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Abstract
Human	aging	is	invariably	accompanied	by	a	decline	in	renal	function,	a	process	po-
tentially	 exacerbated	 by	 uremic	 toxins	 originating	 from	 gut	 microbes.	 Based	 on	 a	
registered	household	Chinese	Guangxi	longevity	cohort	(n = 151),	we	conducted	com-
prehensive profiling of the gut microbiota and serum metabolome of individuals from 
22	to	111 years	of	age	and	validated	the	findings	in	two	independent	East	Asian	aging	
cohorts	(Japan	aging	cohort	n = 330,	Yunnan	aging	cohort	n = 80),	identifying	unique	
age-dependent	differences	in	the	microbiota	and	serum	metabolome.	We	discovered	
that the influence of the gut microbiota on serum metabolites intensifies with advanc-
ing age. Furthermore, mediation analyses unveiled putative causal relationships be-
tween	the	gut	microbiota	(Escherichia coli, Odoribacter splanchnicus, and Desulfovibrio 
piger)	 and	 serum	 metabolite	 markers	 related	 to	 impaired	 renal	 function	 (p-cresol,	
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1  |  INTRODUC TION

Long-living	 individuals,	 particularly	 centenarians,	 exemplify	 the	
concept	 of	 healthy	 aging	 (Franceschi	 &	 Bonafe,	 2003;	 Garagnani	
et al., 2013)	and	thus	provide	an	invaluable	resource	for	identifying	
novel relationships between the host and the gut microbiota in rela-
tion	to	aging	(Marcos-Perez	et	al.,	2021;	Santos-Lozano	et	al.,	2020).	
The global increase in the number of elderly people has spurred 
extensive social and healthcare concerns, posing emerging clinical 
challenges in relation to chronic conditions such as diabetes melli-
tus, renal diseases, neurological disorders, cardiovascular diseases, 
and	neoplasms	 in	 an	 aging	population	 (Chang	 et	 al.,	 2019; Liguori 
et al., 2018;	O'Sullivan	et	al.,	2017).	A	more	profound	understanding	
of	the	aging	processes	and	the	mechanisms	underpinning	age-asso-
ciated diseases could lay the groundwork for developing more effec-
tive healthcare strategies for elderly individuals.

With	aging	comes	a	heightened	risk	of	renal	diseases,	prompting	
intensified research on the adaptations of renal function throughout 
normal	aging	(Denic	et	al.,	2016;	Glassock	et	al.,	2020).	These	studies	
often involve an analysis of serum metabolites that accumulate as 
renal function deteriorates, potentially serving as novel biomarkers 
for	age-related	changes	in	renal	function	(Rhee,	2018).	Among	these	
metabolites, uremic toxins have drawn significant interest, as their 
accumulation	 might	 signal	 end-stage	 renal	 disease.	 Uremic	 toxins	
are biologically active compounds retained in the bodies of patients 
with	 renal	 failure.	 In	 healthy	 individuals	 with	 normal	 renal	 func-
tion, these metabolites, including indoxyl sulfate, hippuric acid, and 
P-cresol,	are	normally	excreted	in	the	urine	(Vanholder	et	al.,	2003).	
However,	 beyond	 their	 role	 in	 renal	 diseases,	 uremic	 toxins	 have	
been	somewhat	overlooked.	Given	the	progressive	decline	in	renal	
function in older individuals, patterns of uremic toxins could act as 
crucial biomarkers, establishing a link between renal function and 
healthy	aging	(Kooman	et	al.,	2014).

Recent	kidney-focused	metabolomics	studies	have	underscored	
the influence of diet and the gut microbiota in shaping the serum 
metabolome,	 given	 that	 many	 uremic	 metabolites	 require	 bacte-
rial	metabolism	for	their	synthesis	(Rhee,	2018;	Wang	et	al.,	2020).	
Specifically,	 uremic	 toxins	 are	 reportedly	 derived	 from	 the	 gut	

microbiota	through	the	breakdown	of	diet-derived	aromatic	amino	
acids	 (AAAs)	 and	 polyphenols	 (Ramezani	 et	 al.,	 2016;	 Wikoff	
et al., 2009).	Supporting	evidence	from	chronic	kidney	diseases	and	
animal models has further demonstrated the critical role of the gut 
microbiota in renal function and the production of uremic toxins 
(Aronov	et	al.,	2011; Mishima et al., 2017;	Wang	et	al.,	2020).	Thus,	
individuals with renal failure often exhibit a severely distorted gut 
microbiota, leading to the rapid biosynthesis of toxic compounds, 
subsequently	 resulting	 in	 higher	 plasma	 concentrations	 of	 uremic	
toxins	and	aggravated	renal	disease	(Wang	et	al.,	2020).

Several	 cross-sectional	 studies	 have	 identified	 gut	 microbiota	
changes	 that	 occur	with	 aging	 (Biagi	 et	 al.,	 2016;	Pang	 et	 al.,	2023; 
Wilmanski	et	al.,	2021;	Wu	et	al.,	2019;	Zhang	et	al.,	2021).	Studies	
using	16S	rRNA	gene	amplicon	sequencing	have	indicated	an	associ-
ation	between	diet-driven	microbiota	alterations	and	health	decline	in	
aging	individuals	(Claesson	et	al.,	2012)	and	highlighted	the	presence	
of a core microbiota of prevalent, symbiotic bacterial taxa dominated 
by the families Ruminococcaceae, Lachnospiraceae, and Bacteroidaceae, 
with a progressive reduction in the abundance of these core taxa 
with	age	(Biagi	et	al.,	2016).	In	recent	years,	deep	shotgun	sequencing	
studies have reported a trend toward an increase in the abundances 
of Escherichia and Streptococcus with age, while the abundances of 
Faecalibacterium and Ruminococcus were reported to exhibit a decreas-
ing	trend	(Rampelli	et	al.,	2020;	Wu	et	al.,	2019).	Notably,	compared	to	
that in other age groups, the gut microbiota of healthy centenarians is 
enriched with bacteria with a potential for degradation of xenobiot-
ics	 (Rampelli	et	al.,	2020)	and	biosynthesis	of	short-chain	fatty	acids	
(Wu	et	al.,	2019).	However,	whether	specific	interactions	between	the	
serum	metabolome	and	gut	microbiota	are	related	to	an	age-depen-
dent decline in renal function remains largely unexplored.

The present study is based on a Chinese longevity cohort with a 
notable	number	of	long-living	individuals	(nonagenarians	and	cente-
narians)	(Study	of	Microbiota	in	Longevity	Yongfu	County,	SoMiLY,	
ClinicalTrials.gov:	 NCT04210934)	 (Sun	 et	 al.,	 2013).	 The	 design	
enabled	 extensive	 between-group	 analyses	 of	 serum	metabolome	
and gut microbiota patterns across a wide range of age groups and 
lifespans,	 identifying	general	 age-related	changes	and	correlations	
among the gut microbiota, uremic metabolites, and renal function.
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N-phenylacetylglutamine,	2-oxindole,	and	4-aminohippuric	acid)	and	aging.	The	fecal	
microbiota transplantation experiment demonstrated that the feces of elderly individ-
uals	could	influence	markers	related	to	impaired	renal	function	in	the	serum.	Our	find-
ings	reveal	novel	links	between	age-dependent	alterations	in	the	gut	microbiota	and	
serum metabolite markers of impaired renal function, providing novel insights into the 
effects	of	microbiota-metabolite	interplay	on	renal	function	and	healthy	aging.
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2  |  METHODS

2.1  |  Ethical approval and consent to participate

The	study	was	approved	by	the	Ethics	Committee	of	Beijing	Hospital	
and	the	BGI	Review	Board	of	Bioethics	and	Biosafety	(BGI-IRB17062).	
All	applicable	 institutional	 regulations	concerning	 the	ethical	use	of	
information and samples from human volunteers were followed dur-
ing	 this	 study.	 Each	 individual	 provided	 written	 informed	 consent.	
This	study	was	registered	at	ClinicalTrials.gov	(NCT04210934).

2.2  |  Study population

Yongfu	County,	located	in	Guangxi	Province	in	southern	China,	was	
in the first batch of longevity towns in China, officially approved 
by	 the	 Chinese	 Gerontology	 Society	 in	 2007	 (Sun	 et	 al.,	 2013).	
According	to	site	visits	and	government	records,	compared	to	those	
in other areas with more developed economies, the elderly residents 
in	 Yongfu	 mostly	 live	 with	 less	 dependence	 on	 modern	Western	
medicine	 and	health	 care.	All	 the	 included	participants	were	 local	
residents and had similar social and economic backgrounds, with an 
average annual disposable income of approximately 10,000–20,000 
yuan	per	person	in	2016.	The	rural	environment	provided	a	unique	
research resource and potentially reduced exposure to medication, 
which could have a potential impact on the microbiota.

Based	 on	 an	 observational	 longevity	 cohort	 in	 ClinicalTrials	
platform	(Study	of	Microbiota	in	Longevity	Yongfu	County,	SoMiLY,	
NCT04210934),	we	recruited	151	healthy	 individuals	 from	Yongfu	
County using nonprobability sampling and a household survey. The 
participants	were	categorized	into	four	age	groups:	29	centenarians	
(100–111 years	old),	46	nonagenarians	(90–100 years	old),	41	elderly	
individuals	 (60–90 years	 old),	 and	 35	 young-to-middle-aged	 adults	
(20–60 years	 old).	 The	 age	 information	 was	 strictly	 verified	 using	
China's	 national	 identity	 card	 number,	 double-checked	 by	 evalua-
tion of each generation of children, and further validated by asking 
participants to recall their life events in home visits. The exclusion 
criteria	included	self-reported	antibiotic	use	within	1 month,	hospi-
talization	for	any	reason	in	the	last	3 months,	acute	major	diseases	or	
disabilities,	 typical	dementia-related	 inability	 to	communicate,	and	
intake of any drug potentially affecting the microbiota, especially 
oral	 antidiabetic	 drugs,	 lipid-lowering	 agents,	 and	 cancer	 chemo-
therapeutic	agents	within	3 months.

