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Abstract

Morbidities generally show patterns of concentration that vary by space and time. Disease 

mapping models are useful in estimating the spatiotemporal patterns of disease risks and are 

therefore pivotal for effective disease surveillance, resource allocation, and the development of 

prevention strategies. This study considers six spatiotemporal Bayesian hierarchical models based 

on two spatial conditional autoregressive priors. It could serve as a guideline on the development 

and application of Bayesian hierarchical models to assess the emerging risk trends, risk clustering, 

and spatial inequality trends, with estimation of covariables’ effects on the interested disease 

risk. The method is applied to the Florida Birth Record data between 2006 and 2015 to study 

two cardiovascular risk factors: preeclampsia and gestational diabetes. High-risk clusters were 

detected in North Central Florida for preeclampsia and in Central Florida for gestational diabetes. 

While the adjusted disease trend was stable, spatial inequality peaked in 2011–2012 for both 

diseases. Exposure to PM2.5 at first or/and second trimester increased the risk of preeclampsia and 

gestational diabetes, but the magnitude is less severe compared to previous studies. In conclusion, 

this study underscores the significance of selecting appropriate disease mapping models in 

estimating the intricate spatiotemporal patterns of disease risk and suggests the importance of 
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localized interventions to reduce health disparities. The result also identified an opportunity to 

study potential risk factors of preeclampsia, as the spike of risk in North Central Florida cannot be 

explained by current covariables.
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Introduction

The occurrence of a disease or health condition such as cancer is not randomly distributed 

across geographical areas; rather, it exhibits patterns of aggregation or dispersion (Cramb et 

al. 2017; Yin et al. 2014). Consequently, disease mapping models are proposed to smooth 

and visualize the spatial distribution of disease. These mapping models typically use areal 

data, wherein information is aggregated within defined geographic unit such as a county or 

census tract (Lawson 2018). These models aim to estimate the relative risk of disease in each 

geographic unit, especially within small administrative district or regions, by comparing the 

observed case count in that unit against the expected case number derived from a reference 

population (Waller and Carlin 2010). Therefore, they can be used to identify geographic 

areas with high or low disease incidence or prevalence and can help public health authorities 

allocate resources and develop targeted interventions (Lawson 2018).

Bayesian hierarchical models (BHM) have emerged as the preeminent choice for disease 

mapping since the 1990s (MacNab 2022). BHM involves the prior distribution as an 

underlying process model for the disease risks, which can accommodate the spatial 

correlation among the local disease risks either through conditional autoregressive (CAR), 

B-spline, or aggregation of risks on a continuous surface (Besag et al. 1991; Kottas et al. 

2008; Orozco-Acosta et al. 2023; Ugarte et al. 2017). Therefore, all unknown quantities 

and parameters can be estimated, and the uncertainties of risk can be better quantified. In 

addition, the model can borrow more information from neighbors than from distant areas, 

smoothing the extreme values on small areas to local “neighboring” values (MacNab 2022).

Spatiotemporal extension of traditional spatial disease mapping models is an important 

topic, as trends can also show spatial dependence (Anderson et al. 2017). The extension 

can offer a more comprehensive understanding of disease dynamics, accounting for both 

spatial and temporal dependencies concurrently. It can be achieved through additional 

interaction parameters (Knorr-Held 2000), or through spatially varying but correlated risk 

trends, encompassing both linear and nonlinear forms (MacNab and Dean 2001; Ugarte et 

al. 2017). Alternative approaches amalgamate both the spatial and temporal effect in a single 

set of random effect (Rushworth et al. 2014).

In this study, we revisited some spatiotemporal extensions of two classical CAR priors 

that are widely used in the analysis of spatial count data. They were applied to model 

two cardiovascular disease (CVD) risk factors: preeclampsia (PE) and gestational diabetes 

mellitus (GDM) risk in Florida between 2006 and 2015. The objective is to assess the impact 
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of PM2.5 more accurately while identifying the spatiotemporal pattern of PE/GDM risk in 

Florida. We compared six models pertinent to our data and presented the findings from the 

selected one.

