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ABSTRACT
Antimicrobial resistance (AMR) is a global public health threat. Environmental microbial
communities act as reservoirs for AMR, containing genes associated with resistance, their
precursors, and the selective pressures promoting their persistence. Genomic surveillance could
provide insights into how these reservoirs change and impact public health. Enriching for AMR
genomic signatures in complex microbial communities would strengthen surveillance efforts
and reduce time-to-answer. Here, we tested the ability of nanopore sequencing and adaptive
sampling to enrich for AMR genes in a mock community of environmental origin. Our setup
implemented the MinION mk1B, an NVIDIA Jetson Xavier GPU, and Flongle flow cells. Using
adaptive sampling, we observed consistent enrichment by composition. On average, adaptive
sampling resulted in a target composition 4× higher than without adaptive sampling. Despite a
decrease in total sequencing output, adaptive sampling increased target yield in most replicates.
We also demonstrate enrichment in a diverse community using an environmental sample. This
method enables rapid and flexible genomic surveillance.

Subjects Software and Workflows, Bioinformatics, Metagenomics

STATEMENT OF NEED
Antimicrobial resistance (AMR) is a public health threat of great magnitude, accounting for
over 2.8 million infections and 35,000 deaths annually in the USA alone [1]. Resistant
pathogens pose the most direct risk to human health. However, the AMR genes present in
pathogens only represent a small proportion of a much larger collection of AMR genes: the
antibiotic resistome. As described by Wright [2] and D’Costa et al. [3], the antibiotic
resistome includes all antimicrobial resistance genes and their precursors, the majority of
which reside in nonpathogenic microbial communities.

Environmental microbial communities are important contributors to the resistome. They
are dynamic reservoirs where a variety of factors influence the evolution, exchange, and
persistence of genes that confer resistance. Resistance mechanisms originated in the
environment [2, 4], where the production of and the resistance to antimicrobial agents
assist microorganisms in their battle for territory and resources [4, 5]. External factors, like
human and agricultural waste streams, introduce resistant organisms, resistance genes,
and pharmaceutical antimicrobial agents into the environment [6, 7]. Once within the
community, these agents provide additional selective pressure for resistance, and the genes
provide new material for exchange.
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The exchange of resistance genes between community members continues even without
selective pressure [8]. This continued exchange is likely one reason why antimicrobial
resistance can persist even after the removal or reduction of antimicrobial exposure [9, 10].
The likelihood of a resistant community reverting to a susceptible one is a complex
landscape influenced by mutation rate, fitness cost, and compensatory evolution [11].

AMR genes can then be shared from environmental microbial communities to human
and animal pathogens [12, 13]. The One Health approach, which recognizes the
interconnection of human, animal, and environmental health, has grown in popularity
regarding microbiology and AMR research [14–17]. The World Health Organization [18] and
the Center for Disease Control and Prevention [1] have both endorsed the One Health
approach as an effective strategy for addressing AMR.

Despite the increased interest in investigating environmental AMR, gaps in knowledge
still exist regarding the exchange of AMR genes between environmental organisms and
pathogenic communities, the effects of abiotic factors on the persistence and evolution of
environmental AMR, and the effects of clinical and agricultural interventions on
environmental microbial communities. Genomic surveillance of genes associated with AMR
could provide important insight into how these dynamic reservoirs impact public health.
Genomic surveillance allows for monitoring the entire resistome, encompassing AMR genes
inside and outside pathogenic organisms, as well as their precursors. It also allows for
detecting “silent” AMR genes – those present in susceptible organisms but potentially
conferring resistance following a shift in host or environment. However, genomic
sequencing is typically time, resource, and cost-intensive, especially outside clinical settings.

Nanopore sequencing presents an opportunity to develop a cost-effective and portable
genomic surveillance tool. While more commonly used sequencing technologies sequence
via DNA synthesis, nanopore sequencing determines genetic sequences by detecting a
change in current as DNA strands are pulled through nanopores on the flow cell [19]. The
technology allows for a streamlined, resource-conservative library preparation. It also
allows for unique features like adaptive sampling [20, 21].