In	addition,	 two	 independent	external	cohorts	with	East	Asian	
origins,	the	Yunnan	aging	cohort	(n = 80)	and	the	Japan	aging	cohort	
(n = 330),	were	used	to	validate	serum	metabolomic	and	fecal	metag-
enomic	 features	 identified	 in	 the	Guangxi	 aging	cohort	 (Table S1).	
Yunnan	and	Guangxi	are	contiguous	and	both	located	in	South	China,	
and the residents exhibit more similar geographic features, dietary 
habits,	and	living	habits	than	Caucasians	and	Africans.	Eighty	partic-
ipants undergoing health management were included; the routine 
health indicators of these participants were within the reference 
range, and they exhibited an overall good health status. Their ages 

spanned	 four	 stages,	 termed	young	and	middle-aged	 (20–45 years	
old),	young-old	(60–69 years	old),	middle-old	(70–79 years	old),	and	
old–old	(80–89 years	old),	with	20	individuals	in	each	stage	(equally	
divided	 between	males	 and	 females).	 In	 addition,	 the	 Japan	 aging	
datasets	 were	 retrieved	 via	 the	 public	 database	 (PRJNA675598)	
(Sato	et	al.,	2021),	comprising	330	gut	microbial	metagenomes	from	
Japanese	adults	who	had	overall	similar	gender	and	age	distributions	
as	the	Guangxi	longevity	cohort.

2.3  |  Blood and fecal sample collection

Blood	and	fecal	samples	of	participants	were	collected	at	home	dur-
ing a household survey and transferred to the clinical laboratory in 
the	Yongfu	People's	Hospital	on	dry	 ice.	Serum	was	 isolated	after	
centrifugation	twice	(3000 rpm,	10 min	and	12,000 rpm,	5 min),	and	
stored	 at	 −80°C	until	 used	 for	metabolomics	 analysis.	 Fresh	 fecal	
samples were obtained at home at the same time as blood collec-
tion.	After	excretion,	all	pretreatment	was	performed	within	10 min	
to ensure that the feces were relatively fresh. The whole operation 
process was carried out while keeping the samples on dry ice to en-
sure	a	low-temperature	environment.	We	used	fecal	collection	kits	
(MGIEasy)	to	collect	fresh	fecal	samples	and	stored	them	in	an	ice	
box	with	dry	 ice;	 the	samples	were	subsequently	 stored	at	−80°C	
until	DNA	extraction	and	metagenomics	analysis.	To	control	for	pos-
sible contaminants during handling and nucleic acid preparation, we 
included a blank control every day for each batch, wherein the blank 
swab was likewise immersed in the fecal preservation solution.

2.4  |  General information and clinical phenotypes

The general parameters recorded included age, sex, weight, height, 
smoking	status,	drinking	habits,	 systolic	blood	pressure	 (SBP),	 and	
diastolic	blood	pressure	 (see	Table S1	 for	details).	 Six	 clinical	phe-
notypes	 were	 evaluated,	 including	 glycometabolism	 (hemoglobin,	
C-peptide),	 lipid	 metabolism	 (triglycerides,	 total	 cholesterol,	 high-
density	 lipoprotein	 cholesterol,	 and	 low-density	 lipoprotein	 cho-
lesterol),	inflammation	(high-sensitivity	C-reactive	protein	[hsCRP]),	
redox	 state	 (superoxide	 dismutase),	 cardiovascular	 biomarkers	
(beta-hydroxybutyrate,	 homocysteine)	 and	 renal	 function	 [creati-
nine	[CREA],	UREA,	uric	acid	[UA]).	For	calculation	of	the	estimated	
glomerular	filtration	rate	(eGFR)	(mL/min	per	1.73 m2),	the	Chronic	
Kidney	Disease	Epidemiology	Collaboration	(CKD-EPI)	 (Matsushita	
et al., 2012)	equations	were	used	as	follows:

Female with SCr ≤ 0.7: eGFR = 144 × (0.993)age × (SCr∕0.7)−0.329

Female with SCr > 0.7: eGFR = 144 × (0.993)age × (SCr∕0.7)−1.209

Male with SCr ≤ 0.9: eGFR = 141 × (0.993)age × (SCr∕0.9)−0.4111

Male with SCr > 0.9: eGFR = 141 × (0.993)age × (SCr∕0.9)−1.209
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2.5  |  Leukocyte telomere length measurement

Peripheral	 blood	 leucocyte	 DNA	 extraction	 was	 performed	 using	
a	 Whole	 Blood	 DNA	 Extraction	 kit	 (BioTeke,	 Beijing,	 China)	 and	
evaluated using a Qubit fluorometer. Telomere length was deter-
mined as the relative ratio of the telomere repeat copy number to 
a	 single	 copy	 gene	 copy	number	 (T/S	 ratio)	 using	 the	quantitative	
PCR	 (Cawthon,	 2002).	 Each	 sample	 was	 tested	 for	 telomeres	 (T)	
and	 the	 single	 copy	 gene	 (S),	 RNaseP,	 with	 3	 replicates	 for	 each.	
The	 self-configured	 gDNA	 mixed	 samples	 were	 used	 as	 stand-
ards to eliminate the systematic errors of the results of different 
batches.	The	formula	for	calculating	the	T/S	value	was:	T/S = 2−∆∆Ct; 
∆∆Ct = ∆Ctsample − ∆Ctstandard;	∆Ct = Ct(T) − Ct(S).

2.6  |  Metabolite profiling of human serum samples

2.6.1  |  Internal	standards	(1)

D3-L-methionine	 (100 ppm,	 TRC,	 Canada),	 13C9-phenylalanine	
(100 ppm,	 CIL,	 USA),	 D6-L-2-aminobutyric	 acid	 (100 ppm,	 TRC,	
Canada),	 D4-L-alanine	 (100 ppm,	 TRC,	 Canada),	 13C4-L-threonine	
(100 ppm,	CIL,	USA),	D3-L-aspartic	acid	(100 ppm,	TRC,	Canada),	and	
13C6-L-arginine	(100 ppm,	CIL,	USA).

2.6.2  |  SPLASH	internal	standards	(2)

The	stock	concentrations	of	each	lipid	standard	were	as	follows:	LPC	
18:1(d7),	25 μg/mL;	LPE	18:1(d7),	5 μg/mL;	PC	15:0–18:1(d7),	160 μg/
mL;	PE	15:0–18:1(d7),	5 μg/mL;	PG	15:0	18:1(d7),	30 μg/mL;	PS	15:0–
18:1(d7),	 5 μg/mL;	 PI	 15:0–18:1(d7),	 10 μg/mL;	 PA	 15:0–18:1(d7),	
7 μg/mL;	SM	d18:1–18:1(d9),	30 μg/mL;	cholesterol(d7),	100 μg/mL; 
CE	18:1(d7),	 350 μg/mL;	MG	18:1(d7),	 2 μg/mL;	DG	15:0–18:1(d7),	
10 μg/mL;	and	TG	15:0–18:1(d7)–15:0,	55 μg/mL.	Methanol	 (A454-
4),	acetonitrile	(A996-4),	and	the	above	substances	were	of	LC–MS	
grade.	Formic	acid	ammonium	salt	(17843-250G;	Honeywell	Fluka,	
USA),	and	formic	acid	(50144-5 g0mL	DIMKA,	USA)	were	used,	and	
water was supplied by a water purification system.

2.6.3  | Metabolite	extraction

After	thawing	a	sample	slowly	at	4°C,	100 μL was placed into a well of 
a	96-well	plate,	and	300 μL	of	extraction	solvent	(2:1	methanol:ACN	
(V/V)	 precooled	 at	 −20°C),	 10 μL	 of	 internal	 standard	 1	 and	 10 μL 
of internal standard 2 were added. The mixture was vortexed for 
1 min,	incubated	at	−20°C	for	2 h,	and	then	centrifuged	at	4000 rpm	
for	20 min	 at	4°C.	After	 centrifugation,	 300 μL of the supernatant 
was subjected to freeze drying, and the residue was resuspended 
in	 150 μL	 of	 1:1	 methanol:H2O	 (V/V).	 The	 mixture	 was	 vortexed	
for	 1 min	 and	 centrifuged	 at	 4000 rpm	 for	 30 min	 at	 4°C,	 and	 the	
supernatant was placed into a sample bottle. Ten microliters of the 

supernatant from each sample was mixed as the QC sample to evalu-
ate	the	repeatability	and	stability	of	LC–MS	analysis.

2.6.4  |  Liquid	chromatography–
tandem	mass	spectrometry	(LC–
MS/MS)-chromatographic	conditions

We	used	a	Waters	2D	UPLC	(Waters	USA)	tandem	Q	Exactive	high-
resolution	 mass	 spectrometer	 (Thermo	 Fisher	 Scientific,	 USA)	 to	
separate and detect metabolites.

2.6.5  |  Chromatographic	conditions

A	BEH	C18	column	(1.7 μm	2.1 × 100 mm,	Waters,	USA)	was	used.	In	
positive ion mode, the mobile phase was a water solution containing 
0.1%	formic	acid	(A)	and	100%	methanol	containing	0.1%	formic	acid	
(B).	In	negative	ion	mode,	the	mobile	phase	was	an	aqueous	solution	
containing	10 mM	ammonia	formate	(A)	and	95%	methanol	contain-
ing	10 mM	ammonia	formate	(B).	The	following	gradient	was	used	for	
elution	in	both	ionization	modes:	0–1 min,	2%	B;	1–9 min,	2%–98%	B;	
9–12 min,	98%	B;	12–12.1 min,	98%	B;	12.1–15 min,	2%	B.	The	flow	
rate	was	0.35 mL/min,	 the	column	temperature	was	45°C,	and	the	
injection	volume	was	5 μL.

2.6.6  | Mass	spectrometric	conditions

Primary	and	secondary	mass	spectrometric	data	were	collected	by	a	
Q	Exactive	mass	spectrometer	(Thermo	Fisher	Scientific,	USA).	The	
mass-to-charge	 ratio	 scan	 range	was	m/z	70–1050,	 the	 first-order	
resolution	was	70,000,	the	AGC	was	3e6,	and	the	maximum	injec-
tion	time	was	50 ms.	According	to	the	precursor	ion	signal	strength,	
the top 3 ions were selected for fragmentation, and secondary mass 
spectral	 data	 were	 acquired.	 The	 MS/MS	 resolution	 was	 17,500,	
AGC	was	1e5,	maximum	injection	time	was	50 ms,	and	stepped	colli-
sion	energies	were	20,	40,	and	60 eV.	The	parameters	of	the	electro-
spray	ionization	source	were	as	follows:	sheath	gas	flow	rate,	40 L/h;	
aux	gas	flow	rate,	10 L/h;	spray	voltage	(|kV|),	3.80	in	positive	ioniza-
tion mode and 3.20 in positive ionization mode; capillary tempera-
ture,	320°C;	and	aux	gas	heater	temperature,	350°C.