Methodology

Relevant concepts

Standardized incidence ratio (SIR)—The use of SIR is a well-established method for 

disease mapping, allowing for the identification of relative risk in different geographic areas 

(Rioux et al. 2006). SIR is calculated by dividing the observed number of incidents by the 

number of cases that are “expected” in that location. In this study, we calculated expected 

case number for each county in Florida using data from all registered births during the study 

period, adjusting for mothers’ race (African American/other races), ethnicity (Hispanic/not 

Hispanic), age (over 35 years/35 years or under), and BMI (body mass index) (>=30 or <30).

Weight matrix—A spatial weights matrix represents the spatial structure of data. Each 

element defines the level of spatial connectivity between two locations (Zhou and Lin 2008). 

Spatial weights matrix can be roughly categorized as distance-based and contiguity-based. 

In this study, the spatial weight matrix W was created by first order queen contiguity, which 

is commonly used in disease mapping (Duncan et al. 2017). The elements of W are defined 

as W ij = 1 if location i is adjacent to location j, and 0 otherwise. There are 67 counties in 

Florida, making W a 67 × 67 symmetric matrix.

Spatial autocorrelation—Spatial autocorrelation is the correlation of a variable with 

itself across space. The existence of spatial autocorrelation means that samples taken from 

nearby areas are related to each other and are not independent (Griffith 2009). Moran’s I 

test was used to measure the global spatial autocorrelation. Moran’s I statistics range from 

−1 to 1. I > 0 represents positive spatial autocorrelation (neighbors have similar values), 

I < 0 represents negative relationships (high values located close to low values), and I = 

0 means there is no spatial autocorrelation, and the disease was randomly distributed over 

space (Getis 2010). In 2021, functional Moran’s I based on spatial-functional PCA was 

proposed to extend Moran’s I statistic to the functional context (Hassan 2021). The extended 

method is useful in identifying the spatial dependency over time by dimension reduction. 

Local Indicators of Spatial Association (LISA) was conducted through the local Moran’s I 

test to detect clusters of risk by measuring spatial associations in sub-regions of the study 

area (Getis 2010). LISA decomposes global autocorrelation into the individual observations.

Bayesian hierarchical models

We adopted Bayesian hierarchical models to incorporate complex model levels with spatial 

and temporal dependence structures. The general Bayesian hierarchical model for Poisson 

distributed spatiotemporal count data is as follows:

Y kt ∼ Poisson(μkt), (1.1)
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ln(μkt) = Xkt
T β + Okt + ψkt, (1.2)

β ∼ Nq(μβ, Σβ) . (1.3)

For areal unit k and time period t, μkt denotes the expectation of the response data Y kt. Okt is 

the offsets, which are the log-transformed expected number of cases in these spatiotemporal 

units. Xkt is a vector of known covariates, and β is a vector of regression parameters. ψkt is 

used to denote the latent component for areal unit k and time period t, which can represent 

the spatiotemporal structure with one or more sets of spatiotemporally autocorrelated 

random effects.

There are two popular CAR priors in spatial analysis, namely BYM (Besag et al. 1991) 

and Leroux (Leroux et al. 2000) models. The random effects ψi in BYM prior comprise a 

CAR structured spatial random effect term ui and an unstructured random component vi. The 

conditional distribution of ui can be expressed as:

ui ∣ uj, j ≠ i ∼ N ∑j wijuj

∑j wij
, σu

2

∑j wij
. (1.4)

and vi follows independent normal distribution:

vi ∼ N 0, σv
2 . (1.5)

In contrast to the BYM model, Leroux model has only one random effect component. 

The combination of spatially structured and i.i.d. variance is controlled by an additional 

weighting parameter ρ, shown in Eq. (1.6):

Si ∣ Sj, j ≠ i ∼ N ρ∑j wijSj + (1 − ρ)μ0

ρ∑j wij + (1 − ρ) , σs
2

ρ∑j wij + (1 − ρ) . (1.6)

For simplicity, defining the precision matrix Q(W , ρ) as ρ[diag(W 1) − W ] + (1 − ρ)I where 1
is the K∗1 vector of ones and I is the K∗K identity matrix and when zero-mean is centered, 

the formula can be expressed as:

Si ∣ Sj, j ≠ i ∼ N 0, σs
2Q(W , ρ)−1 . (1.7)

For the spatiotemporally autocorrelated random effects, we need to combine the spatial 

aspect with temporal aspect. There are various methods to achieve this goal, such as 

summing them together, adding interactions, or constructing a spatiotemporal random effect. 

