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ABSTRACT

Thousands of genes are expressed in the testis of mice. However, the details about
their roles during spermatogenesis have not been well-clarified for most genes.
The purpose of this study was to examine the effect of Slc26a1 deficiency on mouse
spermatogenesis and male fertility. Slc26a1-knockout (KO) mice were generated
using CRISPR/Cas9 technology on C57BL/6] background. We found no obvious
differences between Slc26a1-KO and Slc26al-WT mice in fertility tests, testicular
weight, sperm concentrations, or morphology. Histological analysis found that
Slc26a1-KO mouse testes had normal germ cell types and mature sperm. These
findings indicated that Slc26al was dispensable for male fertility in mice. Our results
may save time and resources by allowing other researchers to focus on genes that are
more meaningful for fertility studies. We also found that mRNAs of two Slc26a
family members (Slc26a5 and Slc26a11) were expressed on higher mean levels in
Slc26a1-KO total mouse testes, compared to Slc26a1-WT mice. This effect was not
found in mouse GC-1 and GC-2 germ cell lines with the Slc26al gene transiently
knocked down. This result may indicate that a gene compensation phenomenon was
present in the testes of Slc26a1-KO mice.

Subjects Biochemistry, Genomics, Molecular Biology, Histology
Keywords Slc26al, Spermatogenesis, Fertility, Gene compensation, Testis

INTRODUCTION

The solute carrier 26A (SLC26A) family member is a highly conserved membrane protein
that regulates transport of various anions (e.g., chloride (CI"), bicarbonate (HCO5), sulfate
(SO%), iodide (I"), formate (HCOO™), and oxalate (C,037)) across the plasma membrane
of epithelial cells, regulating the composition and pH of body secretions (EI Khouri et al.,
2018). SLC26A-related proteins are present in a variety of organisms, including bacteria,
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yeast, algae, plants (SulP/Sultr proteins), and non-mammalian vertebrates (Mount ¢
Romero, 2004). The SLC26A family members are encoded 11 identified genes, but
SLC26A10 is a pseudogene in humans (Alper ¢» Sharma, 2013). In humans, SLC26A family
members are located in different tissues and have important roles in maintenance of ion
balance and pH values (Bernardino et al., 2019). Mutations in these genes lead to unique
clinical diseases related to their specific distribution: kidney stones (SLC26A1),
maldevelopment (SLC26A2), congenital chloride diarrhea (SLC26A3), Pendred syndrome
and goiter (SLC26A4), deafness (SLC26A5), and male infertility (SLC26A3, SLC26A8)
(Dawson ¢ Markovich, 2005; El Khouri ¢ Touré, 2014; Everett ¢» Green, 1999).

The effects of the SLC26A family members on male fertility remain poorly described.
SLC26A8 (i.e., testicular anion transporter 1, TAT1) was first identified in 2001 and
specifically expressed in spermatocytes and spermatids (Lohi et al., 2002; Toure et al.,
2001). Generation of Slc26a8 knockout (KO) mice results in male infertility due to
decreased sperm motility, but mouse viability is not affected. This result indicates that
SLC26A8 is a key factor in sperm differentiation and sperm motility (Touré et al., 2007).
In addition to induction of congenital chloride-deficient diarrhea (CLD), the SLC26A3
gene is expressed in the male reproductive tract and sperm cells (Chdvez et al., 2012).
Previous studies that analyzed male reproductive parameters and functions in Slc26a3-KO
mice found that Slc26a3 deletion is associated with severe lesions and abnormal cell
structure in the epididymis and defects in sperm number, morphology, and function; these
effects jointly impair male fertility (El Khouri et al., 2018). SLC26A4 and SLC26A7 are
present in the testis, epididymis, seminiferous duct, and ejaculatory duct (Pierucci-Alves,
Akoyev & Schultz, 2015). Taken together, these study findings indicate that it is necessary
to further understand the effects of the SLC26A families on male fertility.