2.6.7  |  Identification	of	metabolites	and	
data analysis

Compound	Discoverer	3.0	(Thermo	Fisher	Scientific,	USA)	software	
was	used	to	process	LC–MS/MS	data,	including	for	peak	extraction,	
peak	alignment,	and	compound	identification.	After	data	processing,	
a	 total	 of	 35,652	metabolites	were	 detected.	 For	 further	 LC–MS/
MS	analysis,	known	metabolite	annotation	was	performed	accord-
ing	to	an	in-house	HMDB	and	the	Kyoto	Encyclopedia	of	Genes	and	
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Genomes	 (KEGG)	database.	A	 total	 of	 365	out	of	 the	35,652	me-
tabolites were structurally identified and annotated according to the 
in-house	LC–MS/MS	database.

2.7  |  Fecal DNA extraction and 
metagenomic sequencing

Total	DNA	was	extracted	 from	approximately	400–500 mg	of	 feces	
using	the	MetaHIT	protocol	(Qin	et	al.,	2012).	The	DNA	concentration	
was	estimated	by	a	Qubit	 instrument	 (Invitrogen).	DNA	 library	con-
struction	and	sequencing	using	the	BGISEQ-500	platform	were	per-
formed	as	described	previously	(Fang	et	al.,	2018; Li et al., 2021).	Five	
hundred	nanograms	of	input	DNA	was	used	for	library	formation	and	
fragmented	ultrasonically	with	a	Covaris	E220	(Covaris,	Brighton,	UK),	
yielding	 300	 to	 700 bp	 fragments.	We	 constructed	 one	 paired-end	
(PE)	library	for	each	sample,	followed	by	high-throughput	sequencing	
with	PE	reads	of	2 × 100 bp.	We	used	the	documented	workflow	(Fang	
et al., 2018; Li et al., 2021)	for	sequencing	data	quality	control.	Human	
genomic	 DNA	 reads	 were	 identified	 using	 bwa-mem2	 (Vasimuddin	
et al., 2019),	and	reads	were	removed	if	they	shared	>95%	sequence	
identity	with	the	human	genome	reference	sequence	(hg38).

During the sampling process, we designed a blank control every 
day and placed the blank swab into the fecal preservation solution. 
No	DNA	was	found	in	the	blank	control	during	DNA	extraction.

2.8  |  Gene catalog construction and 
gene annotation

2.8.1  |  Gene	catalog	construction

Based	 on	 the	 whole	 metagenome	 sequencing	 (WMS)	 data	 of	 all	
individual fecal samples, a de novo gene catalog was constructed 
(Liyanage	et	al.,	2015).	High-quality	reads	of	each	sample	were	used	
for	de	novo	assembly	with	Megahit	 (version	1.1.2)	 (Li	et	al.,	2015),	
which	generated	the	initial	assembly	results	based	on	different	k-mer	
sizes	(k = 21,	41,	61,	81)	and	then	merged	them.	Ab	initio	gene	identi-
fication	of	assembled	contigs	was	conducted	using	MetaGeneMark	
(Zhu	et	al.,	2010).	Then,	cd-hit	(version	4.5.4)	(Fu	et	al.,	2012)	clus-
tered the predicted genes at the nucleotide level, and genes with 
more	than	90%	overlap	and	more	than	95%	homology	were	treated	
as	 redundant	 (Human	 Microbiome	 Project	 Consortium,	 2012).	
Finally, we obtained a nonredundant gene catalog of 4,140,158 
genes,	of	which	1,154,273	were	partial	ORFs	(27.9%).

2.8.2  |  Quantification	of	genes

The	 high-quality	 sequences	 were	 mapped	 to	 the	 above	 nonre-
dundant	gene	catalog	using	bwa-mem2	 (Vasimuddin	et	al.,	2019)	
with the criterion of identity >90%.	 Based	 on	 the	 alignment	 re-
sult, the relative abundance of gut microbial genes was evaluated 

by the same method as that used in previous microbiome studies 
(Li	et	al.,	2021; Qin et al., 2012).

2.8.3  |  Taxonomic	classification	of	genes

The	nonredundant	gene	catalog	was	compared	with	sequences	in	the	
National	Center	 for	Biotechnology	 Information	database	 (NCBI-NT,	
downloaded	at	Aug.	2018)	using	BLASTN	(v2.7.1)	by	the	parameter	
“word_size	16-evalue	1e − 10”.	Alignments	were	filtered	to	require	at	
least	70%	query	coverage.	If	one	gene	matched	two	or	more	different	
NCBI-NT	sequences	with	exactly	the	same	bit-score	but	from	differ-
ent	species,	we	performed	statistics	on	multiple	best-hits	 (from	the	
NCBI-NT	database)	mapping	for	the	same	gene,	including	the	number	
of species present, the number of occurrences of each species, and 
the	average	similarity	of	 the	same	species.	After	completion	of	 the	
statistical	analysis,	the	species	annotation	with	the	highest	frequency	
and the highest average similarity was used as the annotation for the 
gene	(shown	in	the	table	below).	When	a	gene	was	annotated	to	dif-
ferent	species	based	on	the	NCBI-NT	database,	the	highest	identity	
of	 the	 species	 annotated	 for	 that	 gene	 in	 the	BLASTN	 results	was	
prioritized.	Ninety-five	percent	identity	was	used	as	the	critical	value	
for species assignment, 85% identity was used as the critical value 
for	genus	assignment,	and	65%	identity	was	used	as	the	critical	value	
for	phylum	allocation	(Arumugam	et	al.,	2011).	A	total	of	1.97 million	
genes were classified and annotated taxonomically.

2.8.4  |  Functional	annotation	of	genes

We	used	BLASTP	(v2.7.1)	with	the	parameter	“word_size	16-evalue	
1e − 6”	 to	 align	 the	 putative	 amino	 acid	 sequence	 translated	 from	
the	gene	catalog	with	the	protein	or	domain	in	the	KEGG	database	
(version	84.0,	excluding	animal	or	plant	genes),	and	alignments	were	
filtered	 to	 require	at	 least	30%	alignment	 identity	and	70%	query	
coverage.	Each	putative	amino	acid	sequence	was	assigned	a	KEGG	
ortholog	based	on	the	best-hit	gene	in	the	KEGG	Ortholog	(KO)	da-
tabase.	Using	the	above	method,	3,101,635	genes	in	the	combined	
gene	catalog	were	assigned	to	the	KEGG	database.

2.8.5  |  Construction	of	gene	and	KO	profiles

For	gene	and	KO	profiling,	we	used	a	previously	reported	method	(Li	
et al., 2021).	In	brief,	the	relative	abundance	of	a	KO	was	calculated	
as the total sum of the relative abundance of its cognate genes.

2.9 | Generation of metagenomic species 
(MGSs) and taxonomic classification

The	 generation	 of	 MGS	 was	 performed	 as	 previously	 described	
(Nielsen	 et	 al.,	 2014).	 Co-abundance	 gene	 groups	 (CAGs)	 were	
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established	 using	 “cc.bin”	 (Nielsen	 et	 al.,	2014)	 (default	 parameters)	
from the correlation clusters of sample abundance profiles by a can-
opy-based	 algorithm.	 Canopy-based	 clustering	 of	 the	 gene	 catalog	
was performed by iteratively picking a seed gene among the not yet 
clustered genes and aggregating genes with abundance profiles within 
a	fixed	distance	from	the	seed	gene	abundance	profile	(Pearson	cor-
relation coefficient >0.9	and	Spearman's	rank	correlation	coefficient	
>0.6)	into	the	seed	canopy.	Canopies	with	median	abundance	profiles	
within	a	distance	of	0.97	Pearson	correlation	coefficient	from	one	an-
other were merged. Canopies with 2 or fewer genes, for which the 
canopy	abundance	signal	from	any	three	samples	constituted	90%	or	
more of the total signal across all samples, for which the median pro-
file was detected in less than four samples, or for which one sample 
made	up	90%	of	the	total	signal	were	discarded	for	having	insufficient	
supporting evidence. Canopies that passed these criteria were called 
CAGs.	CAGs	with	more	than	700	genes	are	also	referred	to	as	MGSs.

Taxonomic	classification	was	based	on	the	NCBI-NT	database	as	
previously	described	(Glassock	et	al.,	2017).	Assignment	to	a	species	
required	that	90%	of	the	genes	in	an	MGS	aligned	with	this	species'	
genome	with	95%	identity	and	70%	overlap	in	the	query.	Assigning	
an	MGS	to	a	genus	required	80%	of	its	genes	to	align	with	a	genome	
with	85%	identity	 in	both	DNA	and	protein	sequences.	MGSs	that	
did not meet this condition were unclassified.

We	calculated	the	MGS	profile	using	the	abundance	of	each	gene	
in	 the	 original	 gene	 catalog.	 The	 abundance	 of	MGSs	 was	 deter-
mined by taking the median of the relative abundances of all genes 
within	a	cluster.	Additionally,	we	conducted	a	taxonomic	and	com-
positional	analysis	of	the	metagenome	by	the	Metaphlan4	(V	4.0.6)	
(Blanco-Míguez	et	al.,	2023)	tool	using	the	MetaPhlAn	database	of	
marker	genes	mpa_vOct22_CHOCOPhlAnSGB_202212.

2.10  |  Alpha diversity and enterotype analysis

For	each	sample,	we	calculated	the	Shannon	(2001)	entropy	index,	
and	 the	 median	 Shannon	 entropy	 was	 used	 for	 comparisons	 be-
tween samples:

where S is the number of genes and ai is the relative abundance of gene 
i.	 A	 high	α-diversity	 indicates	 a	 high	 evenness	 or	 diversity	 of	 genes	
present	in	the	sample.	Enterotyping	was	performed	based	on	a	previ-
ously	described	method	(Arumugam	et	al.,	2011)	(https:// enter otype. 
embl. de/ enter otypes. html).

2.11  |  Infer community assembly mechanisms by 
phylogenetic bin-based null model (iCAMP) analysis

iCAMP	was	used	to	investigate	the	assembly	mechanisms	of	differ-
ent	microorganism	groups	(Ning	et	al.,	2020).	The	R	code	for	iCAMP	
was	available	as	an	open-source	R	package,	“iCAMP,”	which	can	be	

downloaded	 from	 the	Comprehensive	R	Archive	Network	 (CRAN,	
https://	cran.	r-	proje	ct.	org/	).	By	using	 iCAMP,	five	assembly	mecha-
nisms of different microorganism groups were identified, including 
homogeneous	 selection	 (HoS),	 heterogeneous	 selection,	 dispersal	
limitation	(DL),	homogenizing	dispersal,	and	drift	(DR).