Traditional sequencing technologies, such as Illumina, achieve enrichment by using
reactions such as PCR prior to sequencing. Pre-sequencing enrichment necessitates
additional time and resources, including synthesized primers. In contrast, adaptive
sampling requires no change in library preparation as it leverages the ability of each
nanopore to independently accept and reject strands of DNA during sequencing. The
enrichment or depletion of user-defined targets is therefore achieved entirely in silico,
without the need for additional time, resources, or effort. The MinION, the smallest genomic
sequencer currently commercially available, boasts incredible portability (with minimal
power consumption) in addition to being capable of adaptive sampling.

Other studies used nanopore sequencing and the adaptive sampling feature to detect
AMR genes in clinical samples through both host depletion [22] and AMR gene
enrichment [23]. However, the exploration of adaptive sampling for the enrichment of AMR
genes in environmental metagenomic samples is limited.

Here, we developed a novel toolbox optimized for the rapid, resource-conservative
surveillance of AMR-associated genes in environmental microbial communities. The
principal question addressed by our study was whether adaptive sampling can enrich (by
composition) for AMR-associated genes in a mock community of environmental origin. This
study investigated performance metrics, including enrichment by target yield and the
proportion of the panel that was successfully detected.
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IMPLEMENTATION
Methods
Experimental design
To test the effects of adaptive sampling on AMR gene enrichment, we included two
treatments: adaptive sampling ‘on’ and ‘off’. We simultaneously implemented these two
treatments by turning on adaptive sampling for 50% of the sequencing nanopores on the
flow cell while the other half sequenced the library using the traditional, non-selective
method (adaptive sampling ‘off’). With this design, we could control for variability in our
library preparation from run to run.

We generated a mock community from bacterial isolates with known AMR genes from
previously isolated and archived soil samples from the Fairbanks Permafrost Experiment
Station [24]. The original bacterial culturing and isolation methods are described by Haan
and Drown et al. [24]. To compose our final mock community, we selected six community
members (TH25, TH28, TH41, TH57, TH79, and TH81) representing five genera (Serratia,
Bacillus, Erwinia, Pantoea, and Pseudomonas) of common soil bacteria associated with
permafrost thaw. These members were selected to achieve a phylogenetic diversity,
including a diverse set of AMR genes. For this experiment, we extracted and purified DNA
from previously frozen cells using the DNeasy UltraClean Microbial Kit (Qiagen) according
to the manufacturer’s instructions. After quantifying the DNA concentration from the
extractions using a Qubit (Thermo Fisher Scientific), we pooled all members of the
community by equal mass (1000 ng).

Using published sequences (Biosample accessions SAMN17054805, SAMN17054834,
SAMN17054856, SAMN09840060, SAMN17054818, and SAMN17054803) [24], we identified
all AMR gene regions using the Resistance Gene Identifier (RGI) version 5.1.0 and the
Comprehensive Antibiotic Resistance Database (or CARD) [25] version 3.0.9. The target gene
panel was constructed using exclusively strict and perfect hits. Targeted genes and the
number of gene copies per community member are specified in Table 1. The expansion of
targeted regions through the inclusion of flanking DNA was implemented by previous
studies [20, 26] and is recommended by Oxford Nanopore to increase the target output. We
used a custom script to expand the gene region and include a flanking region of DNA in
each targeted region. See Figure 1 for an overview of the bioinformatic worfklow, and
GigaDB for the custom scripts [27]. Each flanking region was the size of the prepared
library’s N50 (5,075 bp). Due to the fragmentation of the available genome assemblies, not
all target regions could be expanded to the entire length of the flanking region on both
sides. Each target region was expanded as far as possible to a maximum of 5,075 bp of
additional genomic material on either side. We extracted target sequences using Geneious
Prime 2022.1.1 (RRID:SCR_010519) [28]. The resulting multi-fasta file contained 52 unique
sequences and served as the adaptive sampling reference.