In this study, we fitted four Leroux-based models using R package CARBayesST: the AR1 

model, Adaptive model, ANOVA model and Separable spatial model (Lee et al. 2018). 
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Two BYM-based models were fitted using the R-INLA package (Rue et al. 2009). A brief 

introduction for each model is listed in Table 1.

Leroux-based AR1 model and Adaptive model—The AR1 model, proposed by 

Rushworth et al. in 2014, uses first order temporal autoregressive (AR(1)) process. 

Therefore, it represents the spatiotemporal structure with a multivariate AR(1) process with 

Leroux precision matrix.

ψkt = ϕkt, (2.1)

ϕt ∣ ϕt − 1 ∼ N ρTϕt − 1, τ2Q(W , ρs)−1 , (2.2)

ϕ1 ∼ N 0, τ2Q(W , ρs)−1 , (2.3)

τ2 ∼ Inverse − Gamma(a, b), (2.4)

ρT, ρS ∼ Uniform(0, 1) . (2.5)

Here, the random effects ϕt would evolve over time as a first order autoregressive process 

with parameter ρT. And the spatial dependence is included through the variance of the 

random effects. τ2 is the conjugate prior with inverse-gamma distribution, defaulting to (1, 

0.01).

The Adaptive model proposed by Rushworth et al. (2017) uses the same random effects 

structure as the AR1 model. But it allows for localized spatial autocorrelation by treating the 

non-zero elements of the weight matrix W as unknown parameters instead of one. Therefore, 

the study area can have different spatial dependency levels at different locations.

Leroux-based ANOVA model—The ANOVA model is modified based on Knorr-Held’s 

model (Knorr-Held 2000). It decomposes the spatiotemporal variation into an overall spatial 

effect that is common to all time periods, an overall temporal trend that is common to all 

spatial areas, and space-time interactions.

ψkt = ϕk + δt + γkt, (3.1)

ϕk ∣ ϕ−k, W ∼ N ρS∑j = 1
K wkj∅j

ρS∑j = 1
K wkj + 1 − ρS

, τS
2

ρS∑j = 1
K wkj + 1 − ρS

, (3.2)

δt ∣ δ−t, D ∼ N ρT ∑j = 1
N dtjδj

ρT ∑j = 1
N dtj + 1 − ρT

, τT
2

ρT ∑j = 1
N dtj + 1 − ρT

, (3.3)
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γkt ∼ N 0, τI
2 , (3.4)

τS
2, τT

2, τI
2 ∼ Inverse − Gamma(a, b), (3.5)

ρT, ρS ∼ Uniform(0, 1) . (3.6)

Here, ∅k is the spatial random effect, and δt is the temporal random effect. They are modelled 

by the Leroux priors. γkt is the space-time interactions.

Leroux-based separable model—The separable spatial model proposed by Napier et 

al. in 2016 decomposes the dependence structure into an overall temporal trend but separate 

spatial effects. It assumes the spatial effects for each time have a common dependence 

parameter but different spatial variances. The model can be represented below:

ψkt = ϕkt + δt, (4.1)

ϕkt ∣ ϕ−kt, W ∼ N ρS∑j = 1
K wkj∅jt

ρS∑j = 1
K wkj + 1 − ρS

, τt
2

ρS∑j = 1
K wkj + 1 − ρS

, (4.2)

δt ∣ δ−t, D ∼ N ρT ∑j = 1
N dtjδj

ρT ∑j = 1
N dtj + 1 − ρT

, τT
2

ρT ∑j = 1
N dtj + 1 − ρT

, (4.3)

τ1
2, …, τN

2 , τT
2 ∼ Inverse − Gamma(a, b), (4.4)

ρT, ρS ∼ Uniform(0, 1) . (4.5)

Here, δt is the overall temporal random effect, ∅kt is the separate spatial random effect at 

each time point, and τt
2 is the temporally varying variance parameter for spatial dependence. 

It allows users to examine the extent to which the response’s spatial variation changed over 

time.

BYM-based models—The BYM-Linear model is proposed by Bernardinelli et al. (1995). 