2.12  |  Phylogenetic isometric log-ratio transform 
(PhILR) analysis

PhILR	 (Silverman	et	al.,	2017)	analysis	 incorporates	microbial	evo-
lutionary	 models	 with	 the	 isometric	 log-ratio	 transform	 to	 safely	
allow	off-the-shelf	statistical	tools	to	be	applied	to	microbiota	sur-
veys.	The	R	code	for	PhILR	was	available	as	an	open-source	R	pack-
age,	 “philr,”	which	can	be	downloaded	 from	“https:// bioco nduct or. 
org/	packa	ges/	devel/		bioc/	vigne	ttes/	philr/		inst/	doc/	philr	-	intro.	html#	
ordin	ation	-	in-	philr	-	space	”.	 This	 analysis	 combines	 the	 abundance	
table of species composition and phylogenetic relationships among 
species.	We	further	conducted	principal	component	analysis	(PCA)	
using	PhILR-converted	data.

2.13  |  Bidirectional mediation analysis

For microbial features associated with metabolites and aging, we first 
checked whether the microbial features were associated with the me-
tabolite	using	Spearman	correlation	(p < 0.05).	Next,	we	carried	out	
bidirectional	 mediation	 analysis	 with	 interactions	 (y = x + m + x × m, 
where y is the outcome, x is the variable and m represents the me-
diator)	between	mediator	and	outcome	using	 the	mediate	 function	
from	mediation	(version	4.5.0)	to	infer	the	mediation	effect	of	serum	
metabolites	and	the	gut	microbiota	on	aging	(Tingley	et	al.,	2014).

2.14  |  Random forest models

Age	and	health	status	were	predicted	(random	forest	4.6-12	package	
Breiman,	2001)	using	the	MGS	profiles.

2.14.1  |  Variable	selection

First, the random forest regression model was used to predict the 
metabolites,	and	the	largest	variable	of	IncMSE	was	selected	as	the	
first	variable.	Second,	the	first	variable	and	the	remaining	variables	
were combined into two variables to predict the metabolites, and 
the Q2 values of the predicted results were calculated and compared 
(the	 largest	 was	 the	 second	 variable	 of	 choice).	 Further	 variables	
were added iteratively in the same way until Q2 no longer increased.
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Here,	yi and ŷi	are	the	i-th	observation	value	and	the	predicted	
value of the fecal metabolites, respectively.

2.14.2  | Module	training

The metabolites were predicted by the variables selected above, Q2 
was calculated, and the variables of importance were obtained.

2.14.3  |  Cross-validation

We	used	 the	 leave-one-out	 cross-validation	method.	 Each	 sample	
was separately used as a validation set, and the remaining 150 sam-
ples were used as a training set. Q2 was calculated by the predicted 
value	and	 the	experimental	value.	Cross-validation	was	used	 in	all	
random forest modeling processes.

2.15  |  The fecal microbiota transplantation (FMT)

Male	 C57BL/6 J	 mice	 (8 weeks),	 purchased	 from	 SPF	 biotechnology	
company.	(Beijing,	China)	were	provided	with	food	and	water	ad	libitum.	
Environmental	temperature	was	kept	at	23 ± 1°C	with	a	12-h	light/dark	
cycle.	Before	transplantation,	mice	were	treated	for	three	consecutive	
days	with	200 μL	of	an	antibiotic	cocktail	(with	each	daily	dose	being	ad-
ministered	by	oral	gavage	after	a	6 h	fast)	that	contained	1 mg/mL	ampi-
cillin,	0.5 mg/mL	neomycin,	0.5 g/L	vancomycin	and	1 g/L	metronidazole	
according	to	the	preciously	published	protocol	(Bárcena	et	al.,	2019).

For	FMT,	mice	were	randomized	into	the	following	groups	(n = 10	
per	group):	control	(gavage	saline),	FMT-aged	(feces	from	aged	do-
nors).	 Fecal	 material	 was	 collected	 from	 20	 community-dwelling	
elderly individuals aged 80 and over who had not taken any antibi-
otics	in	the	past	3 months.	Equal	amounts	of	fecal	material	from	all	
donors	were	pooled	and	10%	(w/v)	fecal	suspension	was	prepared.	
Thereafter,	mice	were	given	200 μL human fecal suspension three 
times	a	week	for	4 weeks	by	gavage	according	to	precious	studies,	
starting	 the	 first	 day	 after	 the	 antibiotic	 cycle	 until	 sacrifice	 (Liu	
et al., 2020).	At	the	end	of	weeks	2	and	4	of	FMT,	fresh	feces	were	
collected for microbiota analysis, and cardiac blood was collected for 
serum separation for metabolomics analysis.

2.16  |  Statistical analysis

2.16.1  | Multivariate	analysis

Multivariate	 statistical	 analysis	 (PCA	 and	 dissimilarity-based	 re-
dundancy	 analysis	 [dbRDA])	 was	 used	 to	 distinguish	 and	 analyze	
serum metabolites and gut microbiome samples from individuals 
of	different	 ages.	PCA	was	performed	by	using	 the	ade4	package	
(Thioulouse	et	al.,	2018)	in	the	R	platform.	Based	on	Bray–Curtis	dis-
similarity,	dbRDA	(Legendre	&	Anderson,	1999)	was	performed	by	

using	capscale	(McArdle	&	Anderson,	2001)	(a	function	in	the	vegan	
package	in	R).	We	show	the	dbRDA	plots	of	the	main	constraint	axis	
(CAP1)	and	the	main	multidimensional	scale	(mds1)	in	the	main	text.

2.16.2  |  Permutational	multivariate	analysis	of	
variance	(PERMANOVA)	analysis

In	this	study,	we	integrated	a	multiomics	method	(Price	et	al.,	2017)	
to analyze the relationship among the serum metabolome, gut mi-
crobiome	and	phenome.	We	performed	PERMANOVA	to	determine	
whether the omics datasets could affect each other. To evaluate the 
variance proportion of the serum metabolism data interpreted from 
the gut microbiome and phenome, first, the adonis function of the 
R	package	vegan	was	used	to	estimate	the	effect	size	(R2)	between	
each variable of the gut microbiome and phenome and the serum 
metabolome.	 Only	 the	 variables	 with	 a	 significant	 impact	 on	 the	
serum	metabolome	 (p < 0.05,	 999	 permutations)	were	 considered.	
Then,	 to	 remove	 redundant	 variables,	 Pearson	 correlation	 coeffi-
cients between variables were calculated, and variables with corre-
lation coefficients greater than 0.5 were removed. Finally, the adonis 
function was used to calculate the combined effect size based on all 
nonredundant variables.

2.16.3  |  Co-inertia	analysis	(CIA)

To assess the consistency of samples in the projection of the serum 
metabolome	and	host	phenome,	we	performed	CIA	(the	parameter	
was “scannf =	FALSE,	nf = 2”)	(Wang	et	al.,	2020)	on	serum	metabo-
lites	and	phenome	profiles	of	all	samples.	The	CIA	plots	in	the	main	
text	(Figure S5a)	were	generated	by	R	software	(vegan	package,	CIA 
function).

2.16.4  |  Age	correction

The association between any two groups may be affected by age, so 
we used age as a covariate to correct the influence of age on the two 
groups.	We	used	the	pcor.test	(Kim,	2015)	function	in	the	R	software	
ppcor package to correct for the influence of age.

2.16.5  |  Hypothesis	testing	and	multiple	
test correction

Wilcoxon	rank-sum	tests	(Bauer,	1972)	were	conducted	to	detect	dif-
ferences in the gut microbial and serum metabolome characteristics, 
including	the	Shannon	index,	host	phenotype,	and	serum	metabolites.	
Kruskal–Wallis	 tests	 (Hollander	et	al.,	2013)	were	performed	 to	as-
sess the differences in gut microbial composition, function, serum 
metabolites, and continuous phenotypic variables among different 
age	groups.	False	discovery	rate	(FDR)	adjustment	was	performed	by	
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the	Benjamin-Hochberg	method	(Benjamini	&	Hochberg,	1995)	(using	
the R package p.adjust),	and	the	local	FDR	is	provided	in	the	article.

2.16.6  |  Power	analysis

We	evaluated	the	power	of	each	correlation	analysis.	We	used	the	
pwr.r.test function in the R software pwr package to analyze the 
power	 (the	 parameter	 was	 alpha = 0.05,	 alternative = “two.sided”).	
The	power	of	the	Guangxi	longevity	cohort	was	more	than	80%	for	
each	of	the	combined	parameters	(Table S15).

3  |  RESULTS

3.1  |  The cohorts

We	collected	and	analyzed	stool	and	serum	samples	from	individuals	
living	 in	Yongfu	County,	Guangxi,	China,	known	for	a	high	propor-
tion	of	nonagenarians	and	centenarians	(Sun	et	al.,	2015).	The	stand-
ard clinical parameters were collected, and are detailed in Table S1. 
We	 assessed	 the	 relative	 telomere	 length	 in	 108	 individuals	 and	
found	an	inverse	correlation	with	age	(Spearman's	r = −0.2,	p = 0.02)	
(Figure S1, Table S2),	confirming	prior	findings	about	age-dependent	
telomere	shortening	(Aviv	et	al.,	2001).	In	addition,	we	determined	
that	a	high	proportion	of	the	elderly	individuals	had	increased	hsCRP	
levels	 (Spearman's	 r = 0.312,	p < 0.001)	 (Figure S1),	 consistent	with	
previously published associations between these parameters and 
age	(Glassock	et	al.,	2017;	Goto	et	al.,	2012;	Kooman	et	al.,	2014).

Each	 stool	 sample	 was	 subjected	 to	 shotgun	 metagenomic	 se-
quencing	followed	by	profiling	of	the	microbial	community	composition	
and	 inferred	 functional	 potential.	 To	 assess	whether	 the	 age-related	
gut	 microbial	 characteristics	 in	 the	 Guangxi	 longevity	 cohort	 could	
be generalized to other populations, a total of 330 adult gut microbial 
metagenomes	 from	 Japanese	 adults,	who	had	overall	 similar	 gender	
and	age	distributions	as	the	Guangxi	longevity	cohort,	were	retrieved	
via	the	public	database	(PRJNA675598)	(Sato	et	al.,	2021)	(Table S1).