SLC26A1/SATI cDNA was first cloned from rat liver tissue; it is a Na*-independent
transporter (Bissig et al., 1994). Human SLC26A1 shows moderate cross-species
conservation, with 78% homology to rat and 77% homology to mouse cDNA (Regeer, Lee
¢ Markovich, 2003). Mice with a Slc26al deficiency exhibit urolithiasis, hyperoxaluria,
hyperoxalemia, hyposulfatemia, hypersulfaturia, and increased susceptibility to
hepatotoxicity (Dawson et al., 2010). SLC26A1 is expressed in the testis, as well as in the
kidney and liver (Yin et al., 2017). However, no studies on the role of Slc26al in mouse
fertility and no human infertility caused by SLC26A 1 mutation have been reported. In this
study, we examined the role of Slc26a1 in spermatogenesis and male fertility. We generated
Slc26a1-deficient mice, investigated the effects of Slc26al-deficiency on the murine testis
and epididymis using histological and immunohistochemical staining, and assessed quality
of spermatozoa using a computer-assisted sperm analyzer. We found that male mice with
Slc26a1-KO displayed normal fertility parameters. These results suggested that the effect of
Slc26al deficiency on male mouse fertility is dispensable. We speculate that these results
can be explained by genetic redundancy.
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MATERIALS AND METHODS

Generation of Slc26a1~~ mice using CRISPR/Cas9 technology
C57BL/6] healthy mice were purchased from Cyagen Biosciences Inc and raised at the
Experimental Animal Center of Nanjing Medical University under conditions of 30-70%
humidity and 26 °C. The mice were allowed free access to food and water throughout the
experiment. The food contains 20% protein and 4% fat and was provided Xietong
Pharmaceutical Bio-engineering (Nanjing, China). All the cages were exactly of the same
size and material. Animal house was specific pathogen-free (Murray et al., 2021) and 12 h
light-12 h darkness-cycles. At the end of the study, the mice were anesthetized with carbon
dioxide.

This study was approved by the Animal Ethics and Welfare Committee of Nanjing
Medical University (No. IACUC-2004020) and was conducted in accordance with the
Guide for the Care and Use of Laboratory Animals. Slc26a1 KO mice were generated using
CRISPR/Cas9 genome editing technology, as previously described (Shen et al., 2014; Wang
et al., 2013). Single guide (sg)RNA target sequences for Slc26al are as follows: 5'-
CATGGTGGTCCACACATGGT-3'. The combination of sgRNA and Cas9mRNA was
microinjected into the fertilized eggs of C57BL/6] mice and then immediately transplanted
into the oviduct of pseudopregnant females of the same strain. The mutant mice have been
registered in the MGI database as Slc26al<em1Njrml> (MGI:7529731).

Genotype identification

Slc26a1”'~ mutation was identified by Sanger sequencing. Polymerase chain reaction
(PCR) and Sanger sequencing were performed using the forward primer, 5-GGCTGGG
CTTCGTGTCTACCTA-3’, and the reverse primer, 5'-GCTCTTGGTTGGCACTGACAG
A-3'.

Fertility test

Sle26al (WT/KO) adult males were respectively mated with WT females at a ratio of 1:2
for 3 months. The mice were raised at 26 °C. Female mice, whether pregnant or not, were
replaced once a week. The numbers of litters and born mice per litter were recorded.
The genetic background of WT controls was C57BL/6] (from the same batch as KO mice
but not littermates).