It has a BYM spatial random effect, an overall linear temporal effect, and an area-specific 

deviation from the temporal trend. The BYM-AR1 model is a simple modification of 

BYM-Linear model based on Knorr-Held’s idea, changing the overall temporal effect to 

first order autoregressive structure, using the interactions between two unstructured random 

effect components.

All analysis and mapping were conducted using R (version 4.2.0). For models ran under 

CARBayesST package, we used 100,000 burn-ins with 50,000 samples, thinning by 10. The 
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potential scale reduction factor proposed by Gelman et al. was used to diagnose convergence 

of the chains (Brooks and Gelman 1998; Gelman and Rubin 1992).

Candidate models were compared to choose the best fitting one. The model performances 

were evaluated by the deviance information criterion (DIC) and widely applicable 

information criterion (WAIC), with lower values indicating better fit. Regression estimates 

are presented as the means and 95% credible intervals.

Application

Study description

Gestational diabetes mellitus (GDM) is hyperglycemia first detected during pregnancy, 

usually develops around the 24th week of pregnancy. The incidence rate of GDM in the 

USA ranges from 7 to 10% in the last decade (Casagrande et al. 2018; DeSisto et al. 2014). 

Preeclampsia (PE), which is defined as the onset of high blood pressure during pregnancy 

as well as exceed protein in the urine or other end-organ damage, complicates around 

3.8% of pregnancies in the USA in 2010 (Duley 2009). It usually begins after 20 weeks 

of pregnancy. Both PE and GDM can lead to acute and chronic adverse outcomes for the 

offspring and pregnant woman (Buchanan et al. 2012; Fox et al. 2019) and are associated 

with increased risk of future cardiovascular disease (CVD) (Sławek-Szmyt et al. 2022).

Fine particulate matter, known as PM2.5 or particulate matter with aerodynamic diameter 

≤2.5 μm, is a complex mixture of solid particles and liquid droplets in the air. The 

components such as polycyclic aromatic hydrocarbons (PAHs) are easily absorbed through 

the lungs and distributed through the bloodstream (Billet et al. 2007). There is sufficient 

evidence associating PM2.5 with the risk of PE/GDM. A meta-analysis in 2020 indicated 

that a 10 μg/m3 increase of PM2.5 would enhance the risk of PE by 32% (Yu et al. 2020). 

Recent systematic reviews found that exposures to PM2.5 during the second trimester are 

significantly associated with increased risk of GDM (Hu et al. 2020; Tang et al. 2020). 

However, current studies considered spatial and temporal autocorrelations among PM2.5 

only (Daniel et al. 2021; Zhang et al. 2019). None of these studies adjusted spatiotemporal 

autocorrelations among diseases.

We used the 2006 to 2015 de-identified Florida vital statistics birth data obtained from 

the Florida Department of Health (FDH), Bureau of Vital Statistics. More recent birth 

data is available but the estimated PM2.5 data we used is available only from 2000 to 

2015. The birth data contained birth-related variables together with antenatal information, 

sociodemographic information, and any medical or labor complications experienced by the 

mother. The study population included all births in Florida. PE and GDM incidence data 

were recorded in this dataset as binary variables responding to the questions “Was mother 

diagnosed with gestational hypertension (pregnancy-induced hypertension, preeclampsia, 

etc.) during this pregnancy?” and “Was mother diagnosed with diabetes during this 

pregnancy?”

PM2.5 data used in this study were retrieved from the NASA Socioeconomic Data and 

Applications Center, with predicted PM2.5 concentrations in grid cells at a resolution of 1 
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km (Di et al. 2021). The prediction was generated with data from 2156 monitoring sites 

operated by the Environmental Protection Agency (EPA) along with other regional, or local 

monitoring data sets and incorporated three machine learning algorithms (Di et al. 2019). 

For each county-month observation, the average PM2.5 concentration was calculated using 

the daily data in that month of the grid points that fall within the county. The first trimester, 

second trimester, and 6 months cumulative exposure levels were calculated. We did not 

consider PM2.5 exposure after 6 months as GDM and PE would start to onset during weeks 

20–24.