We	used	LC–MS/MS	 to	 analyze	metabolites	 in	136	out	of	 the	
151 serum samples. The same protocol was used to analyze serum 
samples	 from	 an	 additional	 80	 individuals	 (aged	 20	 to	 80 years)	
from	 the	 “Yunnan	 aging	 cohort”	 in	 southern	 China.	 LC–MS/MS	
metabolite profiling was conducted in a nontargeted mode using 
sensitive	 high-resolution	mass	 spectrometry	 that	 captured	 known	
and uncharacterized metabolites, including metabolites potentially 
produced	 by	 gut	 bacterial	 species.	 We	 only	 included	 the	 known	
identified metabolites in the analysis in this study.

3.2  |  Composition and functional potential of the 
gut microbiota across different age groups

We	obtained	 an	 average	of	 12.6	Gb	of	 sequencing	 data	 per	 fecal	
sample	 (Table S3).	 The	 sequencing	data	were	utilized	 to	 assemble	

a	 gene	 catalog	 of	 4.14 million	 nonredundant	microbial	 genes,	 rep-
resenting	the	microbiome	of	our	Guangxi	longevity	cohort	with	an	
average	 of	 70.16%	mapping	 reads	 in	 each	 sample	 (Table S3).	 The	
genes	were	 further	annotated	 into	6631	KEGG	functional	catego-
ries	and	classified	into	601	bacterial	species	identified	as	MGSs,	of	
which only approximately half could be ascribed to known genera, 
suggesting the presence of a considerable number of novel genera 
in	the	dataset	(Table S4).

Echoing	findings	from	prior	research	on	Sardinian	centenarians	
(Wu	et	al.,	2019),	the	diversity	(evaluated	by	the	Shannon	diversity	
index)	of	gut	microbial	genes	was	similar	across	the	four	age	groups	
(Wilcoxon	rank-sum	test,	p > 0.05;	Figure S2a),	indicating	that	gene	
diversity remained relatively stable regardless of ethnicity or age. 
Nevertheless,	 unlike	 previous	 studies	 (Claesson	 et	 al.,	 2012),	 we	
noted a higher β	 diversity	 in	 the	 gut	microbiota	 of	 young-to-mid-
dle-aged	and	elderly	individuals,	signaling	a	more	varied	community	
structure	within	these	groups	compared	to	their	long-living	counter-
parts	(nonagenarians	and	centenarians).	This	points	to	a	convergence	
of	gut	microbiota	composition	in	long-living	individuals	(Figure 1a).

Based	on	iCAMP	(Ning	et	al.,	2020)	analysis,	HoS,	DL,	and	drift	
were more important than other processes in bacterial community 
assembly,	 with	 average	 relative	 importance	 values	 of	 32%–46%,	
23%–30%	and	20%–41%,	respectively	(Figure 1b).	Aging	significantly	
influenced	the	relative	importance	of	these	processes	(p < 0.01,	per-
mutational	 ANOVA),	 with	 advancing	 age	 reducing	 the	 impact	 of	
HoS	 and	 increasing	 drift.	 An	 analysis	 of	 enterotypes	 (Arumugam	
et al., 2011)	 revealed	that	three	enterotypes	characterized	the	co-
hort, one driven by Bacteroides, one by Prevotella, and surprisingly, 
one by E. coli	(E	enterotype),	with	the	last	one	contrasting	previous	
findings. Bacteroides was found to be the second driving genus of 
the	E	enterotype,	which	we	accordingly	named	the	E/B	enterotype	
(E. coli/Bacteroides	enterotype)	(Figure 1c, Table S5).	The	absence	of	
Firmicutes-driven	enterotypes	might	be	attributed	to	limited	sample	
size	or	specific	dietary	conditions	 in	Yongfu	County,	affecting	this	
age-diverse	cohort.	Notably,	comparisons	of	young-to-middle-aged	
adults, elderly individuals, nonagenarians, and centenarians revealed 
that	the	distribution	of	the	E/B	enterotype	in	longer-living	individ-
uals was skewed toward higher occurrence in nonagenarians and 
centenarians	(Figure 1c,	Fisher's	exact	test,	p < 0.05),	 implying	that	
the gut microbiota may change during life, or that the gut microbiota 
may have settled differently in the young generations.

Both	 dbRDA	 and	PhILR	 based	 on	MGSs	 demonstrated	 a	 clear	
separation of dominant microbial species among the different age 
groups	(Figure 1d, Figure S2b,	PERMANOVA	p = 0.002).	A	compari-
son of the abundances of bacterial species across these age groups 
revealed	 22	 age-associated	 MGSs	 (Spearman's	 correlation,	 FDR	
q < 0.05,	Table S6).	 Interestingly,	18	of	 these	age-associated	MGSs	
(Table S6)	were	also	found	to	be	age-associated	in	a	recent	Japanese	
centenarian	cohort	(Sato	et	al.,	2021).	The	genetics	and	dietary	hab-
its	of	 the	general	Chinese	and	Japanese	populations	are	 relatively	
similar	to	each	other	compared	to	those	of	Caucasians	and	Africans.	
Thus, combined, the results indicate that the compositional changes 
in identified microbes seem to converge as people gradually age 
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regardless	 of	 ethnicity.	 In	 line	with	 previous	 cross-sectional	 stud-
ies, the six identified E. coli	MGSs	were	significantly	enriched	in	the	
oldest	individuals	in	the	Guangxi	longevity	cohort,	whereas	the	two	
Faecalibacterium prausnitzii	 MGSs	 were	 enriched	 in	 the	 youngest	
individuals	(Biagi	et	al.,	2016;	Wu	et	al.,	2019)	(Spearman's	correla-
tion, FDR q < 0.05;	Figure 1e, Table S6).	Moreover,	we	found	that	O. 
splanchnicus, D. piger, Bilophila wadsworthia, Enterobacter cloacae, and 
Lactococcus garvieae were enriched in the oldest individuals, while 
Romboutsia ilealis and Ruminococcus spp. were more abundant in the 
youngest	individuals	(Spearman's	correlation,	FDR q < 0.05;	Figure 1e, 
Table S6).	Utilizing	Metaphlan4	(Blanco-Míguez	et	al.,	2023)	for	mi-
crobial composition and relative abundance evaluation, we corrobo-
rated our above findings, noting that Anaerostipes hadrus, Clostridium 
symbiosum, E. coli, and O. splanchnicus were closely related to aging 
(Spearman's	correlation,	FDR	q < 0.05;	Table S6).

KO	analysis	related	to	the	gut	microbiota	also	exhibited	age-re-
lated	 differences	 (Figure S2c).	 The	 potential	 for	 degradation	 of	
xenobiotics and multidrug resistance of the gut microbiota was sig-
nificantly	enhanced	in	older	individuals	(Figure S2d).	In	contrast,	in	
the older age groups, a reduced potential for the biosynthesis of the 

branched-chain	 amino	 acids	 (BCAAs),	 leucine,	 and	 isoleucine,	was	
observed,	while	 the	potential	 for	 degradation	of	 the	BCAA	valine	
was	increased	(Figure S2d).	More	importantly,	we	observed	that	the	
abundance	of	KOs	related	to	tyrosine,	tryptophan,	and	phenylalanine	
metabolic pathways, conferring the ability to produce markers of im-
paired	 renal	 functions	 (indole,	 phenol,	 phenylacetylglutamine,	 and	
p-cresol),	increased	with	age	(Figure S2e).	Consistent	with	previous	
reports	(Sato	et	al.,	2021),	an	increased	potential	of	the	gut	microbi-
ota	for	the	biosynthesis	of	secondary	bile	acids	as	well	acetyl-CoA	
via the malonate semialdehyde pathway was associated with age 
(Figure S2d).	Together,	 these	 findings	 revealed	several	age-depen-
dent differences in the functional potential of the gut microbiota.

3.3  |  Age-related differences in the 
serum metabolome

We	 identified	 age	 as	 the	 primary	 factor	 explaining	 the	 variance	
(~6%)	within	the	serum	metabolome	of	the	subjects	in	the	Guangxi	
longevity	 cohort	 (Figure 2a,	 PERMANOVA,	 p < 0.001).	 Notably,	

F I G U R E  1 Comparison	of	the	gut	microbiota	among	young-to-middle-aged	adults,	elderly	individuals,	nonagenarians,	and	centenarians.	
(a)	Box	plots	of	intragroup	beta	diversity	based	on	MGSs	in	young-to-middle-aged	adults,	elderly	individuals,	nonagenarians,	and	
centenarians	(*p < 0.05,	**p < 0.01;	Wilcoxon	rank-sum	test).	(b)	Relative	importance	of	different	ecological	processes	in	response	to	aging.	
(c)	Enterotype	analysis	using	the	151	profiled	metagenomes.	The	degree	of	separation	between	individuals	is	shown	using	between-class	
analysis	and	PCA	(see	Section	2).	The	histogram	in	the	lower	right	corner	shows	the	proportion	of	the	three	enterotypes	in	each	age	group.	
P:	Prevotella,	B:	Bacteroides:	E/B:	E. coli/Bacteroides.	(d)	dbRDA	of	MGSs	of	young-to-middle-aged	adults,	elderly	individuals,	nonagenarians	
and	centenarians.	(e–f)	Box	plots	displaying	the	abundance	of	significantly	different	bacterial	species	among	young-to-middle-aged	adults,	
elderly	individuals,	nonagenarians	and	centenarians.	Bacterial	names	in	red	are	negatively	correlated	with	age,	and	those	in	blue	are	
positively correlated with age.
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lifestyle choices such as smoking and alcohol consumption also in-
fluenced	the	serum	metabolome,	albeit	to	a	lesser	extent	(Figure 2a, 
PERMANOVA,	 p < 0.001).	 Moreover,	 we	 also	 observed	 distinc-
tive serum metabolome patterns across the different age groups 
(Figure 2b).	Specifically,	128	of	365	metabolites	were	significantly	
correlated	 with	 age	 (Figure 2c, Table S7,	 Spearman's	 correlation,	

FDR q < 0.05).	 These	 metabolites	 spanned	 a	 wide	 spectrum,	 en-
compassing lipids, amino acids, bile salts, prostaglandins, and other 
metabolites	 (Table S7).	 Of	 these	 metabolites,	 91	 correlated	 posi-
tively	with	age	(Spearman's	correlation,	FDR	q < 0.05).	In	particular,	
the	levels	of	31	markers	related	to	impaired	renal	function	(includ-
ing	 p-cresol,	 hippuric	 acid,	 N-phenylacetylglutamine,	 3-indoxyl	

