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Abstract
Human aging is invariably accompanied by a decline in renal function, a process po-
tentially exacerbated by uremic toxins originating from gut microbes. Based on a 
registered household Chinese Guangxi longevity cohort (n = 151), we conducted com-
prehensive profiling of the gut microbiota and serum metabolome of individuals from 
22 to 111 years of age and validated the findings in two independent East Asian aging 
cohorts (Japan aging cohort n = 330, Yunnan aging cohort n = 80), identifying unique 
age-dependent differences in the microbiota and serum metabolome. We discovered 
that the influence of the gut microbiota on serum metabolites intensifies with advanc-
ing age. Furthermore, mediation analyses unveiled putative causal relationships be-
tween the gut microbiota (Escherichia coli, Odoribacter splanchnicus, and Desulfovibrio 
piger) and serum metabolite markers related to impaired renal function (p-cresol, 
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1  |  INTRODUC TION

Long-living individuals, particularly centenarians, exemplify the 
concept of healthy aging (Franceschi & Bonafe,  2003; Garagnani 
et al., 2013) and thus provide an invaluable resource for identifying 
novel relationships between the host and the gut microbiota in rela-
tion to aging (Marcos-Perez et al., 2021; Santos-Lozano et al., 2020). 
The global increase in the number of elderly people has spurred 
extensive social and healthcare concerns, posing emerging clinical 
challenges in relation to chronic conditions such as diabetes melli-
tus, renal diseases, neurological disorders, cardiovascular diseases, 
and neoplasms in an aging population (Chang et  al.,  2019; Liguori 
et al., 2018; O'Sullivan et al., 2017). A more profound understanding 
of the aging processes and the mechanisms underpinning age-asso-
ciated diseases could lay the groundwork for developing more effec-
tive healthcare strategies for elderly individuals.

With aging comes a heightened risk of renal diseases, prompting 
intensified research on the adaptations of renal function throughout 
normal aging (Denic et al., 2016; Glassock et al., 2020). These studies 
often involve an analysis of serum metabolites that accumulate as 
renal function deteriorates, potentially serving as novel biomarkers 
for age-related changes in renal function (Rhee, 2018). Among these 
metabolites, uremic toxins have drawn significant interest, as their 
accumulation might signal end-stage renal disease. Uremic toxins 
are biologically active compounds retained in the bodies of patients 
with renal failure. In healthy individuals with normal renal func-
tion, these metabolites, including indoxyl sulfate, hippuric acid, and 
P-cresol, are normally excreted in the urine (Vanholder et al., 2003). 
However, beyond their role in renal diseases, uremic toxins have 
been somewhat overlooked. Given the progressive decline in renal 
function in older individuals, patterns of uremic toxins could act as 
crucial biomarkers, establishing a link between renal function and 
healthy aging (Kooman et al., 2014).

Recent kidney-focused metabolomics studies have underscored 
the influence of diet and the gut microbiota in shaping the serum 
metabolome, given that many uremic metabolites require bacte-
rial metabolism for their synthesis (Rhee, 2018; Wang et al., 2020). 
Specifically, uremic toxins are reportedly derived from the gut 

microbiota through the breakdown of diet-derived aromatic amino 
acids (AAAs) and polyphenols (Ramezani et  al.,  2016; Wikoff 
et al., 2009). Supporting evidence from chronic kidney diseases and 
animal models has further demonstrated the critical role of the gut 
microbiota in renal function and the production of uremic toxins 
(Aronov et al., 2011; Mishima et al., 2017; Wang et al., 2020). Thus, 
individuals with renal failure often exhibit a severely distorted gut 
microbiota, leading to the rapid biosynthesis of toxic compounds, 
subsequently resulting in higher plasma concentrations of uremic 
toxins and aggravated renal disease (Wang et al., 2020).

Several cross-sectional studies have identified gut microbiota 
changes that occur with aging (Biagi et  al.,  2016; Pang et  al.,  2023; 
Wilmanski et al., 2021; Wu et al., 2019; Zhang et al., 2021). Studies 
using 16S rRNA gene amplicon sequencing have indicated an associ-
ation between diet-driven microbiota alterations and health decline in 
aging individuals (Claesson et al., 2012) and highlighted the presence 
of a core microbiota of prevalent, symbiotic bacterial taxa dominated 
by the families Ruminococcaceae, Lachnospiraceae, and Bacteroidaceae, 
with a progressive reduction in the abundance of these core taxa 
with age (Biagi et al., 2016). In recent years, deep shotgun sequencing 
studies have reported a trend toward an increase in the abundances 
of Escherichia and Streptococcus with age, while the abundances of 
Faecalibacterium and Ruminococcus were reported to exhibit a decreas-
ing trend (Rampelli et al., 2020; Wu et al., 2019). Notably, compared to 
that in other age groups, the gut microbiota of healthy centenarians is 
enriched with bacteria with a potential for degradation of xenobiot-
ics (Rampelli et al., 2020) and biosynthesis of short-chain fatty acids 
(Wu et al., 2019). However, whether specific interactions between the 
serum metabolome and gut microbiota are related to an age-depen-
dent decline in renal function remains largely unexplored.

The present study is based on a Chinese longevity cohort with a 
notable number of long-living individuals (nonagenarians and cente-
narians) (Study of Microbiota in Longevity Yongfu County, SoMiLY, 
ClinicalTrials.gov: NCT04210934) (Sun et  al.,  2013). The design 
enabled extensive between-group analyses of serum metabolome 
and gut microbiota patterns across a wide range of age groups and 
lifespans, identifying general age-related changes and correlations 
among the gut microbiota, uremic metabolites, and renal function.
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N-phenylacetylglutamine, 2-oxindole, and 4-aminohippuric acid) and aging. The fecal 
microbiota transplantation experiment demonstrated that the feces of elderly individ-
uals could influence markers related to impaired renal function in the serum. Our find-
ings reveal novel links between age-dependent alterations in the gut microbiota and 
serum metabolite markers of impaired renal function, providing novel insights into the 
effects of microbiota-metabolite interplay on renal function and healthy aging.
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2  |  METHODS

2.1  |  Ethical approval and consent to participate

The study was approved by the Ethics Committee of Beijing Hospital 
and the BGI Review Board of Bioethics and Biosafety (BGI-IRB17062). 
All applicable institutional regulations concerning the ethical use of 
information and samples from human volunteers were followed dur-
ing this study. Each individual provided written informed consent. 
This study was registered at ClinicalTrials.gov (NCT04210934).