Because the PE risk shows seasonal variations that winter delivery has a higher risk than 

summer delivery, we also created a new variable to indicate the season of conception. It 

was dichotomized as May to July and other months according to previous studies (Rohr 

Thomsen et al. 2020; Verburg et al. 2018; Weinberg et al. 2017).

Descriptive results

From 2006 to 2015, there were 109,817 total cases of PE and 97,086 total cases of GDM. 

Figure 1 shows the trend of PE, GDM, and PM2.5 in Florida between 2006 and 2015. The 

incidence rates of the two diseases were stable regarding the overall trend with fluctuation. 

The lowest PE incidence rate was 4.23% in April 2006, and the highest was 5.91% in July 

2012. The GDM incidence rate ranged from 3.73 to 5.21%, in May 2014 and December 

2011, respectively. On the other hand, the PM2.5 levels decreased gradually over the years. 

When focusing on the county level by month, number of PE cases ranges from 0 to 157, 

with median of 5. And GDM cases range from 0 to 132, with a median of 4. Counties with 

small populations such as Lafayette, Glades, and Franklin had no PE or GDM incidence for 

more than half of the time points, making their direct SIR ranging from 0 to 9.8. Therefore, 

the direct SIRs are not appropriate to be used as the risk estimation criteria.

Counties in different sections of Florida showed various risk trends (Fig. 2). In addition, 

the risk of PE and GDM showed clear spatial inequality and positive spatial autocorrelation 

(Fig. 3). For counties in Central North Florida such as Wakulla and Liberty, the mean of 

yearly PE incidence rate was 0.112 (SD = 0.037) and 0.105 (SD = 0.052), respectively. But 

for counties in South Florida like Monroe and Collier, the mean of yearly PE incidence rate 

was only one-third of the previous rates (Monroe: 0.033, SD = 0.012; Collier: 0.035, SD = 

0.005). Similar spatial inequality was observed for GDM, too.

Functional Moran’s I statistics were shown in Table 2. The spatial-functional PCA revealed 

that there are clear global structures (positive in red) but little local structures (negative in 

yellow) as seen in Fig. 4. Spatial autocorrelation can be detected from the spatial-functional 

principal components which explain more than 95% of variability of both diseases’ 

incidences. Thus, a spatiotemporal model is necessary. The B-spline smoothed Moran’s I 

statistics (see Fig. 8 in Appendix A) showed that Moran’s I statistics reach their maximum in 

the year 2011 for both PE and GDM, indicating an evolution of spatial pattern over time.

Model selection

The overall fit of the six spatiotemporal candidate models introduced above (using first 

trimester PM2.5 exposure) were displayed in Table 3. The smaller DIC and WAIC values 
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suggested that the Leroux AR1 model and Leroux adaptive model fit the data better for both 

PE and GDM.

With further exploration on the local spatial structure in the adaptive models, no significant 

differences among the local spatial structures were identified. DIC differences between 

Leroux AR1 model and Leroux adaptive model were small. Thus, we chose the Leroux AR1 

model as our final model.

Analytical results

Preeclampsia—To understand the effect of PM2.5 exposure, we evaluated the average 

exposure level during the first trimester, the second trimester, and during the first 6 months 

with three separate models. The three independent variables showed similar effects on PE. 

The results are displayed in Table 4.

After accounting for the spatiotemporal autocorrelation, PM2.5 exposure levels during the 

three time periods were either significantly or borderline significantly associated with PE 

risk. For the daily average PM2.5 exposure level during the first 6 months, one unit increase 

was associated with 0.5% increase in PE risk ratio. Conception during May to July was 

associated with 5.5% increase in PE risk ratio compared to other months.

We mapped the smoothed SIR based on Model 3 for 8 random months. The estimated trend 

for PE risk was presented in Fig. 5. The SIR maps and LISA maps for selected months 

were plotted in Figs. 6 and 7. From these figures, it can be easily seen that the adjusted PE 

risk was stable with a peak in 2012, and spatial inequality, measured by standard deviation 

(SD) and interquartile range (IQR) of estimated risks increased slightly from 2006 to 2009, 

also reaching the summit in 2012. North Florida, especially Wakulla, Leon, and Jefferson 

Counties, were hotspots with relatively high PE risk, as they were identified as high-high 

clusters in the LISA map, meaning they were areas with high risk surrounded by areas 

of high risk. But the situation has been getting better since 2013. Duval County and its 

neighboring counties became the new hotspots. The striking surge of PE risk in Central 

North Florida around 2012 raises opportunities to identify unknown risk factors and is worth 

further investigation on comprehensive historical environmental data at this specific region.