Cell culture and transfection

Mouse germ cell lines GC-1spg (GC-1) and GC-2(spd)ts (GC-2) were purchased from the
American Type Culture Collection (Manassas, VA, USA). The cells were cultured in
DMEM medium containing 10% fetal bovine serum (FBS; Gibco, Grand Island, NY, USA)
under the conditions of 37 °C and 5% CO,. SLC26A1 and negative control small
interfering RNAs (si-NC) were synthesized by GenePharma (Suzhou, China). GC-1 and
GC-2 cells were transfected with Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA).
At 6 h post-transfection, cells were transferred to culture medium; at 48 h post-
transfection, cells were collected for analysis. The sequences of the small interfering RNAs
(siRNAs) were:
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si-NC:5'-CACUCAAGAUUGUCAGCAA-3;
si-Slc26al #1:5-GGAAUACCUAGCAGGUGAU-3';
si-Slc26al #2:5-GCCAAUACCCACAGAGUUA-3’

Cell viability and migration analysis

After transfection with siRNA, GC-1 and GC-2 cells were seeded in 96-well plates at a
density of 4 x 10 cells/well. Cell viability was evaluated using a cell counting kit-8 (CCK-8;
Beyotime Institute of Biotechnology, Nantong, China), as previously described (Chen et al.,
2022a; Xue et al., 2022; Yu et al., 2022). In the colony formation assay, 1,000 transfected
cells were placed in 6-well plates; 2 mL DMEM containing 10% FBS was added to each well
and changed after 6 d. After 2 weeks, the cells were fixed with methanol and stained with
0.1% crystal violet (Beyotime, Jiangsu, China) for 30 min, and the visible proliferating
clumps were counted under a microscope (Carl Zeiss, Oberkochen, Germany).

In the migration assay, 300 pL serum-free DMEM was added to the top of a culture
chamber with an 8-mm membrane (14831; Corning, Corning, NY, USA), and the cells
were then added; 700 pL DMEM containing 10% FBS was added to the lower part of the
chamber. After 24-48 h, the cells below the membrane were fixed with 4%
paraformaldehyde and stained with 0.1% crystal violet. Finally, photographs were taken
under a microscope (Carl Zeiss, Oberkochen, Germany).

Western blot

The proteins of transfected GC-1 and GC-2 cells were extracted using RIPA buffer (RIPA,
Beyotime, Jiangsu, China) and denatured at 100 °C. The denatured proteins were then
separated on 10% sodium dodecyl sulfate-polyacrylamide gels, transferred to a
polyvinylidene difluoride membrane, and sealed with 5% skim milk at room temperature
for 1 h. The primary antibodies were anti-SLC26A1 (1:1,000, NBP1-84897; Novus, St.
Charles, MO, USA) and anti-tubulin antibody (1:1,000, MA1-91878, Thermo Fisher
Science, Waltham, MA, USA). The membranes were then incubated with secondary
antibody (1:3,000, A0208, Beyotime, Jiangsu, China) for 1 h at room temperature. Finally,
a quantitative analysis was performed using a SuperSignal West Femto chemiluminescence
substrate detection system (Thermo Fisher Scientific, Waltham, MA, USA).

RNA extraction and reverse transcription-quantitative PCR (RT-qPCR)
Total RNA was extracted from testicular tissue and transfected GC-1 and GC-2 cells using
TRIZOL™ reagent (Vazyme, Nanjing, China) according to the manufacturer’s
instructions. The RNA was then reverse transcribed into complementary cDNA by using a
PrimeScript RT reagent Kit (Vazyme, Nanjing, China) and quantified using a real-time
PCR system (Applied Biosystems, Foster City, CA, USA). The reaction system was set up
as follows: SYBR Green Mix (10 pL), forward primer (0.4 pL), reverse primer (0.4 pL),
cDNA template (1.0 pL), ddH2O (8.2 pL), resulting in a total volume of 20 pL. 18S rRNA
was used as an internal control. Target gene expression was calculated using the 2744¢T
method: AACT = (CTTarget - CTISsrRNA)Sample - (CTTarget — CT8grNA) Control- The primers
used are summarized in Table S1.
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Histology and sperm phenotyping