Library preparation and sequencing
We used the Rapid Sequencing Kit (SQK-RAD004) of Oxford Nanopore Technologies to
prepare the sequencing libraries. For each library, we used 200 ng of input DNA from our
mock community. We followed the manufacturer protocol, except we excluded the bead
cleanup and the Qubit quantification steps to maximize the DNA quantity carried forward
into sequencing.
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Table 1. Targeted genes.

Member TH25 TH28 TH41 TH57 TH79 TH81
Genus Bacillus Serratia Pseudomonas Bacillus Erwinia Pantoea

AMR Gene
BcII 1 0 0 1 0 0
FosB 1 0 0 1 0 0

MCR-4.5 1 0 0 0 0 0
tet(45) 1 0 0 0 0 0

CRP 0 1 0 0 1 1
Escherichia coli EF-Tu mutants conferring

resistance to Pulvomycin
0 1 0 0 0 0

Haemophilus influenzae PBP3 conferring
resistance to beta-lactam antibiotics

0 1 0 0 1 1

Klebsiella pneumoniae KpnF 0 1 0 0 1 1
Klebsiella pneumoniae KpnH 0 1 0 0 1 1

adeF 0 5 3 0 2 2
emrR 0 1 0 0 1 1
msbA 0 1 0 0 1 1

Acinetobacter baumannii AbaQ 0 0 1 0 0 0
Pseudomonas aeruginosa soxR 0 0 1 0 0 0

armA 0 0 1 0 0 0
MCR-4.1 0 0 0 1 0 0

sgm 0 0 0 1 0 0
CARB-23 0 0 0 0 1 0

Escherichia coli ampH beta-lactamase 0 0 0 0 1 1
Morganella morganii gyrB conferring

resistance to fluoroquinolone
0 0 0 0 1 1

PmrF 0 0 0 0 1 0
BES-1 0 0 0 0 0 1

Escherichia coli UhpT with mutation
conferring resistance to fosfomycin

0 0 0 0 0 1

Klebsiella pneumoniae KpnE 0 0 0 0 0 1
amrB 0 0 0 0 0 1

The MinION mk1B, an NVIDIA Jetson Xavier GPU, and flongle flow cells (FLO-FLG001,
R9.4.1) were used for sequencing. We configured the Xavier GPU with MinKNOW
(MinKNOW Core version 4.5.4) following the instructions from Benton [29]. All sequencing
runs lasted eight hours. Using MinKNOW, we designated half of the flow cell (63 channels)
for adaptive sampling; the other half of the flow cell sequenced normally (adaptive
sampling ‘off’). This setting is in the Run options under ‘Advanced options’. We alternated
the side of the flow cell, performing each treatment for each replicate. Each flow cell was
used twice (technical replicates) by starting a new sequencing run after eight hours without
washing the flow cell and using the same initial library. We completed thirteen total
sequencing runs.

Data and statistical analysis and visualization
We used Guppy version 6.1.3 (RRID:SCR_023196) to base call the raw sequencing data using
the super-accuracy model (dna_r9.4.1_450bps_sup.cfg) and filtered by minimum quality
score (Q score ≥ 10). During the adaptive sampling, the first 500–1000 bp of a template
strand of DNA were sequenced. Regardless of the decision of the adaptive sampling
algorithm (accept or reject), that preliminary sequence was the output. To remove these
very short reads, we filtered the output by length (>1000 bp) using Seqtk version 1.3
(RRID:SCR_018927) [30]. We aligned the filtered output to the community metagenome with
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Figure 1. Overview of bioinformatic workflow. At each step, we used the following scripts available in GigaDB: (1)
generating_target_panel_files.R, (2) generating_environmental_target_panel_files.R, (3) dart_methods_notebook.
md, (4) generating_multi_run_nanostats_csv.R, (5) generating_single_run_analysis_files.R, (6) generating_single_
run_depth_csv.R, (7) generating_multi_run_analysis_files.R, (8) statistical_analysis_data_viz.R. See also the
dart_methods_notebook.md file bringing all of the scripts and their parameters together [27].