The random spatiotemporal effect for each county was plotted in Fig. 9 (see Appendix A). 

Each line represents a county. The pattern can be categorized into three groups based on 

the mean and variance. Group 1 (Gadsden, Jefferson, Leon, Liberty, Madison, Taylor, and 

Wakulla) has a striking peak around 2012, which should be the main cause of the increased 

median PE risk and spatial inequality at that time. Counties in group 3 (Escambia, Flagler, 

Hamilton, Hillsborough, Holmes, Monroe, Santa Rosa, Sarasota, Union, Washington) have 

larger variances while counties in group 2 have more stable spatiotemporal random effects. 

Spatial distribution of the three groups was represented in Fig. 10 (see Appendix A). Further 

analysis should be conducted in groups 1 and 3 counties to understand the reasons for that 

peak and large variance.

Gestational diabetes—Month indicator was not included in the GDM model, as it was 

not significant and did not affect the models’ performance. Like PE, the result from the 
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Leroux AR1 model (Table 5) indicated significant positive association between PM2.5 levels 

during all three periods and GDM risk. One unit increase for daily average PM2.5 exposure 

in the first 6 months was associated with 4.0% increase in GDM risk ratio.

The trend, spatial inequality, smoothed SIR, and LISA cluster maps were also plotted 

based on model 3 (see Figs. 11, 12, 13 in Appendix A). The GDM risk trend showed a 

similar pattern to the PE risk trend, with 2012 as the turning point. The spatial inequality 

increased at the beginning and then decreased since 2011. Central South Florida (clustered 

around Glades County) and Northwest Florida (clustered around Santa Rosa County) were 

experiencing relatively higher GDM risks. And the Gulf County at North Florida was cluster 

with lower GDM risks.

Discussion

The current study compared six spatiotemporal models with Bayesian approach and 

illustrated the different structures used for their spatial, temporal, and spatiotemporal terms. 

It can be used as a reference point for future applications. The application to the PE and 

GDM risk in Florida across a span of 10 years showed that Leroux AR1 model performed 

best in terms of accounting for the spatiotemporal trends presented, for both PE and GDM. 

According to Lee et al. (2018), the model is appropriate to estimate the evolution of the 

spatial random effects surface over time. This result is in accordance with the functional 

Moran’s I analysis result, which shows an evolution of spatial dependency. We cannot 

conclude which model is best in general, as each model has its advantages in certain 

scenarios.

To the best of our knowledge, this is the first study focusing on the spatiotemporal pattern 

of PE and GDM in Florida. This study confirmed the existence of spatial dependency in PE 

and GDM risks. The fitted maps demonstrated gradual spatial smoothing, providing stability 

to the visualization of areas of elevated risk for a relatively rare outcome at the spatial scale 

of counties. PE and GDM are the most common medical complications of pregnancy. They 

are frequently reported comorbidities as they are both characterized by oxidative stress and 

endothelial dysfunction (Guimarães et al. 2014; Karacay et al. 2010). PE and GDM showed 

similar risk trends and spatial inequality trends in this study. However, the spatial patterns 

were not the same. While the hot spot of PE was located in the North Central Florida, higher 

GDM risks were identified in the Central Florida and Northwest Florida. Through Leroux 

AR1 model, a spike of PE incidence was illustrated in North Central Florida including 

Leon County, Wakulla County, and their neighbors around 2012, suggesting that there are 

potential unmeasured risk factors. A better understanding of the mechanism for the detected 

high risk is necessary to design and implement public health interventions.

Our findings reinforced that neighborhood PM2.5 in ambient air pollution is significantly 

correlated with PE and GDM risk. The findings are scientifically conceivable because prior 

research linked perinatal exposure to PM2.5 to placental oxidative stress, hypercoagulability, 

inflammation, and thrombosis—all of which can lead to preeclampsia (Kannan et al. 2006; 

Saenen et al. 2017; Yi et al. 2017). Studies have shown that the pregnant women exposing 

to air pollutants can cause insulin resistance leading to hyperinsulinemia (Haberzettl et al. 
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2016). The primary standard for PM2.5 is 12 μg/m3. In Florida, the statewide annual average 

PM2.5 is lower than 10 μg/m3. The finding showed that even “safe” level exposure of PM2.5 

would increase the risk of PE and GDM.