Testes and epididymides from Slc26al-WT and Slc26a1-KO mice aged 8-12 weeks were
immediately fixed in modified Davidson’s solution for 48 h, dehydrated in a series of
graded ethanol solutions, embedded in paraffin, and cut into sections (thickness, 4 pm).
The sections were rehydrated and stained for histological analysis using hematoxylin-eosin
(H&E) or periodic acid Schiff (PAS) stain, as previously described (Shen et al., 2021; Wu
et al., 2022; Yu et al., 2021). For sperm malformation analysis, we selected and quantified
the head and tail deformities of sperm, respectively. Then, we performed computer-
assisted sperm analysis (CASA). Cauda epididymides were suspended in human tubal fluid
culture medium (InVitroCare, Inc., Frederick, MD, USA), incubated at atmospheric
pressure and 37 °C for 10 min, and analyzed for semen quality using a Ceros™II sperm
analysis system (Hamilton Thorne, Beverly, MA, USA).

Immunofluorescence

Immunofluorescence staining of mouse testis was performed as previously described (Gao
et al., 2020; Zhao et al., 2019). The paraffin sections were boiled in 10 mM citrate buffer
(pH 6.0), soaked in 3% hydrogen peroxide, blocked with bovine serum albumin, and
incubated with primary antibody (Table S2) at 4 °C. Subsequently, the slides were rinsed
three times with phosphate-buffered saline, then incubated with Alexa-Fluor secondary
antibody (Thermo Fisher Scientific, Waltham, USA) at 37 °C and stained with 4',6-
diaminodiphenylindole. Fluorescent staining images of all sections were obtained under a
confocal microscope (Zeiss, Oberkochen, Germany). Images of 50 tubules per male were
used for quantification.

Terminal deoxynucleotidyl transferase-dUTP nick-end labeling
(TUNEL) assay

Apoptosis was detected using the TUNEL assay kit (Vazyme, Nanjing, Jiangsu, China),
according to the manufacturer’s instructions. Paraffin sections were rehydrated and treated
with proteinase K, then reacted with TUNEL labeling mix buffer at 37 °C. Images were
obtained under a confocal microscope (Zeiss, Oberkochen, Germany). Fifty tubules per
male were analyzed.

Statistical analysis

All relevant statistical analyses were performed in triplicate. Unpaired student’s t-tests or
one-way ANOVA were used to verify differences between Slc26al-WT and Slc26a1-KO

mice. Data are the mean * Standard Deviation (SD). A P-value < 0.05 was considered to
indicate a significant difference.

RESULTS

Generation of Slc26a1-KO mice

To investigate the effect of SLC26A1 on male fertility, CRISPR/Cas9 gene editing
technology was used to introduce a mutation consisting of a 10 bp deletion in exon 3 of
Sle26al (Fig. 1A), which is predicted to lead to frame-shift mutations. This mutation
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Figure 1 Generation of Slc26al-KO mice. (A) CRISPR/Cas9-mediated gene editing strategy for
Slc26al. (B) Predictive analysis of mutant proteins in Slc26a1-KO mice. (C) Sanger sequencing of
Slc26a1-WT and Slc26a1-KO mice. (D) Immunostaining of SLC26A1 and PNA in the sperm of WT and
Slc26a1-KO mice. PNA served as an acrosome marker. The SLC26A1 antibody recognition site is at the
C-terminal, the antibody recognizes only the WT form, not the mutant protein. Scale bar, 20 pm.
SLC26A1, solute carrier 26A; WT, wild type; DAPI, 4',6-diamidino-2-phenylindole; PNA, peanut
Full-size K&l DOT: 10.7717/peerj.16558/fig-1

agglutinin.

causes a complete deletion of the Sulfate Transport Anti-Sigma antagonist (STAS) domain

(Fig. 1B). PCR and Sanger sequencing were used to confirm the changes (Fig. 1C).

Immunofluorescence staining of sperm showed that SLC26A1 was specific localized in the
acrosome of spermatids of WT mice, but not in the Slc26a1-KO spermatids (Fig. 1D).