2.2  |  Study population

Yongfu County, located in Guangxi Province in southern China, was 
in the first batch of longevity towns in China, officially approved 
by the Chinese Gerontology Society in 2007 (Sun et  al.,  2013). 
According to site visits and government records, compared to those 
in other areas with more developed economies, the elderly residents 
in Yongfu mostly live with less dependence on modern Western 
medicine and health care. All the included participants were local 
residents and had similar social and economic backgrounds, with an 
average annual disposable income of approximately 10,000–20,000 
yuan per person in 2016. The rural environment provided a unique 
research resource and potentially reduced exposure to medication, 
which could have a potential impact on the microbiota.

Based on an observational longevity cohort in ClinicalTrials 
platform (Study of Microbiota in Longevity Yongfu County, SoMiLY, 
NCT04210934), we recruited 151 healthy individuals from Yongfu 
County using nonprobability sampling and a household survey. The 
participants were categorized into four age groups: 29 centenarians 
(100–111 years old), 46 nonagenarians (90–100 years old), 41 elderly 
individuals (60–90 years old), and 35 young-to-middle-aged adults 
(20–60 years old). The age information was strictly verified using 
China's national identity card number, double-checked by evalua-
tion of each generation of children, and further validated by asking 
participants to recall their life events in home visits. The exclusion 
criteria included self-reported antibiotic use within 1 month, hospi-
talization for any reason in the last 3 months, acute major diseases or 
disabilities, typical dementia-related inability to communicate, and 
intake of any drug potentially affecting the microbiota, especially 
oral antidiabetic drugs, lipid-lowering agents, and cancer chemo-
therapeutic agents within 3 months.

In addition, two independent external cohorts with East Asian 
origins, the Yunnan aging cohort (n = 80) and the Japan aging cohort 
(n = 330), were used to validate serum metabolomic and fecal metag-
enomic features identified in the Guangxi aging cohort (Table S1). 
Yunnan and Guangxi are contiguous and both located in South China, 
and the residents exhibit more similar geographic features, dietary 
habits, and living habits than Caucasians and Africans. Eighty partic-
ipants undergoing health management were included; the routine 
health indicators of these participants were within the reference 
range, and they exhibited an overall good health status. Their ages 

spanned four stages, termed young and middle-aged (20–45 years 
old), young-old (60–69 years old), middle-old (70–79 years old), and 
old–old (80–89 years old), with 20 individuals in each stage (equally 
divided between males and females). In addition, the Japan aging 
datasets were retrieved via the public database (PRJNA675598) 
(Sato et al., 2021), comprising 330 gut microbial metagenomes from 
Japanese adults who had overall similar gender and age distributions 
as the Guangxi longevity cohort.

2.3  |  Blood and fecal sample collection

Blood and fecal samples of participants were collected at home dur-
ing a household survey and transferred to the clinical laboratory in 
the Yongfu People's Hospital on dry ice. Serum was isolated after 
centrifugation twice (3000 rpm, 10 min and 12,000 rpm, 5 min), and 
stored at −80°C until used for metabolomics analysis. Fresh fecal 
samples were obtained at home at the same time as blood collec-
tion. After excretion, all pretreatment was performed within 10 min 
to ensure that the feces were relatively fresh. The whole operation 
process was carried out while keeping the samples on dry ice to en-
sure a low-temperature environment. We used fecal collection kits 
(MGIEasy) to collect fresh fecal samples and stored them in an ice 
box with dry ice; the samples were subsequently stored at −80°C 
until DNA extraction and metagenomics analysis. To control for pos-
sible contaminants during handling and nucleic acid preparation, we 
included a blank control every day for each batch, wherein the blank 
swab was likewise immersed in the fecal preservation solution.

2.4  |  General information and clinical phenotypes

The general parameters recorded included age, sex, weight, height, 
smoking status, drinking habits, systolic blood pressure (SBP), and 
diastolic blood pressure (see Table S1 for details). Six clinical phe-
notypes were evaluated, including glycometabolism (hemoglobin, 
C-peptide), lipid metabolism (triglycerides, total cholesterol, high-
density lipoprotein cholesterol, and low-density lipoprotein cho-
lesterol), inflammation (high-sensitivity C-reactive protein [hsCRP]), 
redox state (superoxide dismutase), cardiovascular biomarkers 
(beta-hydroxybutyrate, homocysteine) and renal function [creati-
nine [CREA], UREA, uric acid [UA]). For calculation of the estimated 
glomerular filtration rate (eGFR) (mL/min per 1.73 m2), the Chronic 
Kidney Disease Epidemiology Collaboration (CKD-EPI) (Matsushita 
et al., 2012) equations were used as follows:

Female with SCr ≤ 0.7: eGFR = 144 × (0.993)age × (SCr∕0.7)−0.329

Female with SCr > 0.7: eGFR = 144 × (0.993)age × (SCr∕0.7)−1.209

Male with SCr ≤ 0.9: eGFR = 141 × (0.993)age × (SCr∕0.9)−0.4111

Male with SCr > 0.9: eGFR = 141 × (0.993)age × (SCr∕0.9)−1.209
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2.5  |  Leukocyte telomere length measurement

Peripheral blood leucocyte DNA extraction was performed using 
a Whole Blood DNA Extraction kit (BioTeke, Beijing, China) and 
evaluated using a Qubit fluorometer. Telomere length was deter-
mined as the relative ratio of the telomere repeat copy number to 
a single copy gene copy number (T/S ratio) using the quantitative 
PCR (Cawthon,  2002). Each sample was tested for telomeres (T) 
and the single copy gene (S), RNaseP, with 3 replicates for each. 
The self-configured gDNA mixed samples were used as stand-
ards to eliminate the systematic errors of the results of different 
batches. The formula for calculating the T/S value was: T/S = 2−∆∆Ct; 
∆∆Ct = ∆Ctsample − ∆Ctstandard; ∆Ct = Ct(T) − Ct(S).