The association between PM2.5 exposure and disease risk were estimated in three time 

windows: the first trimester, the second trimester, and the first 6 months after conception 

(include both the first and second trimesters). A study suggested that the association between 

PM2.5 and GDM was strongest between weeks 7 and 18, which overlap the late first and 

early second trimesters (Miron-Celis et al. 2023). A meta-analysis found that both the first 

and second trimesters exposure of PM2.5 were associated with GDM risk, and the second 

trimester showed a stronger effect. In this study, the effect of average PM2.5 exposure in 

the first 6 months on GDM were more prominent compared to exposure level in the first or 

second trimester. PM2.5 effect on PE during the three time windows are similar with each 

other.

Even though PM2.5 level was associated with disease risk, the decreasing of air pollution 

level did not lead to decreased disease incidence risks. It may be because of the small 

magnitude of effect. According to a cohort research published by Lee, a 4 μg/m3 increase in 

PM2.5 exposure during the first trimester of pregnancy raised the incidence of PE by 15% 

(Lee et al. 2013). Furthermore, a meta-analysis revealed a 32% rise of PE risk for every 10 

μg/m3 increase of PM2.5 exposure (Yu et al. 2020). According to our findings, the chance 

of developing a PE would rise by 0.5% for 1 μg/m3 increase of PM2.5 exposure, which is 

5.1% for every 10 μg/m3 exposure increase. The magnitude of PM2.5 effect in this study is 

much smaller than previous claims. The difference is probably due to the different estimator 

of risks. In this study, disease risks were measured as SIR, which is the number of disease 

cases over the number of expected cases. The previous studies discussed above normally use 

odds ratio, that can exaggerate the relative risk, especially when the probability of disease is 

not rare (Grimes and Schulz 2008).

This study covered 10 years and 67 Florida counties, with large representative population. 

We confirmed PM2.5 in ambient air was a risk factor for PE and GDM, in all the 

three exposure windows. Both the smoothed risks and the spatial inequalities for the two 

pregnancy complications were high in 2011–2012. Several high-risk clusters were identified. 

Limitations in this study were mainly due to data restriction. Preeclampsia and gestational 

hypertension were not divided. Even though we adjusted for common risk factors such 

as race, ethnicity, age, and BMI, there were other factors for PE and GDM that should 

be considered, such as socioeconomic status and occupation. Further studies controlling 

for these covariates are needed. In-depth investigations on Central North Florida counties 

between 2011 and 2013 should be conducted to understand the unknown reasons for the 

increased PE risk.

Conclusion

This study analyzed the spatial and temporal patterns of PE and GDM in Florida from 

2006 to 2015 with six spatiotemporal models, provided valuable insights into the dynamic 

distribution of these two conditions at the county level and identified areas of elevated risk. 
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The study confirmed the existence of positive spatial dependencies of PE and GDM in 

Florida, indicating the necessity to implement public health interventions in certain areas. It 

also detected a spike of preeclampsia incidence in North Florida around 2011, suggesting a 

chance to capture unidentified risk factors. The study highlighted the significant association 

between neighborhood PM2.5 air pollution and the risk of PE and GDM, even when PM2.5 

levels are below the standard. It is imperative to persist in the endeavors at mitigating air 

pollution.
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Appendix

Fig. 8. 
Functional Moran’s I statistics
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Fig. 9. 
Spatiotemporal random effects in FL counties. Grouped by mean and variance. Based on 

Leroux-AR1 (PE) model

Fig. 10. 
Map of spatiotemporal random effect groups. Based on Leroux-AR1 (PE) model
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Fig. 11. 
Monthly smoothed risk and spatial inequality for GDM in Florida from 2006 to 2015. a 
Median of estimated risk. b Standard deviation of estimated risk. c IQR of estimated risk
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Fig. 12. 
Maps of estimated GDM SIR in Florida for selected months