Localization of Slc26al in mice suggested that Slc26al may affect acrosome during

spermatogenesis.
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Sic26a1 KO mice are fertile

We subsequently performed fertility tests to study the effects of Slc26al on mouse fertility.
The pups and litters of the experimental and control groups were counted. The results
suggested that the difference in fertility between the Slc26a1-WT and Slc26a1-KO mice was
not statistically significant (Fig. 2A). We also examined testicular morphology and
testicular/body weight ratios of Slc26a1-KO male mice; compared with the control group,
the difference was not statistically significant (Figs. 2B and 2C). The CASA results
suggested that compared with WT mice, Slc26a1-KO mice had normal sperm
concentrations, and percentage of sperm with motility and with progressive motility (Figs.
2D-2F). H&E staining of sperm found that the abnormal sperm of Slc26a1-KO mice was
not significantly different from that of Slc26a1-W mice (Figs. 2G-2I). Therefore, Slc26al
was not essential for mouse fertility.

Spermatogenesis is normal in Slc26a7-KO mice

H&E staining results for testes suggested that Slc26a1-KO mice had intact seminiferous
tubules and spermatogenic cells at all stages (Fig. 3A). H&E staining of the epididymis
found that there were no significant histological differences between the epididymides of
Slc26a1-WT and Slc26a1-KO mice and that they were filled with sperm in both groups of
animals (Figs. 3B and 3C).

Different spermatogenic cells are arranged in the seminiferous tubules according to
special cell connections. Spermatogenesis can be divided into the three processes of
spermatogonial stem cell (SSC) proliferation and differentiation, spermatocyte meiosis,
and spermiogenesis. To examine the differences in spermatogenesis between Slc26al-WT
and Slc26a1-KO mice, we first analyzed the nuclei and acrosomes of the spermatogenic
cells in seminiferous tubules using PAS staining. The results indicated there were no
obvious morphological differences (Fig. 4A). We quantitatively analyzed spermatids in
spermatogenic tubules by H&E-stained mouse testicular sections (Fig. 4B), the results
suggest that there is no significant difference in the numbers of spermatids between WT
and KO mice.

We also used lin-28 homolog (LIN28), SRY-box 9 (SOX9), hydroxy-delta-5-steroid
dehydrogenase, 3 beta- and steroid delta-isomerase 1(HSD-3f), TUNEL, and H2AX
variant histone (y-H2AX) immunostaining. These five marker genes are respectively
located in SSCs (Figs. 4C and 4D), Sertoli cells (Figs. 4E and 4F), Leydig cells (Figs. 4G and
4H), apoptotic cells (Figs. 4I-4K), and spermatocytes (Figs. 4L and 4M). Then we
quantified the number of positive cells in the testicular sections; there were no significant
between-group differences. Taken together, these results suggested that Slc26al was not
essential for spermatogenesis in mice.

Possible functional compensation from paralogs in Slc26a71-KO mice
We extracted total RNA from the testes of Slc26al-WT and Slc26a1-KO mice. Relative

transcript levels of eleven Slc26a family members were detected using RT-qPCR. The mean
expression of Slc26a5 and Slc26a11 in the testes of Slc26a1-KO mice was higher than that
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Figure 2 Normal fertility in Slc26a1-KO mice. (A) Fertility test of Slc26al-WT and Slc26a1-KO mice; to five males (n) per group P > 0.05. (B)
Representative examples of testicular morphology of 8-week-old Slc26a1-WT and Slc26a1-KO mice. Scale bar = 5 mm. (C) Testis/body weight ratio
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Figure 2 (continued)
of the control group and the experimental group; n = 6 per group, P > 0.05. (D-F) Sperm concentrations (D), motility (E), and progressive motility