2.6  |  Metabolite profiling of human serum samples

2.6.1  |  Internal standards (1)

D3-L-methionine (100 ppm, TRC, Canada), 13C9-phenylalanine 
(100 ppm, CIL, USA), D6-L-2-aminobutyric acid (100 ppm, TRC, 
Canada), D4-L-alanine (100 ppm, TRC, Canada), 13C4-L-threonine 
(100 ppm, CIL, USA), D3-L-aspartic acid (100 ppm, TRC, Canada), and 
13C6-L-arginine (100 ppm, CIL, USA).

2.6.2  |  SPLASH internal standards (2)

The stock concentrations of each lipid standard were as follows: LPC 
18:1(d7), 25 μg/mL; LPE 18:1(d7), 5 μg/mL; PC 15:0–18:1(d7), 160 μg/
mL; PE 15:0–18:1(d7), 5 μg/mL; PG 15:0 18:1(d7), 30 μg/mL; PS 15:0–
18:1(d7), 5 μg/mL; PI 15:0–18:1(d7), 10 μg/mL; PA 15:0–18:1(d7), 
7 μg/mL; SM d18:1–18:1(d9), 30 μg/mL; cholesterol(d7), 100 μg/mL; 
CE 18:1(d7), 350 μg/mL; MG 18:1(d7), 2 μg/mL; DG 15:0–18:1(d7), 
10 μg/mL; and TG 15:0–18:1(d7)–15:0, 55 μg/mL. Methanol (A454-
4), acetonitrile (A996-4), and the above substances were of LC–MS 
grade. Formic acid ammonium salt (17843-250G; Honeywell Fluka, 
USA), and formic acid (50144-5 g0mL DIMKA, USA) were used, and 
water was supplied by a water purification system.

2.6.3  | Metabolite extraction

After thawing a sample slowly at 4°C, 100 μL was placed into a well of 
a 96-well plate, and 300 μL of extraction solvent (2:1 methanol:ACN 
(V/V) precooled at −20°C), 10 μL of internal standard 1 and 10 μL 
of internal standard 2 were added. The mixture was vortexed for 
1 min, incubated at −20°C for 2 h, and then centrifuged at 4000 rpm 
for 20 min at 4°C. After centrifugation, 300 μL of the supernatant 
was subjected to freeze drying, and the residue was resuspended 
in 150 μL of 1:1 methanol:H2O (V/V). The mixture was vortexed 
for 1 min and centrifuged at 4000 rpm for 30 min at 4°C, and the 
supernatant was placed into a sample bottle. Ten microliters of the 

supernatant from each sample was mixed as the QC sample to evalu-
ate the repeatability and stability of LC–MS analysis.

2.6.4  |  Liquid chromatography–
tandem mass spectrometry (LC–
MS/MS)-chromatographic conditions

We used a Waters 2D UPLC (Waters USA) tandem Q Exactive high-
resolution mass spectrometer (Thermo Fisher Scientific, USA) to 
separate and detect metabolites.

2.6.5  |  Chromatographic conditions

A BEH C18 column (1.7 μm 2.1 × 100 mm, Waters, USA) was used. In 
positive ion mode, the mobile phase was a water solution containing 
0.1% formic acid (A) and 100% methanol containing 0.1% formic acid 
(B). In negative ion mode, the mobile phase was an aqueous solution 
containing 10 mM ammonia formate (A) and 95% methanol contain-
ing 10 mM ammonia formate (B). The following gradient was used for 
elution in both ionization modes: 0–1 min, 2% B; 1–9 min, 2%–98% B; 
9–12 min, 98% B; 12–12.1 min, 98% B; 12.1–15 min, 2% B. The flow 
rate was 0.35 mL/min, the column temperature was 45°C, and the 
injection volume was 5 μL.

2.6.6  | Mass spectrometric conditions

Primary and secondary mass spectrometric data were collected by a 
Q Exactive mass spectrometer (Thermo Fisher Scientific, USA). The 
mass-to-charge ratio scan range was m/z 70–1050, the first-order 
resolution was 70,000, the AGC was 3e6, and the maximum injec-
tion time was 50 ms. According to the precursor ion signal strength, 
the top 3 ions were selected for fragmentation, and secondary mass 
spectral data were acquired. The MS/MS resolution was 17,500, 
AGC was 1e5, maximum injection time was 50 ms, and stepped colli-
sion energies were 20, 40, and 60 eV. The parameters of the electro-
spray ionization source were as follows: sheath gas flow rate, 40 L/h; 
aux gas flow rate, 10 L/h; spray voltage (|kV|), 3.80 in positive ioniza-
tion mode and 3.20 in positive ionization mode; capillary tempera-
ture, 320°C; and aux gas heater temperature, 350°C.

2.6.7  |  Identification of metabolites and 
data analysis

Compound Discoverer 3.0 (Thermo Fisher Scientific, USA) software 
was used to process LC–MS/MS data, including for peak extraction, 
peak alignment, and compound identification. After data processing, 
a total of 35,652 metabolites were detected. For further LC–MS/
MS analysis, known metabolite annotation was performed accord-
ing to an in-house HMDB and the Kyoto Encyclopedia of Genes and 
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Genomes (KEGG) database. A total of 365 out of the 35,652 me-
tabolites were structurally identified and annotated according to the 
in-house LC–MS/MS database.

2.7  |  Fecal DNA extraction and 
metagenomic sequencing

Total DNA was extracted from approximately 400–500 mg of feces 
using the MetaHIT protocol (Qin et al., 2012). The DNA concentration 
was estimated by a Qubit instrument (Invitrogen). DNA library con-
struction and sequencing using the BGISEQ-500 platform were per-
formed as described previously (Fang et al., 2018; Li et al., 2021). Five 
hundred nanograms of input DNA was used for library formation and 
fragmented ultrasonically with a Covaris E220 (Covaris, Brighton, UK), 
yielding 300 to 700 bp fragments. We constructed one paired-end 
(PE) library for each sample, followed by high-throughput sequencing 
with PE reads of 2 × 100 bp. We used the documented workflow (Fang 
et al., 2018; Li et al., 2021) for sequencing data quality control. Human 
genomic DNA reads were identified using bwa-mem2 (Vasimuddin 
et al., 2019), and reads were removed if they shared >95% sequence 
identity with the human genome reference sequence (hg38).