F I G U R E  2 Broad	changes	in	serum	metabolomic	profiles	by	age.	(a)	Effect	size	of	phenotypic	indices	that	significantly	explain	the	
variance	(R2)	in	the	serum	metabolome	(adonis p < 0.05).	This	analysis	was	based	on	all	subjects,	including	young-to-middle-aged	adults,	
elderly	individuals,	nonagenarians,	and	centenarians.	(b)	dbRDA	of	serum	metabolites	according	to	age.	Metabolites	that	were	identified	
as	the	main	contributors	to	age	distinction	are	indicated	with	arrows.	(c)	Boxplot	displaying	serum	metabolites	that	differ	significantly	in	
abundance	(specific	uremic	toxins	and	bile	salts)	among	young-to-middle-aged	adults,	elderly	individuals,	nonagenarians.	and	centenarians.	
CHOL,	total	cholesterol;	CREA,	creatinine;	DBP,	diastolic	blood	pressure;	HCY,	homocysteine;	hsCRP,	high-sensitivity	c-reactive	protein;	
HDL,	high-density	lipoprotein;	LDL,	low-density	lipoprotein;	SBP,	systolic	pressure;	SOD,	superoxide	dismutase;	TG,	triglycerides;	UA,	uric	
acid.	*p < 0.05;	**p < 0.001.
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sulfate,	and	2-oxindole)	increased	progressively	with	age	(Figure 2c, 
Table S7,	Spearman's	correlation,	FDR	q < 0.05).	Markers	of	impaired	
renal	function,	such	as	3-indoxyl	sulfate,	p-cresol,	hippuric	acid,	and	
N-phenylacetylglutamine	have	been	reported	to	be	produced	by	the	
gut	microbiota	via	 the	degradation	of	diet-derived	AAAs	 (Mishima	
et al., 2015),	polyphenols,	and	choline	(Ramezani	et	al.,	2016;	Wikoff	
et al., 2009)	(Figure S3).	3-Indoxyl	sulfate	and	p-cresol	have	been	ex-
perimentally proven to induce kidney fibrosis and cause significant 
kidney	tubular	damage	in	rat	models	of	CKD	(Vanholder	et	al.,	2014).	
E. coli	 enriched	 in	 the	Guangxi	 longevity	 cohort	has	 also	been	 re-
ported to be involved in the transformation of polyphenols into ben-
zoic	acid,	4-hydroxybenzoic	acid,	or	hippuric	acid	in	the	human	gut	
(Moco	et	al.,	2012).

Furthermore, we observed variability in the level of cholic acid 
across	all	age	groups	(Figure 2c).	Altered	profiles	of	circulating	bile	
acids	have	been	reported	to	be	associated	with	renal	diseases	(Rajani	
&	Jia,	2018)	and	are	known	to	be	modified	by	the	gut	microbiota	(Jie	
et al., 2017).	The	diminished	level	of	amino	acids	mainly	reflected	a	
decline	in	tryptophan	with	age	(Table S7),	potentially	related	to	the	
ability of the gut microbiota to metabolize tryptophan to produce 
indole	 and	p-cresol	 (Agus	et	 al.,	2018; Figure S3).	Other	 features,	
such	 as	 prostaglandins,	 carnitine	 derivatives,	 and	 disease-related	
metabolites, were also associated positively with age, whereas the 
amounts of hormones, amino acids, nicotine, and their derivatives 
decreased	(Table S6).	The	diminished	production	of	amino	acids	was	
mainly	reflected	as	a	decline	in	tryptophan	with	age	(Table S6).

Of	the	128	metabolites	significantly	associated	with	age	in	the	
Guangxi	longevity	cohort,	we	further	examined	the	relationship	be-
tween the relative abundance of these metabolites and age in the 
Yunnan	aging	cohort	using	correlation	analysis.	Thirty-five	of	these	
128 metabolites also exhibited a significant correlation with age 
in	 the	 Yunnan	 aging	 cohort,	 including	N-phenylacylglutamine	 and	
3-methoxytyrosine	(Table S7,	Spearman's	correlation,	FDR	q < 0.05).	
A	total	of	102	of	128	metabolites	exhibited	congruent	trends	with	
age	 in	 the	Guangxi	 longevity	cohort	and	 the	Yunnan	aging	cohort	
(Figure S4, Table S7).	Notably,	28	out	of	these	102	metabolites	are	
markers of impaired renal function, highlighting a possible involve-
ment	of	deteriorating	renal	function	in	the	aging	process	(Table S7).

The serum metabolome also covaried with clinical parameters 
(Figure S5a),	 and	age	 correlated	 significantly	with	 the	 levels	of	14	
out	of	26	clinical	parameters	(Figure S5b).	Markedly	lower	levels	of	
indicators	 of	 impaired	 renal	 function	 (CREA	 and	 UREA),	 SBP,	 ho-
mocysteine	(HCY),	and	hsCRP	were	found	in	the	older	age	groups.	
Importantly,	after	adjusting	for	the	influence	of	age,	the	serum	mark-
ers of impaired renal function were strongly positively associated 
with	 the	 renal	 function	 test	 indicators	 (CREA,	UREA,	 and	UA),	 as	
well	as	with	HCY	across	the	entire	cohort,	while	being	inversely	as-
sociated	with	eGFR	(Figure 3).	This	finding	suggested	that	the	levels	
of serum markers of impaired renal function share a close relation-
ship	with	renal	 functional	 test	 indicators.	 In	addition,	 the	 levels	of	
taurocholic acid were weakly correlated with these indicators, while 
serum fatty acids and prostaglandins were significantly correlated 
with	hsCRP	(Figure 3).	Previous	reports	have	emphasized	that	uremic	

toxins, bile salts, and fatty acids are linked to the gut microbiota, and 
thus,	microbiota-derived	uremic	toxins	and	bile	salts	might	 lead	to	
aggravated	renal	dysfunction	(Wang	et	al.,	2020).

3.4  |  The impact of the gut microbiota on serum 
metabolites increases with age

We	next	examined	to	what	extent	the	gut	microbiota	might	explain	
the serum metabolomics results with respect to different age groups 
using	PERMANOVA.	We	observed	an	age-related	pattern	in	which	
the	 gut	microbiota's	 effect	 sizes	 on	 serum	metabolites	 accounted	
for	18.5%,	21.6%,	25%,	and	26.6%	of	the	serum	metabolome	vari-
ance	 in	 young-to-middle-aged	 individuals,	 elderly	 individuals,	 no-
nagenarians,	 and	 centenarians,	 respectively	 (Figure S6, Table S8).	
Interestingly,	 the	 effect	 size	 of	 demographic	 (host	 property)	 and	
clinical parameters on the serum metabolome was significantly 
smaller	than	that	of	the	gut	microbiota	across	all	age	groups	(5.5%,	
6.8%,	6.8%,	and	10.6%	of	the	serum	metabolome	variance	in	young-
to-middle-aged	adults,	elderly	individuals,	nonagenarians	and	cente-
narians,	respectively)	(Figure S6, Table S8).

Age-associated	 metabolites	 were	 further	 examined	 with	 re-
gard	to	the	functions	of	 the	gut	microbiota.	We	found	covariation	
between inferred gut microbiota functions and serum markers 
of	 impaired	 renal	 function	 (Figure S7).	We	 hypothesized	 that	 the	
age-associated	 enrichment	 of	 markers	 of	 impaired	 renal	 function	
might	indicate	gut	microbiota-mediated	amino	acid	metabolism	and	
microbial bile salt biosynthesis.

We	 then	 aimed	 to	 identify	 the	 bacterial	 species	 associated	
with markers of impaired renal function and bile salt alterations 
linked	 to	 aging,	 represented	 by	 p-cresol,	 hippuric	 acid,	 2-oxindole,	
N-phenylacetylglutamine,	 and	 phenol.	 Correlations	 were	 found	 be-
tween	age-related	bacterial	 species	and	serum	metabolites,	particu-
larly	markers	of	impaired	renal	function	(Figure S8).	We	identified	genes	
encoding key synthetases that mediated the biosynthesis of these 
compounds	(Figure S3, Table S9)	and	quantified	their	levels	in	the	14	
MGSs	with	an	age-related	upward	trend,	8	MGSs	with	an	age-related	
downward	trend,	and	18	MGSs	that	had	species-	and/or	genus-level	
taxonomic	assignment	 (Table S6).	These	analyses	demonstrated	that	
bacterial key synthetase genes encoding enzymes involved in indole, 
hippurate,	and	secondary	bile	acid	synthesis	(Table S9)	and	the	micro-
bial species harboring these genes were more abundant in the samples 
of	older	individuals	than	in	younger	individuals	(Figure S9, Table S10).

Based	on	these	findings,	we	next	applied	random	forest	models	
to	estimate	the	correlation	between	uremic	toxins	(including	4-meth-
ylphenol,	2-oxindole,	phenol,	N-phenylacetylglutamine,	and	hippu-
ric	acid)	and	serum	bile	acids	(SBA;	glycocholic	acid,	taurocholic	acid,	
glycoursodeoxycholic	acid,	and	taurochenodeoxycholic	acid)	and	the	
abundance	of	 synthetase-encoding	gut	microbial	 species.	Random	
forest models that maximized the predictive power of serum uremic 
toxins	 and	 bile	 salt	 concentrations	 identified	 74	 correlated	MGSs	
(Figure 4, Table S11).	The	microbial	species	accounted	for	22.05%,	
9.41%,	 0.63%,	 33.25%,	 4.38%,	 and	 13.52%	 of	 the	 variance	 in	
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4-methylphenol,	2-oxindole,	phenol,	N-phenylacetylglutamine,	hip-
puric	acid,	and	SBA	concentrations,	respectively,	indicating	that	the	
corresponding species were the main contributors to the production 
of	uremic	toxins	and	bile	salts.	Significant	correlations	between	bac-
teria and age were also observed in the case of E. coli, F. prausnitzii, D. 
piger, O. splanchnicus, B. wadsworthia, and O. splanchnicus	(Table S6).

Based	on	the	notion	that	the	concentration	of	uremic	toxins	and	
bile salts might be influenced independently through other pathways 
(e.g.,	metabolite	transport),	we	extended	the	random	forest	models	to	
include species that lacked synthetases, whereby the updated model 
could account for an additional ~18.59%	of	the	variance	(Figure S10, 
Table S12).	Although	identified	MGSs	based	on	current	methods	might	
not capture the entire profile of the gut microbiota, high correlations 
among the gut microbiota, renal toxins, and bile salts were still found.

