 2. Neural activity patterns represent perceptual odor percepts.
a, Representational similarity analysis (RSA) schematic. For each subject, we computed 

similarity matrices comparing each odor pair in neural and perceptual spaces. The 

representational similarity for a given ROI is measured as the Spearman rank-correlation 

(r) between the off-diagonal entries of these matrices. b, RSA results (PirF: frontal piriform 

cortex, PirT: temporal piriform cortex, AMY: amygdala, OFC: orbitofrontal cortex; control 

areas: A1: auditory cortex, wm: white matter). Bars depict the correlation between neural 

and perceptual similarity (rp, dark bars), or neural and molecular similarity (rm, light bars). 

rp is significant in all areas except PirF and wm (PirF, rp=0.005, p=0.184; PirT, rp=0.035, 

p=0.0000; AMY, rp=0.059, p=0.0000; OFC, rp=0.120, p=0.0000; A1, rp=0.015, p=0.0003; 

wm, rp=0.001, p=0.696; two-tailed bootstrap comparison). rm is significant in all areas 

except wm (PirF, rm=0.012, p=0.001; PirT, rm=0.024, p=0.0000; AMY, rm=0.050, p=0.0000; 

OFC, rm=0.077, p=0.0000; A1, rm=0.015, p=0.0004; wm, rm=0.004, p=0.334; two-tailed 

bootstrap comparison). rp exceeds rm in PirT and OFC but not in other areas (rp>rm: 

PirF, p=0.172; PirT, p=0.031; AMY, p=0.074; OFC, p=0.0000; A1, p=0.972; wm, p=0.671; 

two-tailed bootstrap comparison). For all tests, n=3 subjects, 12720 odor pairs/subject. Bars 

indicate mean correlation and error bars depict 95% confidence intervals. S1, S2, and S3 

indicate subjects 1, 2, and 3. We did not observe significant effects when perceptual or 

molecular descriptors were randomly shuffled (Extended data Figure 5a).
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Figure 3. Neural activity patterns represent fine-grained odor percepts
a, Perceptual ratings (excluding intensity and pleasantness) for two odors (ethyl propionate 

and ethyl butanoate), and the element-wise product of their ratings (green), which is 

maximal for the fruity dimension. Coarse similarity between two odors was defined as the 

element-wise product of their most dominant perceptual descriptor rating. b, Coarse vs. fine-

grained RSA. Neural representation of coarse perceptual similarity (rc, hatched bars) and 

fine-grained perceptual similarity (rf, solid bars) is significant in PirT, AMY and OFC but 

not in PirF, A1 or wm (PirF, rc=0.004, p=0.290; PirT, rc=0.015, p=0.0012; AMY, rc=0.024, 

p=0.0000; OFC, rc=0.063, p=0.0000; A1, rc=0.005, p=0.162; wm, rc=0.002, p=0.510; PirF, 

rf=−0.0003, p=0.965; PirT, rf=0.021, p=0.0000; AMY, rf=0.032, p=0.0000; OFC, rf=0.083, 

p=0.0000; A1, rf=0.007, p=0.085; wm, rf=−0.002, p=0.572, two-tailed percentile bootstrap). 

Further rf is significantly higher than rc in PirT, AMY and OFC, but not in PirF, A1 or 

wm (PirF, p=0.104; PirT, p=0.012; AMY, p=0.002; OFC, p=0.0000; A1, p=0.556; wm, 

p=0.060; two-tailed percentile bootstrap). rf is also significantly higher than rc in PirT 

(p=0.040), AMY (p=0.020) and OFC (p=0.0000) when corrected for multiple comparisons 

across areas (FDR correction). For subject-wise data, see Extended Data Figure 3 and 

Supplementary Table 2. c, Difference between the neural representation of fine-grained and 

coarse perceptual similarity is significantly larger in OFC than in PirF, PirT, and AMY 
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(p=0.0000, two-tailed bootstrap comparison). d, The t-value of the difference between the 

neural representation of fine-grained and coarse perceptual similarity depicted in c for OFC, 

computed for odor sets of different sizes. The difference is significant when at least 90 odors 

are included (threshold p=0.05, two-tailed bootstrap comparison, solid line). In all panels, 

bars depict mean effects and error bars depict 95% confidence intervals (n=3 subjects, 12720 

odor pairs/subject). S1, S2, and S3 indicate subjects 1, 2, and 3. We obtained identical 

results from additional shuffle tests for representational similarities (Extended data Figure 