Minimap2 version 2.22 (RRID:SCR_018550) [31] using the Oxford Nanopore genomic reads
preset (-ax map-ont). We used SAMtools version 1.15.1 (RRID:SCR_002105) to exclude
supplementary and secondary alignments (-F 2308) [32]. We used the sequencing summary
generated by Guppy to calculate the average number of active pores. We first subset the data
by treatment, then binned the data into one-hour intervals. The number of unique channels
generating reads was then calculated for each hour and averaged across the run length.

We calculated the summary statistics for each run (yield and mean quality score) using
NanoStat version 1.6.0 [33]. To calculate the target yield, we used SAMtools coverage and
depth. SAMtools coverage was implemented to determine the number of reads that
contained targeted AMR regions; depth was used to determine the number of nucleotides
that aligned to targeted AMR regions. In these calculations, AMR regions referred to the
AMR genes without expanded flanking regions. To avoid a single read being counted
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multiple times in our target yield calculations, we only included unique alignments in
downstream analysis.

We utilized base R (version 4.2.2; RRID:SCR_001905) and the R car package [34] for
statistical analyses. We used the Shapiro-Wilk test to determine data normality. Variance
homogeneity was determined using either an F-test or Levene’s test, as appropriate. A
Two-Sample t-test, Welch’s t-test, or Wilcoxon signed-rank test was then employed to
evaluate the significance of any difference between treatments (𝛼 = 0.05). For data
visualization, we used ggplot2 (RRID:SCR_014601) [35].

Environmental sample
In order to demonstrate the potential effectiveness of these methods on a more diverse
community, we applied our methods to a microbial community from soil. We first
sequenced the community without using adaptive sampling to identify AMR genes
potentially present in the microbial community. We then used our previously described
methods to test the ability to enrich for these AMR targets using adaptive sampling.

The soil microbial community came from a 10 m transect in remote Alaska (66.792436° N,
160.49554° W). Ten cores with a 2.9 cm diameter were collected using a sterile technique
and a soil probe to obtain the top 10 cm of soil. We extracted total genomic DNA from 250
mg of soil per homogenized soil core using the DNeasy PowerSoil Pro kit (Qiagen; Germany)
following manufacturer instructions. We used the Native Barcoding Kit (SQK-NBD114.24)
for sequencing library preparation to multiplex ten samples. We sequenced the library
using a MinION (MinKNOW Core version 5.4.7) on an R10.4.1 Flow cell (FLO-MIN114) for
72 hours.

Following sequencing, we base called the raw sequencing data with Guppy version 6.5.7
using the super-accuracy model (dna_r10.4.1_e8.2_400bps_sup.cfg) and filtered by
minimum quality score (Q score ≥ 10). We initially used the RGI version 6.0.2 to classify
reads with AMR open reading frames. We used BLAST (RRID:SCR_004870) for alignment
(-a BLAST) and the –low_quality and –include_nudge options to include partial AMR genes
and low-quality matches. Using the output from RGI, we curated our high-quality target
panel by excluding nudged matches and including only strict and perfect hits. A custom
script was then used to expand the target region to include flanking DNA. Each flanking
region was the N50 (3180 bp) of the prepared library. Due to the lack of complete genome
assemblies for community members, some target regions could not be expanded to the full
flanking region length. As a result, each target region was expanded as much as possible to
a maximum of 3,180 bp of additional genomic material on either side of the target. The
target regions were then extracted using Seqtk (version 1.3-r106).