During the sampling process, we designed a blank control every 
day and placed the blank swab into the fecal preservation solution. 
No DNA was found in the blank control during DNA extraction.

2.8  |  Gene catalog construction and 
gene annotation

2.8.1  |  Gene catalog construction

Based on the whole metagenome sequencing (WMS) data of all 
individual fecal samples, a de novo gene catalog was constructed 
(Liyanage et al., 2015). High-quality reads of each sample were used 
for de novo assembly with Megahit (version 1.1.2) (Li et al., 2015), 
which generated the initial assembly results based on different k-mer 
sizes (k = 21, 41, 61, 81) and then merged them. Ab initio gene identi-
fication of assembled contigs was conducted using MetaGeneMark 
(Zhu et al., 2010). Then, cd-hit (version 4.5.4) (Fu et al., 2012) clus-
tered the predicted genes at the nucleotide level, and genes with 
more than 90% overlap and more than 95% homology were treated 
as redundant (Human Microbiome Project Consortium,  2012). 
Finally, we obtained a nonredundant gene catalog of 4,140,158 
genes, of which 1,154,273 were partial ORFs (27.9%).

2.8.2  |  Quantification of genes

The high-quality sequences were mapped to the above nonre-
dundant gene catalog using bwa-mem2 (Vasimuddin et al., 2019) 
with the criterion of identity >90%. Based on the alignment re-
sult, the relative abundance of gut microbial genes was evaluated 

by the same method as that used in previous microbiome studies 
(Li et al., 2021; Qin et al., 2012).

2.8.3  |  Taxonomic classification of genes

The nonredundant gene catalog was compared with sequences in the 
National Center for Biotechnology Information database (NCBI-NT, 
downloaded at Aug. 2018) using BLASTN (v2.7.1) by the parameter 
“word_size 16-evalue 1e − 10”. Alignments were filtered to require at 
least 70% query coverage. If one gene matched two or more different 
NCBI-NT sequences with exactly the same bit-score but from differ-
ent species, we performed statistics on multiple best-hits (from the 
NCBI-NT database) mapping for the same gene, including the number 
of species present, the number of occurrences of each species, and 
the average similarity of the same species. After completion of the 
statistical analysis, the species annotation with the highest frequency 
and the highest average similarity was used as the annotation for the 
gene (shown in the table below). When a gene was annotated to dif-
ferent species based on the NCBI-NT database, the highest identity 
of the species annotated for that gene in the BLASTN results was 
prioritized. Ninety-five percent identity was used as the critical value 
for species assignment, 85% identity was used as the critical value 
for genus assignment, and 65% identity was used as the critical value 
for phylum allocation (Arumugam et al., 2011). A total of 1.97 million 
genes were classified and annotated taxonomically.

2.8.4  |  Functional annotation of genes

We used BLASTP (v2.7.1) with the parameter “word_size 16-evalue 
1e − 6” to align the putative amino acid sequence translated from 
the gene catalog with the protein or domain in the KEGG database 
(version 84.0, excluding animal or plant genes), and alignments were 
filtered to require at least 30% alignment identity and 70% query 
coverage. Each putative amino acid sequence was assigned a KEGG 
ortholog based on the best-hit gene in the KEGG Ortholog (KO) da-
tabase. Using the above method, 3,101,635 genes in the combined 
gene catalog were assigned to the KEGG database.

2.8.5  |  Construction of gene and KO profiles

For gene and KO profiling, we used a previously reported method (Li 
et al., 2021). In brief, the relative abundance of a KO was calculated 
as the total sum of the relative abundance of its cognate genes.

2.9 | Generation of metagenomic species 
(MGSs) and taxonomic classification

The generation of MGS was performed as previously described 
(Nielsen et  al.,  2014). Co-abundance gene groups (CAGs) were 
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established using “cc.bin” (Nielsen et  al.,  2014) (default parameters) 
from the correlation clusters of sample abundance profiles by a can-
opy-based algorithm. Canopy-based clustering of the gene catalog 
was performed by iteratively picking a seed gene among the not yet 
clustered genes and aggregating genes with abundance profiles within 
a fixed distance from the seed gene abundance profile (Pearson cor-
relation coefficient >0.9 and Spearman's rank correlation coefficient 
>0.6) into the seed canopy. Canopies with median abundance profiles 
within a distance of 0.97 Pearson correlation coefficient from one an-
other were merged. Canopies with 2 or fewer genes, for which the 
canopy abundance signal from any three samples constituted 90% or 
more of the total signal across all samples, for which the median pro-
file was detected in less than four samples, or for which one sample 
made up 90% of the total signal were discarded for having insufficient 
supporting evidence. Canopies that passed these criteria were called 
CAGs. CAGs with more than 700 genes are also referred to as MGSs.

Taxonomic classification was based on the NCBI-NT database as 
previously described (Glassock et al., 2017). Assignment to a species 
required that 90% of the genes in an MGS aligned with this species' 
genome with 95% identity and 70% overlap in the query. Assigning 
an MGS to a genus required 80% of its genes to align with a genome 
with 85% identity in both DNA and protein sequences. MGSs that 
did not meet this condition were unclassified.

We calculated the MGS profile using the abundance of each gene 
in the original gene catalog. The abundance of MGSs was deter-
mined by taking the median of the relative abundances of all genes 
within a cluster. Additionally, we conducted a taxonomic and com-
positional analysis of the metagenome by the Metaphlan4 (V 4.0.6) 
(Blanco-Míguez et al., 2023) tool using the MetaPhlAn database of 
marker genes mpa_vOct22_CHOCOPhlAnSGB_202212.

2.10  |  Alpha diversity and enterotype analysis

For each sample, we calculated the Shannon (2001) entropy index, 
and the median Shannon entropy was used for comparisons be-
tween samples:

where S is the number of genes and ai is the relative abundance of gene 
i. A high α-diversity indicates a high evenness or diversity of genes 
present in the sample. Enterotyping was performed based on a previ-
ously described method (Arumugam et al., 2011) (https://​enter​otype.​
embl.​de/​enter​otypes.​html).