5b). Coarse and fine-grained representational similarities in A1 are significantly smaller than 

the effects found in PirT, AMY and OFC (Extended data Figure 5c), and rp in A1 are driven 

exclusively by odor intensity (Extended data Figure 6b).
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Figure 4: Modeling odor-evoked activity using individual perceptual spaces.
a, Schematic of the voxel-wise encoding model. The model predicts voxel-wise fMRI 

activity based on olfactory perceptual features (e.g., garlic [white], mint [green], fish [blue], 

etc. for both training odor on the left and test odor on the right). In the model training 

step (left), voxel-wise encoding weights for perceptual features are estimated to optimally 

fit fMRI activity (fMRI response: black bars, model fits: magenta bars, individual odors are 

denoted by shapes). In model testing (right), estimated encoding weights are used to predict 

fMRI responses to an out-of-sample set of test odors using olfactory perpetual ratings as 

input. Prediction accuracy is defined as the Pearson correlation between the predicted and 

observed fMRI responses. b, Voxels in olfactory cortices with significant out-of-sample 

prediction accuracy for individual subjects (threshold p=0.05, one-tailed one-sample t-test, 

FDR corrected). c, Average prediction accuracy in odor-responsive gray matter voxels 

by ROI. d, Percentage of odor-responsive gray matter voxels with significant prediction 

accuracy (threshold p=0.05, one-tailed one-sample t-test, FDR corrected). e, Magnitude of 

absolute encoding weights averaged across significant voxels by ROI. Dark lines illustrate 

significant encoding weights (threshold p=0.05, FWE corrected, two-tailed perc. bootstrap). 

f, Cumulative percentage of explained variance in the voxel-wise encoding weights as 

a function of the number of principal components, averaged across subjects by ROI. g, 
Dimensionality (κ) is proportional to the area under the curves depicted in f and reflects 

the number of principal components required to explain a given percentage of variance. The 
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dimensionality of perceptual encoding increases from PirF and PirT to AMY, and AMY to 

OFC (p=0.0000, for all pairs except PirF-PirT, p=0.102, two tailed bootstrap comparison). 

This increase in dimensionality was consistently observed in all subjects individually and 

was robust when accounting for differences in ROI size (Extended Data Figure 9). Encoding 

models in the control areas revealed only low prediction accuracies (A1, mean r=0.027; wm, 

mean r=0.045, Extended Data Figure 8i–j). In all panels, bars denote mean effects and error 

bars depict 95% C.I. (perc. bootstrap) based on n = 3 subjects, 160 odors/subject.
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Figure 5: Encoding of idiosyncratic perceptual spaces in the orbitofrontal cortex.
a, Box plots of correlation coefficients between voxel-wise encoding weights across 

subjects in each ROI. Encoding weights in PirF, PirT, and AMY are significantly more 

similar across subjects than encoding weights in OFC [r2 (OFC) < r2 (PirF), p=0.0000; 

r2 (OFC) < r2 (PirT), p=0.0002; r2 (OFC) < r2 (AMY), p=0.030, two-tailed bootstrap 

comparison)]. The same number of voxel pairs were selected in all areas. Center lines 

correspond to the median; box limits are upper and lower quartiles; whiskers denote 1.5x 

interquartile range and points are outliers. b, Inter-subject correlation matrix for the first four 

principal components of encoding weights in OFC. The correlations of PCA coefficients 

across subjects for matching principal components (matched using the “stable marriage” 

algorithm) are highlighted in magenta triads. c, Average inter-subject correlation of different 

principal components in OFC. Bars denote mean effects and error bars depict 95% C.I. 

Principal Component 1 (PC1) is significantly more consistent across subjects than PC2-PC4 

(F3,8=13.41, p=0.002, one way ANOVA). Lines show cross-subject correlation for individual 

subject pairs. d, Average PCA coefficients of perceptual feature weights for different 

principal components. PC1 is primarily driven by intensity, whereas subsequent components 

are more heterogeneous. S1, S2, and S3 indicate subjects 1, 2, and 3. PCA coefficients for 

PirF, PirT, and AMY are shown in Extended Data Figure 9e. In all panels, effects are based 

on n=3 subjects, 160 odors/subject.
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