(F) in SIc26a1-WT and Slc26a1-KO mice. M, millions; n = 6 per group, P > 0.05. (G) Examples of H&E staining of sperm from Slc26a1-WT and
Slc26a1-KO mice. Scale bar, 20 um. (H) Percentages of abnormal sperm head in Slc26a1-WT and Slc26a1-KO mice; n = 3 per group, 500 sperm cells

were counted in each group. P > 0.05. (I) Percentages of abnormal sperm tail in Slc26a1-WT and Slc26a1-KO mice; n = 3 per group, 500 sperm cells

were counted in each group. P > 0.05. Full-size K&l DOT: 10.7717/peerj.16558/fig-2
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Figure 3 Histological analysis of testes and epididymides from 8-week-old mice. (A) Representative
H&E staining of testicular sections from Slc26al1-WT and Slc26a1-KO mice, scale bar = 50 pm. (B)
Examples of H&E staining of caput epididymal sections from Slc26a1-WT and Slc26a1-KO mice, scale

bar = 50 um. (C) H&E staining of cauda epididymis sections from Slc26a1-WT and Slc26a1-KO mice,

scale bar = 50 pm. Full-size E&] DOI: 10.7717/peerj.16558/fig-3
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Figure 4 Normal spermatogenesis in Slc26a1-KO mice. (A) Representative images of PAS staining of spermatogenic cells (epithelial stages I-XII)
from SIc26a1-WT and Slc26a1-KO mice, scale bar = 20 pm. (B) The number of spermatids in each spermatogenic tubule were counted in
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Figure 4 (continued)

H&E-stained mouse testicular sections. (C) Representative immunostaining of LIN28 in testicular sections of 8-week-old Slc26a1-WT and Slc26a1-
KO mice. Scale bar = 50 um. (D) Comparative quantification of LIN28-positive cells (spermatogonial stem cells, SSCs) per tubule (based on (C),
n = 3 per group, P > 0.05. (E) Immunostaining of SOX9 (served as a Sertoli cell marker) in 8-week-old Slc26a1-WT and Slc26a1-KO mice. Scale
bar = 50 um. (F) Quantification of (E), n = 3 per group, P > 0.05. (G) Immunostaining of 33-HSD (served as a Leydig cell marker) in 8-week-old
Slc26a1-WT and Slc26a1-KO mice. Scale bar = 50 pm. (H) Quantification of (G), n = 3 per group, P > 0.05. (I) TUNEL assay of testes from Slc26a1-
WT and Slc26a1-KO mice, scale bar = 50 pm. (J) Quantification of apoptotic cells (based on I), n = 3 per group, P > 0.05. (K) Percentage of
TUNEL-positive tubules (apoptotic cells) in total spermatogenic tubules, 50 tubules were counted in each group. (L) Immunostaining of yH2AX
(served as a spermaticyte marker) in testes of Slc26al-WT and Slc26a1-KO 8-week-old mice, scale bar = 50 um. (M) Quantification of primary
spermatocytes (base on L), n = 3 per group, P > 0.05. Scale bar = 50 um. Full-size K] DOT: 10.7717/peerj.16558/fig-4

of Slc26a1-WT mice (Fig. 5A). These results may suggest that paralog-associated
functional compensation was present in the testes of Slc26a1-KO mice.

To test whether transient knockdown of the Slc26al gene also had a similar effect, we
transiently transfected GC-1 and GC-2 cells with si-Slc26al #1 and #2; western blot
analysis revealed reduced expression of SLC26A1 (Figs. 5B and 5C). We also extracted total
RNA from GC-1 and GC-2 cells and performed RT-qPCR. The PCR results indicated
there was no significant difference in relative transcription levels of Slc26a family members
between Slc26a1-W'T and Slc26a1-KO mice (Figs. 5D and 5E).

Since there was no compensation in these two cell lines, we assessed whether the
knockdown of Slc26al affects their phenotype. The results of the CCK-8 and colony
formation assays revealed that proliferation of GC-1 and GC-2 cells decreased with
downregulation of Slc26al expression (Figs. 5F-5]). Transwell assays further found that
downregulation of Slc26al inhibited cell migration (Figs. 5K-5M).

Taken together, these results indicated that the deletion of Slc26al could be
compensated for by other Slc26a family members in some testicular cells, but transient
gene knockdown in GC-1 and GC-2 cells had no such effect.