Some	of	the	gut	microbial	species	that	were	linked	to	uremic	tox-
ins or bile salts were also correlated with the renal functional test 

indicators	(Figure S11).	In	particular,	a	high	proportion	of	the	variance	
(an	average	of	21.76%)	of	eGFR,	CREA,	UREA,	and	UA	was	explained	
by the abundances of E. coli, Klebsiella michiganensis, Klebsiella qua-
sipneumoniae and Klebsiella pneumoniae	 (Figure S11, Table S13).	 In	
addition, Veillonella parvula	and	[Clostridium]	spp.	were	significantly	
correlated	 with	 eGFR,	 hsCRP,	 and	 CREA.	 Adlercreutzia equolifa-
ciens	was	 significantly	 correlated	with	hsCRP	and	UA	 (Figure S11, 
Table S13).	Previous	reports	have	emphasized	that	Klebsiella spp., E. 
coli, and V. parvula	are	linked	to	aging	(Zhang	et	al.,	2021).

3.5  |  Microbiota-metabolite interactions in 
aging and FMT experiments

Next,	we	 carried	 out	 a	mediation	 analysis	 to	 investigate	 the	 links	
among the gut microbiota, serum metabolites, and aging. For the 

F I G U R E  3 Covariation	between	serum	metabolites	and	clinical	parameters,	as	well	as	between	serum	uremic	toxins	and	renal	function	
indicators.	The	heatmap	panel	shows	age-adjusted	Spearman	correlation	coefficients	(SCC)	between	serum	metabolites	and	clinical	
parameters. +p < 0.05;	*p < 0.01;	**p < 0.001.	CHOL,	total	cholesterol;	CREA,	creatinine;	DBP,	diastolic	blood	pressure;	eGFR,	estimated	
glomerular	filtration	rate;	HDL,	high-density	lipoprotein;	hsCRP,	high-sensitivity	c-reactive	protein;	LDL,	low-density	lipoprotein;	SBP,	
systolic	pressure;	SOD,	superoxide	dismutase;	TG,	triglycerides;	UA,	uric	acid.
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22 gut microbial features that were associated with both serum me-
tabolites	and	aging	 (FDR < 0.05),	we	applied	a	bidirectional	media-
tion analysis to evaluate whether the effect of the gut microbiota on 
aging is mediated via serum metabolites. This approach established 
524 mediation linkages for the impact of the gut microbiota on serum 
metabolites	through	aging	(p < 0.05	and	Pinverse-mediation	>0.05; 
Figure 5a, Table S14).	Most	of	these	linkages	were	related	to	the	im-
pact of E. coli, R. ilealis, and F. prausnitzii	on	N-phenylacetylglutamine	
and	4-methylphenol	(Figure 5a).

E. coli, harboring genes encoding indole and phenylacetylgluta-
mine synthetases, can convert tryptophan and phenylalanine into in-
dole	or	phenylacetylglutamic	acid	(Table S14).	We	observed	that	the	
effect of E. coli	on	aging	 is	mediated	via	N-phenylacetylglutamine,	
2-oxindole,	and	4-aminohippuric	acid	(Pmediation = 0.046,	0.002,	and	
0.044; Figure 5b).	We	also	observed	that	the	effect	of	O. splanchni-
cus and D. piger	on	aging	is	mediated	via	p-cresol	(Pmediation = 0.004,	
0.001, Figure 5b).	In	addition,	the	effect	of	D. piger on aging is medi-
ated	via	N-phenylacetylglutamine	(Pmediation = 0.014,	Figure 5b).

To verify our results, we transplanted the fresh gut microbiota 
from 20 elderly donors into mice treated with antibiotics. Compared 
with mice gavaged with physiological saline, those receiving the 
elderly microbiota exhibited significant differences in the gut mi-
crobiota	and	serum	metabolome	(Figure 5c, Figure S12a).	Through	
analyses	of	 the	gut	microbiota	and	serum	metabolome	at	2 weeks	
and	4 weeks,	the	abundances	of	Odoribacter and Desulfovibrio in the 
mice receiving the elderly microbiota were significantly elevated 

after	4 weeks	(Figure S12b).	Concomitantly,	17	markers	related	to	im-
paired	renal	function	were	also	significantly	elevated	after	4 weeks,	
especially	2-oxindole,	p-cresol	glucuronide,	and	phenylacetylglycine	
(Figure 5d,e).	Overall,	these	results	demonstrate	that	the	gut	micro-
biota of elderly individuals can regulate markers related to impaired 
renal function in the serum.

3.6  |  Specific patterns associated with aging in 
long-living individuals

Centenarians, as a model of extreme aging, may provide informa-
tion on the relationships among the gut microbiota, healthy aging, 
and	 longevity.	 Here,	 we	 found	 that	 the	 four	 age	 groups	 differed	
with	 respect	 to	 eGFR,	 particularly	 nonagenarians	 and	 centenar-
ians	(Figure 6a).	Although	the	eGFR	in	these	long-living	individuals	
(nonagenarians	and	centenarians)	was	significantly	(Wilcoxon	rank-
sum test, p < 0.001)	 lower	than	that	 in	younger	 individuals	 (young-
middle-aged	and	elderly),	gradually	flattened	slopes	of	eGFR	decline	
were	observed	in	the	case	of	extreme	aging.	Since	a	higher	GFR	is	
associated	with	healthy	aging	(Eriksen	et	al.,	2020),	we	used	eGFR	
as	 an	 indicator	 to	 stratify	 the	 long-living	 individuals	 and	 younger	
individuals	(low-eGFR	group	and	high-eGFR	group).	We	found	that	
24.2%	 (31/128)	 and	 41.4%	 (53/128)	 of	 age-related	 metabolites	
were	significantly	associated	(FDR	q < 0.05)	with	the	eGFR	in	long-
living	individuals	and	younger	individuals,	respectively	(Table S16).	In	

F I G U R E  4 Age-dependent	relationships	between	the	gut	microbiota	and	serum	metabolites.	Network	view	of	uremic	toxins/bile	acids	
and	metagenomic	species	(MGSs).	Squares	represent	uremic	toxins	or	bile	acids,	and	the	surrounding	connected	circles	represent	the	species	
that	were	used	in	the	random	forest	models.	Unclassified	bacterial	species	are	not	included	in	the	figure.	SBAs,	secondary	bile	acids.
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particular,	16	and	25	markers	of	renal	impairment	were	significantly	
correlated	with	 the	 eGFR	 in	 long-living	 and	 young	 individuals,	 re-
spectively,	 and	were	enriched	 in	 the	 low-eGFR	group	 (Figure S13, 
Table S16),	 indicating	 that	 longevity	might	depend	on	 the	mainte-
nance	of	renal	function.	In	addition,	no	significant	association	(FDR	

q > 0.05)	between	the	gut	microbiota	and	eGFR	was	found	in	long-
living or younger individuals.

To	 interpret	 the	 finding	 of	 “delayed	 aging	 of	 kidneys”	 in	
long-living	individuals,	we	classified	the	fluctuation	trends	of	the	
levels of uremic toxins according to age into three distinct clusters 

F I G U R E  5 Mediation	analysis	and	FMT	experiments	identify	linkages	between	the	gut	microbiome,	metabolites,	and	aging.	(a)	Parallel	
coordinates	chart	showing	the	168	mediation	effects	of	serum	markers	of	impaired	renal	functions	that	were	significant	at	p < 0.05.	Shown	
are	markers	of	impaired	renal	functions	(left),	microbial	factors	(middle)	and	age	(right).	The	curved	lines	connecting	the	panels	indicate	the	
mediation	effects,	with	colors	corresponding	to	different	metabolites	and	microbes.	(b)	Analysis	of	the	effect	of	O. splanchnicus, D. piger 
and E. coli	on	aging	as	mediated	by	hippuric	acid,	N-phenylacetylglutamine,	2-oxindole,	and	4-aminohippuric	acid.	(c)	PCA	shows	a	clear	
separation	between	the	serum	metabolome	of	mice	gavaged	with	saline	and	those	gavaged	with	feces	from	elderly	humans.	(d)	Differences	
in metabolites related to renal function in the serum metabolome between mice gavaged with saline and those gavaged with feces from 
elderly	humans,	as	well	as	changes	in	their	metabolite	levels	at	different	time	points	(p < 0.1).	(e)	Changes	at	2	and	4 weeks	in	2-oxindole,	
phenylacetylglycine,	and	p-cresol	glucuronide	in	mice	gavaged	with	saline	and	those	gavaged	with	feces	from	elderly	humans	(p < 0.1).
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(Figure 6b):	 cluster	 1,	with	 levels	 of	markers	 of	 impaired	 kidney	
function increasing steadily with age, mainly including hippuric 
acid, phenylacetylglutamine, acetylated methionine and valine, 
and	3-methylhistidine;	cluster	2,	with	levels	of	markers	of	impaired	
kidney function increasing slowly in centenarians, mainly includ-
ing	derivatives	of	hippuric	acid,	p-cresol,	and	phenylacetylglycine;	
cluster 3, with levels of markers of impaired kidney function de-
creasing in centenarians compared with nonagenarians, mainly 
including indole derivatives, phenylalanine and phenylalanine de-
rivatives. The cluster 3 trend of markers of impaired kidney func-
tion levels was of particular interest, as the derivatives of indole 
may promote cellular senescence and premature aging through 
toxic	 alterations	 in	 the	 internal	 milieu	 (Adijiang	 et	 al.,	 2010; 
Stenvinkel	&	Larsson,	2013).

Similar	trends	for	specific	gut	microbes	underpinned	the	role	of	
the gut microbiota in delaying the accumulation of markers of im-
paired	kidney	function	in	centenarians.	Bacteria	with	increased,	rel-
ative abundances in the older individuals could also be classified into 
three	clusters	(Figure 6c):	cluster	1	mainly	included	D. piger, Alistipes 
finegoldii, and C. symbiosum; cluster 2 mainly included E. coli; and 
Cluster 3 mainly included E. cloacae. The covariation of specific gut 
microbes	 (E. coli and E. cloacae)	and	specific	uremic	 toxins	 (deriva-
tives	of	hippuric	 acid,	p-cresol,	 and	 indole)	 indicated	 the	potential	
impact	of	the	gut	microbiota	on	renal	function.	Notably,	E. coli and 
E. cloacae have been reported to be involved in the production of 
the	precursors	of	uremic	toxins	in	the	intestine	(Kikuchi	et	al.,	2017).

Our	 results	 revealing	 the	 interplay	 between	 the	 gut	 microbi-
ota and the serum metabolome suggest that delayed renal aging in 

long-living	 individuals	may	 reflect	diminished	accumulation	of	 cer-
tain markers of impaired kidney function.