For the adaptive sequencing run of this environmental sample, we created a pool of DNA
from the ten soil cores. We prepared a library using the Rapid Sequencing Kit (SQK-RAD004)
and sequenced the library using the same parameters as the mock community experiments,
with the modification of using an R9.4.1 flow cell (FLO-MIN106D).

Results
Over the course of four days, we completed 13 sequencing runs of the mock community. We
excluded three runs lacking pores at the end of the first technical replicate. This resulted in
ten sequencing runs, including technical replicates, that were used for our analysis
(Table 2). Our maximum output run generated over 281 Mb of data, the lowest over 19 Mb.
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Table 2. Sequencing output metrics prior to and following filtering for quality and read length.

Pre-Filtering Post-Filtering
Run Technical

replicate
Yield (bp) Mean quality

(Q) Score
Yield (bp) Mean quality

(Q) Score
1 1 281,215,264 10.3 109,639,119 12.3
2 2 98,850,455 8.2 18,970,458 11.4
3 1 170,831,418 10.6 86,179,378 12.5
4 2 77,078,419 9.4 22,621,178 12.2
5 1 99,711,784 10.5 40,575,094 12.8
6 2 51,020,783 9.1 20,600,281 12.5
7 1 146,519,076 11.3 62,208,499 13.3
8 2 38,318,184 10.8 21,961,623 12.5
9 1 54,700,216 11.5 32,243,307 12.8

10 2 19,037,961 9.8 6,764,271 12.0

On average, sequencing runs yielded 103,728,356 bp and contained 42,176,321 bp after
filtering by quality and length. On average, second technical replicates generated 62% less
data (𝜇first = 150.6 Mbases, 𝜇second = 56.86 Mbases) and a lower mean output quality (a
decrease of 12.7%). Filtering by quality and length resulted in a 59% decrease in yield but a
23% increase in quality (Table 2). Only post-filtering data were used in alignment and target
yield quantification.

Regardless of sequence identity, we observed a significant decrease in sequencing output
when using adaptive sampling (t = −6.67, p = 2.968 × 10−6) (Figure 2). Although the adaptive
sampling ‘off’ treatment showed greater variability in output between runs (𝜎2 = 1.09)
compared to when adaptive sampling was ‘on’ (𝜎2 = 0.42), this difference was not statically
significant (F = 0.385, p = 0.171). Here, sequencing output refers to the total sequencing yield
(pre-filtering) per treatment. While we split the flow cell evenly across treatments, there
might have been variation in pore availability between flow cells and treatments. To
control for this variation, we normalized these yields by the average number of active pores
during the sequencing run. The need for this normalization was compounded by our use of
technical replicates, where we saw an increase in the variation of active pores.

Next, we evaluated AMR gene target enrichment by composition. This is a measure of the
fraction of the sequencing output that includes the targeted AMR genes. To this purpose, we
calculated the percent target composition for each treatment and sequencing run, where
percent composition was calculated as follows: (Output aligned to target AMR genes
(bp)/Total pre-filtering sequencing output (bp)) ∗ 100. Despite the decreased yield observed
in the adaptive sampling treatment (Figure 3), the proportion of sequencing output
composed of target AMR genes was significantly greater for the adaptive sampling
treatment (V = 55, p = 0.002). On average, the percent target composition achieved by
adaptive sampling was over 4× higher than that observed in the control treatment
(Figure 4). We found that over 0.42% of the output of the adaptive sampling treatment
represented the target gene sequences, on average. For context, we estimate that the true
representation of the targeted AMR genes in our sample metagenome is 0.24%.