2.11  |  Infer community assembly mechanisms by 
phylogenetic bin-based null model (iCAMP) analysis

iCAMP was used to investigate the assembly mechanisms of differ-
ent microorganism groups (Ning et al., 2020). The R code for iCAMP 
was available as an open-source R package, “iCAMP,” which can be 

downloaded from the Comprehensive R Archive Network (CRAN, 
https://​cran.​r-​proje​ct.​org/​). By using iCAMP, five assembly mecha-
nisms of different microorganism groups were identified, including 
homogeneous selection (HoS), heterogeneous selection, dispersal 
limitation (DL), homogenizing dispersal, and drift (DR).

2.12  |  Phylogenetic isometric log-ratio transform 
(PhILR) analysis

PhILR (Silverman et al., 2017) analysis incorporates microbial evo-
lutionary models with the isometric log-ratio transform to safely 
allow off-the-shelf statistical tools to be applied to microbiota sur-
veys. The R code for PhILR was available as an open-source R pack-
age, “philr,” which can be downloaded from “https://​bioco​nduct​or.​
org/​packa​ges/​devel/​​bioc/​vigne​ttes/​philr/​​inst/​doc/​philr​-​intro.​html#​
ordin​ation​-​in-​philr​-​space​”. This analysis combines the abundance 
table of species composition and phylogenetic relationships among 
species. We further conducted principal component analysis (PCA) 
using PhILR-converted data.

2.13  |  Bidirectional mediation analysis

For microbial features associated with metabolites and aging, we first 
checked whether the microbial features were associated with the me-
tabolite using Spearman correlation (p < 0.05). Next, we carried out 
bidirectional mediation analysis with interactions (y = x + m + x × m, 
where y is the outcome, x is the variable and m represents the me-
diator) between mediator and outcome using the mediate function 
from mediation (version 4.5.0) to infer the mediation effect of serum 
metabolites and the gut microbiota on aging (Tingley et al., 2014).

2.14  |  Random forest models

Age and health status were predicted (random forest 4.6-12 package 
Breiman, 2001) using the MGS profiles.

2.14.1  |  Variable selection

First, the random forest regression model was used to predict the 
metabolites, and the largest variable of IncMSE was selected as the 
first variable. Second, the first variable and the remaining variables 
were combined into two variables to predict the metabolites, and 
the Q2 values of the predicted results were calculated and compared 
(the largest was the second variable of choice). Further variables 
were added iteratively in the same way until Q2 no longer increased.
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Here, yi and ŷi are the i-th observation value and the predicted 
value of the fecal metabolites, respectively.

2.14.2  | Module training

The metabolites were predicted by the variables selected above, Q2 
was calculated, and the variables of importance were obtained.

2.14.3  |  Cross-validation

We used the leave-one-out cross-validation method. Each sample 
was separately used as a validation set, and the remaining 150 sam-
ples were used as a training set. Q2 was calculated by the predicted 
value and the experimental value. Cross-validation was used in all 
random forest modeling processes.

2.15  |  The fecal microbiota transplantation (FMT)

Male C57BL/6 J mice (8 weeks), purchased from SPF biotechnology 
company. (Beijing, China) were provided with food and water ad libitum. 
Environmental temperature was kept at 23 ± 1°C with a 12-h light/dark 
cycle. Before transplantation, mice were treated for three consecutive 
days with 200 μL of an antibiotic cocktail (with each daily dose being ad-
ministered by oral gavage after a 6 h fast) that contained 1 mg/mL ampi-
cillin, 0.5 mg/mL neomycin, 0.5 g/L vancomycin and 1 g/L metronidazole 
according to the preciously published protocol (Bárcena et al., 2019).

For FMT, mice were randomized into the following groups (n = 10 
per group): control (gavage saline), FMT-aged (feces from aged do-
nors). Fecal material was collected from 20 community-dwelling 
elderly individuals aged 80 and over who had not taken any antibi-
otics in the past 3 months. Equal amounts of fecal material from all 
donors were pooled and 10% (w/v) fecal suspension was prepared. 
Thereafter, mice were given 200 μL human fecal suspension three 
times a week for 4 weeks by gavage according to precious studies, 
starting the first day after the antibiotic cycle until sacrifice (Liu 
et al., 2020). At the end of weeks 2 and 4 of FMT, fresh feces were 
collected for microbiota analysis, and cardiac blood was collected for 
serum separation for metabolomics analysis.

2.16  |  Statistical analysis

2.16.1  | Multivariate analysis

Multivariate statistical analysis (PCA and dissimilarity-based re-
dundancy analysis [dbRDA]) was used to distinguish and analyze 
serum metabolites and gut microbiome samples from individuals 
of different ages. PCA was performed by using the ade4 package 
(Thioulouse et al., 2018) in the R platform. Based on Bray–Curtis dis-
similarity, dbRDA (Legendre & Anderson, 1999) was performed by 

using capscale (McArdle & Anderson, 2001) (a function in the vegan 
package in R). We show the dbRDA plots of the main constraint axis 
(CAP1) and the main multidimensional scale (mds1) in the main text.

2.16.2  |  Permutational multivariate analysis of 
variance (PERMANOVA) analysis

In this study, we integrated a multiomics method (Price et al., 2017) 
to analyze the relationship among the serum metabolome, gut mi-
crobiome and phenome. We performed PERMANOVA to determine 
whether the omics datasets could affect each other. To evaluate the 
variance proportion of the serum metabolism data interpreted from 
the gut microbiome and phenome, first, the adonis function of the 
R package vegan was used to estimate the effect size (R2) between 
each variable of the gut microbiome and phenome and the serum 
metabolome. Only the variables with a significant impact on the 
serum metabolome (p < 0.05, 999 permutations) were considered. 
Then, to remove redundant variables, Pearson correlation coeffi-
cients between variables were calculated, and variables with corre-
lation coefficients greater than 0.5 were removed. Finally, the adonis 
function was used to calculate the combined effect size based on all 
nonredundant variables.

2.16.3  |  Co-inertia analysis (CIA)

To assess the consistency of samples in the projection of the serum 
metabolome and host phenome, we performed CIA (the parameter 
was “scannf = FALSE, nf = 2”) (Wang et al., 2020) on serum metabo-
lites and phenome profiles of all samples. The CIA plots in the main 
text (Figure S5a) were generated by R software (vegan package, CIA 
function).