4  |  DISCUSSION

Based	on	 residents	 from	 a	Chinese	 longevity	 county,	with	 long-
living	 individuals	 (nonagenarians	 and	 centenarians)	 as	 healthy	
aging controls, this study aimed to examine the possible relation-
ship	between	renal	function	and	age-associated	alterations	in	the	
human gut microbiota and serum metabolome using an integrated 
omics	approach.	Our	 results	 indicated	 that	 the	effect	of	 the	gut	
microbiota on serum metabolites increased with age and that 
many	 age-associated	 gut	 microbes	 (E. coli, O. splanchnicus, and 
D. piger	 in	 particular)	 and	 serum	metabolites,	 including	 markers	
of impaired renal function and bile acids, were highly correlated. 
The	 relationships	 between	 renal	 functions	 (eGFR,	CREA,	UREA,	
and	 UA),	 serum	metabolites,	 and	 the	 gut	 microbiota	 further	 in-
dicated a possible impact of the gut microbiota in the aging pro-
cess. Through mediation analyses, we revealed putative causal 
relationships	 among	 the	 gut	 microbiota	 (E. coli, O. splanchnicus, 
and D. piger),	markers	related	to	impaired	renal	function	(p-cresol,	
N-phenylacetylglutamine,	 2-oxindole,	 and	 4-aminohippuric	 acid)	
and age. The FMT experiment demonstrated that the feces of el-
derly individuals could influence markers related to impaired renal 
function in the serum. Thus, this study not only revealed changes 
in the serum metabolome and the gut microbiota in the process 
of aging but also indicated a route by which the gut microbiota 

F I G U R E  6 Different	fluctuation	trend	patterns	of	age-related	markers	related	to	impaired	renal	function	and	the	age-related	gut	
microbiota	in	the	oldest	individuals.	(a)	The	relationship	between	eGFR	and	age	in	different	age	groups.	(b,	c)	Different	fluctuation	trend	
patterns	of	age-related	markers	related	to	impaired	renal	function	(b)	and	age-related	gut	microbiota	(c).	Cluster1:	metabolites	different	in	
centenarians	≥1.2*	metabolites	in	nonagenarians,	Cluster2:	metabolites	different	in	centenarians	<1.2*	metabolites	in	nonagenarians	and	
metabolites in centenarians >metabolites	in	nonagenarians,	Cluster3:	metabolites	different	in	centenarians	≤metabolites	in	nonagenarians.



16 of 20  |     SUN et al.

affects aging indirectly through its effect on renal function via the 
production of metabolites associated with impaired renal function.

Unlike	 the	 previously	 reported	 (Wu	 et	 al.,	 2019;	 Zhang	
et al., 2021)	cross-sectional	study	of	aging,	we	adopted	a	multiomics	
approach and combined the correlation between gut microbiota and 
serum	metabolome	to	analyze	the	aging	process	in	more	detail.	Our	
analyses showed that the effect sizes of the gut microbiota on serum 
metabolites	increased	with	age.	It	has	been	reported	that	the	intes-
tinal	mucosal	barrier	does	not	deteriorate	with	age	per	se	(Saltzman	
et al., 1995;	Valentini	et	al.,	2014),	but	low-grade	chronic	inflamma-
tion and mild diseases may impair the intestinal barrier, potentially 
indicative	of	chronic	renal	disease	(CKD)	(Meijers	et	al.,	2018).	Under	
normal circumstances, the kidneys excrete metabolites that serve 
as markers of impaired renal functions in urine. Most renal prob-
lems are caused by the gradual loss of glomerular filtration function, 
whereby transport of potentially toxic compounds from the blood 
to the urine is impaired, leading to their accumulation in the body 
(Vanholder	et	al.,	2001).	The	accumulation	of	these	compounds	has	
a negative impact on many body functions and leads to gradual en-
dogenous	poisoning	(Vanholder	et	al.,	2008).	The	levels	of	creatinine	
and pseudouridine in the urine metabolome of healthy elderly peo-
ple	were	reported	to	be	lower	than	that	those	of	young	people	(Chen	
et al., 2020),	which	is	consistent	with	the	notion	that	renal	problems	
can	occur	with	age.	With	increasing	age,	in	general,	glomerular	filtra-
tion function decreases, which leads to the failure to effectively re-
move metabolites associated with impaired renal function from the 
blood, accompanied by a decrease in these metabolites in the urine.

Consistent	 with	 previous	 gut	 microbiota	 studies	 (Rampelli	
et al., 2020;	Wu	et	al.,	2019),	we	observed	age-dependent	changes	
in the abundances of E. coli, F. prausnitzii, and O. splanchnicus. E. coli 
was one of the most noticeable species that changed in abundance 
with age and was predicted to be associated with the production 
of several metabolite markers of impaired renal functions, including 
indole,	p-cresol,	and	phenylacetylglutamine.	In	keeping	with	our	re-
sults, E. coli has been reported to be involved in the degradation of 
tryptophan	into	indole	or	p-cresol	(Yanofsky,	2007).	Other	species	
associated with the production of important markers of impaired 
renal function included D. piger and O. splanchnicus, identified as 
participating in the production of phenylacetylglutamine, indole, 
and	p-cresol.	Notably,	D. piger,	as	a	potentially	“harmful”	bacterium,	
was recently reported to synthesize more toxins than it can degrade 
(Popkov	et	al.,	2022).	O. splanchnicus is capable of generating all four 
protein-bound	uremic	toxin	precursor	metabolites	under	anaerobic	
conditions	(Gryp	et	al.,	2020).	Our	work	thus	suggests	that	the	met-
abolic alterations in the intestinal tract contributed significantly to 
the accumulation of uremic toxins in serum with age, and species 
producing these marker metabolites clearly contribute significantly 
to	the	accumulation	of	gut-derived	uremic	toxins	with	aging.

The impact of aging on the serum metabolome is obviously influ-
enced	by	diet,	but	the	effect	of	diet	is	difficult	to	disentangle.	On	the	
one hand, the dietary habits of people of different ages are based on 
preferences or availability, which are particularly likely to differ be-
tween	urban	and	rural	areas.	Our	research	was	based	on	household	

surveys and cluster sampling within a relatively small area, so the 
dietary habits, diet structure, and physical activity habits of all par-
ticipants	were	relatively	similar	and	homogeneous.	On	the	contrary,	
with increasing age, degenerative changes occur in the digestive 
system, which may lead to difference in dietary preferences, thus 
eliciting changes in gut microbes and metabolites. This physiological 
change	 is	 difficult	 to	 eliminate.	 In	 addition,	 regarding	 internal	 fac-
tors, aging is also associated with a decline in metabolic capacity, 
specifically reflected in the weakening of anabolism and the increase 
in catabolism, and elderly individuals often present a relatively mal-
nourished	state	compared	to	middle-aged	individuals.	Thus,	age-de-
pendent differences in diets, lifestyle, and genetics altogether may 
lead to changes in the gut microbiota and thus changes in the pro-
duction of metabolites that may affect renal function.

The extent to which changes in the gut microbiota and kidney 
function are causally linked needs further clarification. FMT exper-
iments have demonstrated that the feces from elderly individuals 
could elevate relevant markers related to kidney function in serum, 
but tracing these changes back to the changes in key bacteria and 
corresponding metabolites might fully explain the importance of the 
gut	microbiota	 in	 the	 aging	 process.	 In	 fact,	 a	 previous	 study	 has	
emphasized the relevance of renal function with regard to prema-
ture	aging	(Kooman	et	al.,	2014).	As	people	age,	progressive	declines	
in	multiorgan	functions	are	inevitable	(López-Otín	et	al.,	2013).	The	
decline in renal function might weaken the detoxification capacity 
of	the	aged	body	and	may	accelerate	the	aging	process	(Weinstein	
&	Anderson,	2010).	 Severely	 impaired	 renal	 function	may	 lead	 to	
fatal	conditions,	such	as	CKD	(Liyanage	et	al.,	2015).	The	progres-
sion	 of	 renal	 function	 deterioration	 to	 CKD	 and	 its	 comorbidities	
are closely related to the accumulation of toxic metabolites in the 
blood	(Zhang	et	al.,	2012)	with	numerous	marker	metabolites	being	
produced	by	the	gut	microbiota	via	the	conversion	of	diet-derived	
AAAs	and	polyphenols	(Wang	et	al.,	2020).	We,	therefore,	propose	
that	age-dependent	changes	in	the	composition	and	functional	po-
tential of the gut microbiota contribute, at least in part, to the aging 
process and that maintenance of gut microbiota homeostasis and 
kidney	health	may	enhance	physical	 fitness	 in	 long-living	 individu-
als. Future research using targeted analysis of serum metabolites 
will be necessary to further our understanding of the importance 
of perturbations of the gut microbiota and serum metabolome in 
aging and longevity. To better study the effect of the gut microbiota 
in the process of aging, examination of the fecal metabolome and 
transcriptome	of	 the	gut'microbiota	will	be	needed,	adding	crucial	
functional information.

Our	findings	contribute	to	the	growing	body	of	evidence	on	the	
relationship between gut microbiota and aging. while a recent study 
also address the potential association of gut microbiota with longev-
ity	with	16S	sequencing	and	found	centenarians	were	reflected	by	the	
gut	microbiome	with	youth-associated	signatures	(Pang	et	al.,	2023),	
our study differs from it in several ways. Firstly, we just focused on a 
longevity	county	approved	by	the	Chinese	Gerontology	Society,	po-
tentially reducing the confounding of genetic background and life-
style	such	as	diet;	and	validated	with	external	cohorts.	Secondly,	our	
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research took a multiomics approach by comprehensively examining 
profiling of the metagenome and serum metabolome. This enabled 
us to investigate the microbial producers of these metabolites and 
their changes throughout the aging process, thereby enhancing our 
understanding	of	aging.	Lastly,	our	study	has	uncovered	unique	mi-
crobial signatures and metabolites, as well as metabolic pathways 
that have not been previously reported in aging studies. These find-
ings not only advance our knowledge of the complex mechanisms 
underlying aging but also offer potential new targets for interven-
tions aimed at promoting healthy aging and longevity.

In	summary,	this	study	revealed	important	characteristics	of	the	
gut	microbiota	and	serum	metabolome	during	aging	and	how	age-re-
lated changes in the gut microbiota are associated with an accumu-
lation	of	distinct	markers	of	impaired	renal	function	in	the	blood.	In	
particular, the accumulation of markers of impaired renal functions 
and a reduction in renal function may accelerate the aging process, 
emphasizing the importance of gut microbiota alterations and mark-
ers of impaired renal function in healthy aging.
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