We also evaluated enrichment by target yield. This is a measure of the sequencing yield
(Kbases) that was solely composed of the designated target genes. To measure the
performance difference between treatments, we calculated the percent difference between
treatments for each of our sequencing runs as normalized by the control run. The percent
difference was calculated as follows: [(target yield (bp) per average active pores with
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Figure 2. A comparison of total sequencing output with and without the use of adaptive sampling. Sequencing
output refers to all the data generated prior to filtering for quality and length. Total output is normalized using
the average number of active pores during the entire run duration for each treatment. Statistical analysis used a
paired Welch’s T-test (t =  −6.67, p = 2.968 × 10−6). 𝜇OFF = 4.95 Mb, 𝜇ON = 2.36 Mb (n = 10).

adaptive sampling − target yield (bp) per average active pores without adaptive
sampling)/target yield (bp) per average active pores without adaptive sampling] ∗ 100.
Positive values indicated that using adaptive sampling resulted in a greater target yield. The
difference in target yield was significantly greater than zero (V = 54, p = 0.00195) (Figure 5).
Adaptive sampling outperformed the control treatment in this metric for nine out of ten
replicates. The mean percent difference between the two treatments was 104.6%,
representing a greater than two-fold increase in target yield when adaptive sampling was
used (Figure 5).

Finally, we looked at the proportion of our target panel detected by each treatment. Our
criteria for detection were as follows: 100% coverage of the AMR region with a minimum
depth of 2 nucleotides at every position. Due to output requirements inherent in the
criteria, sequencing runs that generated less than 25 Mb of post-filtering data were
excluded from this analysis (n = 5). When adaptive sampling was used, 21.9% of the panel
was detected, on average. This is more than double the average 8% observed when adaptive
sampling was not used (Figure 5). The maximum proportion detected was 36.5% and 21.2%
with adaptive sampling ‘on’ and ‘off’, respectively. Within a sequencing run, the side of the
flow cell implementing adaptive sampling consistently detected more of the panel than its
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Figure 3. Comparison of the target composition of total sequencing output with and without the use of adaptive
sampling. Percent target composition was calculated as the output aligned to a targeted AMR region (bp)/total
sequencing output (pre-filtering) (bp) ∗ 100. Statistical analysis used a Wilcoxon signed-rank test (V = 55, p = 0.002).
𝜇OFF = 0.1%, 𝜇ON = 0.42% (n = 10).

non-adaptive sampling counterpart; however, we did not find the difference between these
two treatments to be significant (V = 15, p = 0.0625).

Environmental sample example
We applied our method to a diverse soil microbial community. We characterized the known
AMR gene targets without adaptive sampling and using a high-yield ligation-based
sequencing kit. This sequencing yielded 14,041,647,517 bp. Using RGI, we identified 943
high-quality gene targets, totaling 4,757,091 bp in our target database, after including
flanking sequences. Next, we sequenced the community again following our adaptive
sampling methods and splitting the flow cell across the two treatments (adaptive sampling
‘on’ and ‘off’). We generated 1,066,363,786 bp (mean Q score 11.3) before filtering and
595,473,739 bp (mean Q score 13.3) of post-filtered data. The flow cell used for the
environmental sample was old, likely contributing to the lower total output. Similarly to
our first sequencing runs, we observed a lower sequencing output when using adaptive
sampling than without (3.08 Mbases/pore vs 6.71 Mbases/pore). However, despite the lower
yield, the proportion of sequencing output composed of target AMR genes was greater for
the adaptive sampling treatment. We found that over 0.026% of the output of the adaptive
sampling treatment represented the target gene sequences, in contrast to the control
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Figure 4. The percent difference in target yield between adaptive sampling on and adaptive sampling off sides
of each flow cell. Percent difference was calculated with the half of the flow cell sequencing normally (adaptive
sampling off) as the initial value. Red points denote a difference >0%, gray points denote a difference ≤0%.
Statistical analysis used a Wilcoxon signed-rank test (V = 54, p = 0.00195). 𝜇 = 104.6% (n = 10).

treatment’s 0.011%. Additionally, we evaluated the enrichment by target yield. The percent
difference between the two treatments was 11.12%, representing a greater than 1.11-fold
increase in target yield when adaptive sampling was used. No target regions met our
criteria for detection (2× coverage) in either treatment.