2.16.4  |  Age correction

The association between any two groups may be affected by age, so 
we used age as a covariate to correct the influence of age on the two 
groups. We used the pcor.test (Kim, 2015) function in the R software 
ppcor package to correct for the influence of age.

2.16.5  |  Hypothesis testing and multiple 
test correction

Wilcoxon rank-sum tests (Bauer, 1972) were conducted to detect dif-
ferences in the gut microbial and serum metabolome characteristics, 
including the Shannon index, host phenotype, and serum metabolites. 
Kruskal–Wallis tests (Hollander et al., 2013) were performed to as-
sess the differences in gut microbial composition, function, serum 
metabolites, and continuous phenotypic variables among different 
age groups. False discovery rate (FDR) adjustment was performed by 



8 of 20  |     SUN et al.

the Benjamin-Hochberg method (Benjamini & Hochberg, 1995) (using 
the R package p.adjust), and the local FDR is provided in the article.

2.16.6  |  Power analysis

We evaluated the power of each correlation analysis. We used the 
pwr.r.test function in the R software pwr package to analyze the 
power (the parameter was alpha = 0.05, alternative = “two.sided”). 
The power of the Guangxi longevity cohort was more than 80% for 
each of the combined parameters (Table S15).

3  |  RESULTS

3.1  |  The cohorts

We collected and analyzed stool and serum samples from individuals 
living in Yongfu County, Guangxi, China, known for a high propor-
tion of nonagenarians and centenarians (Sun et al., 2015). The stand-
ard clinical parameters were collected, and are detailed in Table S1. 
We assessed the relative telomere length in 108 individuals and 
found an inverse correlation with age (Spearman's r = −0.2, p = 0.02) 
(Figure S1, Table S2), confirming prior findings about age-dependent 
telomere shortening (Aviv et al., 2001). In addition, we determined 
that a high proportion of the elderly individuals had increased hsCRP 
levels (Spearman's r = 0.312, p < 0.001) (Figure S1), consistent with 
previously published associations between these parameters and 
age (Glassock et al., 2017; Goto et al., 2012; Kooman et al., 2014).

Each stool sample was subjected to shotgun metagenomic se-
quencing followed by profiling of the microbial community composition 
and inferred functional potential. To assess whether the age-related 
gut microbial characteristics in the Guangxi longevity cohort could 
be generalized to other populations, a total of 330 adult gut microbial 
metagenomes from Japanese adults, who had overall similar gender 
and age distributions as the Guangxi longevity cohort, were retrieved 
via the public database (PRJNA675598) (Sato et al., 2021) (Table S1).

We used LC–MS/MS to analyze metabolites in 136 out of the 
151 serum samples. The same protocol was used to analyze serum 
samples from an additional 80 individuals (aged 20 to 80 years) 
from the “Yunnan aging cohort” in southern China. LC–MS/MS 
metabolite profiling was conducted in a nontargeted mode using 
sensitive high-resolution mass spectrometry that captured known 
and uncharacterized metabolites, including metabolites potentially 
produced by gut bacterial species. We only included the known 
identified metabolites in the analysis in this study.

3.2  |  Composition and functional potential of the 
gut microbiota across different age groups

We obtained an average of 12.6 Gb of sequencing data per fecal 
sample (Table S3). The sequencing data were utilized to assemble 

a gene catalog of 4.14 million nonredundant microbial genes, rep-
resenting the microbiome of our Guangxi longevity cohort with an 
average of 70.16% mapping reads in each sample (Table  S3). The 
genes were further annotated into 6631 KEGG functional catego-
ries and classified into 601 bacterial species identified as MGSs, of 
which only approximately half could be ascribed to known genera, 
suggesting the presence of a considerable number of novel genera 
in the dataset (Table S4).

Echoing findings from prior research on Sardinian centenarians 
(Wu et al., 2019), the diversity (evaluated by the Shannon diversity 
index) of gut microbial genes was similar across the four age groups 
(Wilcoxon rank-sum test, p > 0.05; Figure S2a), indicating that gene 
diversity remained relatively stable regardless of ethnicity or age. 
Nevertheless, unlike previous studies (Claesson et  al.,  2012), we 
noted a higher β diversity in the gut microbiota of young-to-mid-
dle-aged and elderly individuals, signaling a more varied community 
structure within these groups compared to their long-living counter-
parts (nonagenarians and centenarians). This points to a convergence 
of gut microbiota composition in long-living individuals (Figure 1a).

Based on iCAMP (Ning et al., 2020) analysis, HoS, DL, and drift 
were more important than other processes in bacterial community 
assembly, with average relative importance values of 32%–46%, 
23%–30% and 20%–41%, respectively (Figure 1b). Aging significantly 
influenced the relative importance of these processes (p < 0.01, per-
mutational ANOVA), with advancing age reducing the impact of 
HoS and increasing drift. An analysis of enterotypes (Arumugam 
et al., 2011) revealed that three enterotypes characterized the co-
hort, one driven by Bacteroides, one by Prevotella, and surprisingly, 
one by E. coli (E enterotype), with the last one contrasting previous 
findings. Bacteroides was found to be the second driving genus of 
the E enterotype, which we accordingly named the E/B enterotype 
(E. coli/Bacteroides enterotype) (Figure 1c, Table S5). The absence of 
Firmicutes-driven enterotypes might be attributed to limited sample 
size or specific dietary conditions in Yongfu County, affecting this 
age-diverse cohort. Notably, comparisons of young-to-middle-aged 
adults, elderly individuals, nonagenarians, and centenarians revealed 
that the distribution of the E/B enterotype in longer-living individ-
uals was skewed toward higher occurrence in nonagenarians and 
centenarians (Figure 1c, Fisher's exact test, p < 0.05), implying that 
the gut microbiota may change during life, or that the gut microbiota 
may have settled differently in the young generations.