Fig. 13. 
Cluster maps of GDM risk in Florida for selected months
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Abbreviations

AR1 first order autoregressive

BHM Bayesian hierarchical model

BMI body mass index

CAR conditional autoregressive

DIC deviance information criterion

GDM gestational diabetes mellitus

IQR interquartile range

LISA local indicators of spatial association

PE preeclampsia

SD standard deviation

SIR standardized incidence ratio

WAIC widely applicable information criterion
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Fig. 1. 
Trend of PE, GDM, and PM2.5 in Florida, 2006–2015
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Fig. 2. 
Trend of PE and GDM risk in selected counties (North: Taylor, Wakulla; South: Hendry, 

Palm Beach; Central: Polk, Lake), 2006–2016
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Fig. 3. 
Spatial distribution of average PE incidence rate, GDM incidence rate, and PM2.5 level in 

Florida, 2006–2015
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Fig. 4. 
sPCA results of the smoothed yearly PE/GDM incidence rate
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Fig. 5. 
Monthly smoothed risk and spatial inequality for PE in Florida from 2006 to 2015. a Median 

of estimated risk. b Standard deviation of estimated risk. c IQR of estimated risk
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Fig. 6. 
Maps of estimated PE SIR in Florida for selected months
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Fig. 7. 
Cluster maps of PE risk in Florida for selected months
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Table 3

Model comparison criteria for six candidate models, fitted with cumulative PM2.5 exposure in first trimester

PE GDM

DIC WAIC DIC WAIC

Leroux-AR1 36752 36882 34300 34382

Leroux-adaptive 36734 36860 34284 34369

Leroux-ANOVA 37611 37617 35063 35092

Leroux-separable spatial 38570 38842 35877 36026

BYM-linear 38962 39028 36076 36126

BYM-AR1 37647 37640 35084 35104

Environ Sci Pollut Res Int. Author manuscript; available in PMC 2024 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sun et al. Page 30

Ta
b

le
 4

Pa
ra

m
et

er
s 

of
 L

er
ou

x 
A

R
1 

m
od

el
—

PE

M
od

el
 1

M
od

el
 2

M
od

el
 3

R
R

95
%

 C
I

R
R

95
%

 C
I

R
R

95
%

 C
I

PM
2.

5 
on

 1
st

 tr
im

es
te

r
1.

00
5

1.
00

1–
1.

00
8

PM
2.

5 
on

 2
nd

 tr
im

es
te

r
1.

00
5

1.
00

0–
1.

00
9

PM
2.

5 
on

 f
ir

st
 6

 m
on

th
s

1.
00

5
1.

00
2–

1.
00

9

M
ay

 to
 J

ul
y

1.
04

8
1.

02
2-

1.
07

6
1.

06
2

1.
03

5-
1.

09
0

1.
05

5
1.

03
0-

1.
08

2

Environ Sci Pollut Res Int. Author manuscript; available in PMC 2024 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sun et al. Page 31

Ta
b

le
 5

Pa
ra

m
et

er
s 

fr
om

 L
er

ou
x 

A
R

1 
m

od
el

—
G

D
M

M
od

el
 1

M
od

el
 2

M
od

el
 3

R
R

95
%

 C
I

R
R

95
%

 C
I

R
R

95
%

 C
I

PM
2.

5 
on

 1
st

 tr
im

es
te

r
1.

02
2

1.
00

8–
1.

03
6

PM
2.

5 
on

 2
nd

 tr
im

es
te

r
1.

01
8

1.
00

5–
1.

03
1

PM
2.

5 
on

 f
ir

st
 6

 m
on

th
s

1.
04

0
1.

02
4–

1.
05

6

Environ Sci Pollut Res Int. Author manuscript; available in PMC 2024 October 01.


	Abstract
	Introduction
	Methodology
	Relevant concepts
	Standardized incidence ratio SIR
	Weight matrix
	Spatial autocorrelation

	Bayesian hierarchical models
	Leroux-based AR1 model and Adaptive model
	Leroux-based ANOVA model
	Leroux-based separable model
	BYM-based models


	Application
	Study description
	Descriptive results
	Model selection
	Analytical results
	Preeclampsia
	Gestational diabetes


	Discussion
	Conclusion
	Appendix
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5