Discussion
This research represents the first steps in developing a novel toolbox for the rapid,
resource-conservative surveillance of AMR-associated genes in environmental microbial
communities. Our goal in this study was to assess the ability of adaptive sampling to enrich
(by composition) for AMR-associated genes in a known sample. We found that adaptive
sampling could enrich for AMR genes in our mock community. We observed consistent
enrichment by composition when using adaptive sampling regardless of the overall
sequencing yield. When applied to a diverse microbial community from an environmental
source, adaptive sampling also enriched for antimicrobial resistance genes. While Martin
et al. [36] demonstrated the ability of adaptive sampling to enrich by composition for
genomes in metagenomic samples, here we demonstrated that adaptive sampling can
enrich for much smaller targets – i.e., AMR genes in microbial communities. Our
observations regarding enrichment by target yield are encouraging. Other studies have
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Figure 5. Proportion of the target AMR gene panel detected for adaptive sampling on and off treatments. A
successful detection was defined as 100% AMR gene coverage with ≥2 bp depth at every position. Statistical
analysis used the Wilcoxon signed-rank test (V = 15, p = 0.0625). 𝜇OFF = 8.1%, 𝜇ON = 21.9% (n = 5).

noted the association between enrichment by yield and sequencing run output [36]. This is
due, in part, to the variability in pore quality and pore loss between flow cells. Our use of
technical replicates, where second technical replicates began with fewer available pores
and those that remained were likely decreased in quality, may have further exacerbated
this effect in our study.

Further optimization could increase enrichment by yield using adaptive sampling. The
available literature suggests that template length, target size, percent identity, and the
above-mentioned pore availability can all impact enrichment by yield [23, 36]. The ratio of
target size to template length affects the likelihood of the pore detecting the target sequence
before the algorithm rejects that strand. Small targets on long templates have a higher
likelihood of being missed. The lower the percent identity between the target and template
also increases the likelihood that a sequence will not be recognized as on-target [23]. This is
due to adaptive sampling’s reliance on the live alignment of template strands to target
sequence data to determine target presence. Finally, pore quality and availability directly
impact the sequencer’s ability to generate both on-target and off-target data [36].

For these experiments, we relied on low-cost Flongle flow cells that cost a fraction of the
cost of a traditional flow cell while generating a fraction of the yield. However, the
combination of low target yield and overall low sequencing output contributed to the
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inability of either treatment to detect more than 37% of our target panel. Consequently,
optimization in target yield may improve panel detection. We employed increased target
size in the pursuit of greater enrichment by yield. Further work is needed to explore the
employment of other strategies to produce consistent enrichment by target yield in our
protocol.

The expansion of current knowledge regarding resistance in environmental microbial
communities benefits the One Health approach to addressing the threat of AMR.
Environmental microbial communities play an important role in the origin, persistence,
and dissemination of resistance mechanisms [2, 4, 9, 10]. Unlike our mock community,
environmental communities tend to be highly diverse with an uneven abundance of
community members. Even with this challenge, our environmental sample example
provided modest evidence that enrichment for small targets in a diverse microbial
community can be achieved. The MinION, with its incredible portability and ability to
perform adaptive sampling, could reduce time-to-answer and economic barriers to
genomic surveillance of environmental reservoirs of AMR-associated genes.

Other studies have described the potential benefit of using adaptive sampling to reduce
time-to-diagnosis in clinical samples [22]. Reduced time-to-answer in an environmental
context could allow for better informed preventative public health action,
industry-standard modification, and policy implementation. The scope of this study was
limited in terms of communities tested and AMR genes targeted. However, its results are
promising for developing a flexible, portable, and cost-effective AMR surveillance tool.
Future work could include expanding the target gene panel to allow the toolbox to be
applied to a larger cohort of microbial communities and conducting thorough testing of the
protocol on diverse environmental samples.
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