Both dbRDA and PhILR based on MGSs demonstrated a clear 
separation of dominant microbial species among the different age 
groups (Figure 1d, Figure S2b, PERMANOVA p = 0.002). A compari-
son of the abundances of bacterial species across these age groups 
revealed 22 age-associated MGSs (Spearman's correlation, FDR 
q < 0.05, Table S6). Interestingly, 18 of these age-associated MGSs 
(Table S6) were also found to be age-associated in a recent Japanese 
centenarian cohort (Sato et al., 2021). The genetics and dietary hab-
its of the general Chinese and Japanese populations are relatively 
similar to each other compared to those of Caucasians and Africans. 
Thus, combined, the results indicate that the compositional changes 
in identified microbes seem to converge as people gradually age 
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regardless of ethnicity. In line with previous cross-sectional stud-
ies, the six identified E. coli MGSs were significantly enriched in the 
oldest individuals in the Guangxi longevity cohort, whereas the two 
Faecalibacterium prausnitzii MGSs were enriched in the youngest 
individuals (Biagi et al., 2016; Wu et al., 2019) (Spearman's correla-
tion, FDR q < 0.05; Figure 1e, Table S6). Moreover, we found that O. 
splanchnicus, D. piger, Bilophila wadsworthia, Enterobacter cloacae, and 
Lactococcus garvieae were enriched in the oldest individuals, while 
Romboutsia ilealis and Ruminococcus spp. were more abundant in the 
youngest individuals (Spearman's correlation, FDR q < 0.05; Figure 1e, 
Table S6). Utilizing Metaphlan4 (Blanco-Míguez et al., 2023) for mi-
crobial composition and relative abundance evaluation, we corrobo-
rated our above findings, noting that Anaerostipes hadrus, Clostridium 
symbiosum, E. coli, and O. splanchnicus were closely related to aging 
(Spearman's correlation, FDR q < 0.05; Table S6).

KO analysis related to the gut microbiota also exhibited age-re-
lated differences (Figure  S2c). The potential for degradation of 
xenobiotics and multidrug resistance of the gut microbiota was sig-
nificantly enhanced in older individuals (Figure S2d). In contrast, in 
the older age groups, a reduced potential for the biosynthesis of the 

branched-chain amino acids (BCAAs), leucine, and isoleucine, was 
observed, while the potential for degradation of the BCAA valine 
was increased (Figure S2d). More importantly, we observed that the 
abundance of KOs related to tyrosine, tryptophan, and phenylalanine 
metabolic pathways, conferring the ability to produce markers of im-
paired renal functions (indole, phenol, phenylacetylglutamine, and 
p-cresol), increased with age (Figure S2e). Consistent with previous 
reports (Sato et al., 2021), an increased potential of the gut microbi-
ota for the biosynthesis of secondary bile acids as well acetyl-CoA 
via the malonate semialdehyde pathway was associated with age 
(Figure S2d). Together, these findings revealed several age-depen-
dent differences in the functional potential of the gut microbiota.

3.3  |  Age-related differences in the 
serum metabolome

We identified age as the primary factor explaining the variance 
(~6%) within the serum metabolome of the subjects in the Guangxi 
longevity cohort (Figure  2a, PERMANOVA, p < 0.001). Notably, 

F I G U R E  1 Comparison of the gut microbiota among young-to-middle-aged adults, elderly individuals, nonagenarians, and centenarians. 
(a) Box plots of intragroup beta diversity based on MGSs in young-to-middle-aged adults, elderly individuals, nonagenarians, and 
centenarians (*p < 0.05, **p < 0.01; Wilcoxon rank-sum test). (b) Relative importance of different ecological processes in response to aging. 
(c) Enterotype analysis using the 151 profiled metagenomes. The degree of separation between individuals is shown using between-class 
analysis and PCA (see Section 2). The histogram in the lower right corner shows the proportion of the three enterotypes in each age group. 
P: Prevotella, B: Bacteroides: E/B: E. coli/Bacteroides. (d) dbRDA of MGSs of young-to-middle-aged adults, elderly individuals, nonagenarians 
and centenarians. (e–f) Box plots displaying the abundance of significantly different bacterial species among young-to-middle-aged adults, 
elderly individuals, nonagenarians and centenarians. Bacterial names in red are negatively correlated with age, and those in blue are 
positively correlated with age.
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lifestyle choices such as smoking and alcohol consumption also in-
fluenced the serum metabolome, albeit to a lesser extent (Figure 2a, 
PERMANOVA, p < 0.001). Moreover, we also observed distinc-
tive serum metabolome patterns across the different age groups 
(Figure 2b). Specifically, 128 of 365 metabolites were significantly 
correlated with age (Figure  2c, Table  S7, Spearman's correlation, 

FDR q < 0.05). These metabolites spanned a wide spectrum, en-
compassing lipids, amino acids, bile salts, prostaglandins, and other 
metabolites (Table  S7). Of these metabolites, 91 correlated posi-
tively with age (Spearman's correlation, FDR q < 0.05). In particular, 
the levels of 31 markers related to impaired renal function (includ-
ing p-cresol, hippuric acid, N-phenylacetylglutamine, 3-indoxyl 

F I G U R E  2 Broad changes in serum metabolomic profiles by age. (a) Effect size of phenotypic indices that significantly explain the 
variance (R2) in the serum metabolome (adonis p < 0.05). This analysis was based on all subjects, including young-to-middle-aged adults, 
elderly individuals, nonagenarians, and centenarians. (b) dbRDA of serum metabolites according to age. Metabolites that were identified 
as the main contributors to age distinction are indicated with arrows. (c) Boxplot displaying serum metabolites that differ significantly in 
abundance (specific uremic toxins and bile salts) among young-to-middle-aged adults, elderly individuals, nonagenarians. and centenarians. 
CHOL, total cholesterol; CREA, creatinine; DBP, diastolic blood pressure; HCY, homocysteine; hsCRP, high-sensitivity c-reactive protein; 
HDL, high-density lipoprotein; LDL, low-density lipoprotein; SBP, systolic pressure; SOD, superoxide dismutase; TG, triglycerides; UA, uric 
acid. *p < 0.05; **p < 0.001.
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sulfate, and 2-oxindole) increased progressively with age (Figure 2c, 
Table S7, Spearman's correlation, FDR q < 0.05). Markers of impaired 
renal function, such as 3-indoxyl sulfate, p-cresol, hippuric acid, and 
N-phenylacetylglutamine have been reported to be produced by the 
gut microbiota via the degradation of diet-derived AAAs (Mishima 
et al., 2015), polyphenols, and choline (Ramezani et al., 2016; Wikoff 
et al., 2009) (Figure S3). 3-Indoxyl sulfate and p-cresol have been ex-
perimentally proven to induce kidney fibrosis and cause significant 
kidney tubular damage in rat models of CKD (Vanholder et al., 2014). 
E. coli enriched in the Guangxi longevity cohort has also been re-
ported to be involved in the transformation of polyphenols into ben-
zoic acid, 4-hydroxybenzoic acid, or hippuric acid in the human gut 
(Moco et al., 2012).