DISCUSSION

As anion transporters, SLC26A family members have important roles in pH homeostasis,
sperm maturation, and capacitation in the male reproductive tract. Previous studies found
that the SLC26A family members (e.g., SLC26A3 and SLC26A8 proteins) are involved in
the regulation of germ cells (Touré, 2019). However, the role of Slc26al in mouse
spermatogenesis and fertility has remained unknown. In this study, we examined SLC26A 1
and obtained Slc26a1-KO mice using CRISPR/Cas9 technology. We found no significant
differences in spermatogenesis or fertility of Slc26a1-KO mice. This result indicated that
Slc26al was dispensable for mouse fertility. However, in the Slc26al knockdown model,
proliferation and migration ability of mouse GC-1 and GC-2 cells were decreased.
Therefore, there were phenotypic differences between the KD and KO models. Similar to
the findings of previous studies on Rail4 (Wu et al., 2021) and Fankl (Zhang et al., 2019),
this difference might have been due to functional compensation of homologs in the KO
model in some germ cells.

Genetic robustness refers to the ability of living organisms to maintain viability and
adaptability under conditions of genetic variation (including disturbance; Waddington,
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Figure 5 Putative compensation in SIc26a1-KO mice. (A) Relative mRNA levels of eleven Slc26a family genes in total testes of Slc26aI-WT and
Slc26a1-KO mice, analyzed using RT-qPCR. *P < 0.05, six males per group. (B and C) Western blot analysis revealed that Slc26a1 was knocked down
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Figure 5 (continued)

in Slc26a1-specific-siRNA-treated GC-1 (B) and GC-2 (C) cells; tubulin was used as an internal reference. (D and E) Relative mRNA levels of Slc26a
family genes in GC-1 (D) and GC-2 (E) cells, using RT-qPCR. *P < 0.05, **P < 0.01, ***P < 0.001. (F and G) Viability of GC-1 (F) and GC-2 (G) cells
assessed using CCK-8 assay 48 h after transfection, n = 3 per group. (H-J) Colony formation assay performed to determine proliferation capacity of
GC-1 (I) and GC-2 (]) cells 48 h after transfection, n = 3 per group. (K-M) Migration ability of GC-1 (L) and GC-2 (M) cells assessed using transwell
assay 48 h after transfection. Full-size Kal DOI: 10.7717/peerj.16558/fig-5

1959). When there are small differences in genetic composition or environmental
conditions, organisms need buffer systems to ensure similar developmental outcomes; this
process is known as robustness (Waddington, 1959). As previously reported (White et al.,
2013), this genetic robustness may come from a redundant gene. Gene loss can be
compensated for by other genes with overlapping functions and the same gene expression
patterns (Bouché & Bouchez, 2001; Kok et al., 2015; White et al., 2013).

We speculate that the minimal effect of SIc26a1 on mouse fertility was due to functional
redundancy. Fertility is an important function, and there may be redundant genes with
overlapping functions to ensure stability of individual fertility. Asb-1, 2, 3,4, 5, 7, 8, 9, 11,
14, 15, 17, and 18 genes are expressed at significantly higher levels in Asb12-KO mice than
in Asb12-W'T mice (Zhang et al., 2022). The Slc26a family is highly conserved, with 11
members in mice (SLC26A10 is a pseudogene in humans). Similarly, possible upregulation
of two Slc26a family members was found in Slc26a1-KO mice and base on results from the
short-term mRNA suppression, we speculate that it was caused by the long-term loss of
Slc26al.

At present, study findings indicate that many genes expressed in the testis are
dispensable for mouse fertility (e.g., FBXW17 (Chen et al., 2022b), ASB12 (Zhang et al.,
2022), USP26 (Felipe-Medina et al., 2019)). Our results exclude SLC26A1 as a contraceptive
target and male infertility factor and will help avoid duplication of effort by researchers
and save time and money in other laboratories. There is only a remote possibility of a
germ-cell-specific dominant mutation. These results can also help reproductive
researchers determine target gene research priorities and focus on genes that are essential
for fertility.
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