Furthermore, we observed variability in the level of cholic acid 
across all age groups (Figure 2c). Altered profiles of circulating bile 
acids have been reported to be associated with renal diseases (Rajani 
& Jia, 2018) and are known to be modified by the gut microbiota (Jie 
et al., 2017). The diminished level of amino acids mainly reflected a 
decline in tryptophan with age (Table S7), potentially related to the 
ability of the gut microbiota to metabolize tryptophan to produce 
indole and p-cresol (Agus et  al.,  2018; Figure S3). Other features, 
such as prostaglandins, carnitine derivatives, and disease-related 
metabolites, were also associated positively with age, whereas the 
amounts of hormones, amino acids, nicotine, and their derivatives 
decreased (Table S6). The diminished production of amino acids was 
mainly reflected as a decline in tryptophan with age (Table S6).

Of the 128 metabolites significantly associated with age in the 
Guangxi longevity cohort, we further examined the relationship be-
tween the relative abundance of these metabolites and age in the 
Yunnan aging cohort using correlation analysis. Thirty-five of these 
128 metabolites also exhibited a significant correlation with age 
in the Yunnan aging cohort, including N-phenylacylglutamine and 
3-methoxytyrosine (Table S7, Spearman's correlation, FDR q < 0.05). 
A total of 102 of 128 metabolites exhibited congruent trends with 
age in the Guangxi longevity cohort and the Yunnan aging cohort 
(Figure S4, Table S7). Notably, 28 out of these 102 metabolites are 
markers of impaired renal function, highlighting a possible involve-
ment of deteriorating renal function in the aging process (Table S7).

The serum metabolome also covaried with clinical parameters 
(Figure S5a), and age correlated significantly with the levels of 14 
out of 26 clinical parameters (Figure S5b). Markedly lower levels of 
indicators of impaired renal function (CREA and UREA), SBP, ho-
mocysteine (HCY), and hsCRP were found in the older age groups. 
Importantly, after adjusting for the influence of age, the serum mark-
ers of impaired renal function were strongly positively associated 
with the renal function test indicators (CREA, UREA, and UA), as 
well as with HCY across the entire cohort, while being inversely as-
sociated with eGFR (Figure 3). This finding suggested that the levels 
of serum markers of impaired renal function share a close relation-
ship with renal functional test indicators. In addition, the levels of 
taurocholic acid were weakly correlated with these indicators, while 
serum fatty acids and prostaglandins were significantly correlated 
with hsCRP (Figure 3). Previous reports have emphasized that uremic 

toxins, bile salts, and fatty acids are linked to the gut microbiota, and 
thus, microbiota-derived uremic toxins and bile salts might lead to 
aggravated renal dysfunction (Wang et al., 2020).

3.4  |  The impact of the gut microbiota on serum 
metabolites increases with age

We next examined to what extent the gut microbiota might explain 
the serum metabolomics results with respect to different age groups 
using PERMANOVA. We observed an age-related pattern in which 
the gut microbiota's effect sizes on serum metabolites accounted 
for 18.5%, 21.6%, 25%, and 26.6% of the serum metabolome vari-
ance in young-to-middle-aged individuals, elderly individuals, no-
nagenarians, and centenarians, respectively (Figure  S6, Table  S8). 
Interestingly, the effect size of demographic (host property) and 
clinical parameters on the serum metabolome was significantly 
smaller than that of the gut microbiota across all age groups (5.5%, 
6.8%, 6.8%, and 10.6% of the serum metabolome variance in young-
to-middle-aged adults, elderly individuals, nonagenarians and cente-
narians, respectively) (Figure S6, Table S8).

Age-associated metabolites were further examined with re-
gard to the functions of the gut microbiota. We found covariation 
between inferred gut microbiota functions and serum markers 
of impaired renal function (Figure  S7). We hypothesized that the 
age-associated enrichment of markers of impaired renal function 
might indicate gut microbiota-mediated amino acid metabolism and 
microbial bile salt biosynthesis.

We then aimed to identify the bacterial species associated 
with markers of impaired renal function and bile salt alterations 
linked to aging, represented by p-cresol, hippuric acid, 2-oxindole, 
N-phenylacetylglutamine, and phenol. Correlations were found be-
tween age-related bacterial species and serum metabolites, particu-
larly markers of impaired renal function (Figure S8). We identified genes 
encoding key synthetases that mediated the biosynthesis of these 
compounds (Figure S3, Table S9) and quantified their levels in the 14 
MGSs with an age-related upward trend, 8 MGSs with an age-related 
downward trend, and 18 MGSs that had species- and/or genus-level 
taxonomic assignment (Table S6). These analyses demonstrated that 
bacterial key synthetase genes encoding enzymes involved in indole, 
hippurate, and secondary bile acid synthesis (Table S9) and the micro-
bial species harboring these genes were more abundant in the samples 
of older individuals than in younger individuals (Figure S9, Table S10).

Based on these findings, we next applied random forest models 
to estimate the correlation between uremic toxins (including 4-meth-
ylphenol, 2-oxindole, phenol, N-phenylacetylglutamine, and hippu-
ric acid) and serum bile acids (SBA; glycocholic acid, taurocholic acid, 
glycoursodeoxycholic acid, and taurochenodeoxycholic acid) and the 
abundance of synthetase-encoding gut microbial species. Random 
forest models that maximized the predictive power of serum uremic 
toxins and bile salt concentrations identified 74 correlated MGSs 
(Figure 4, Table S11). The microbial species accounted for 22.05%, 
9.41%, 0.63%, 33.25%, 4.38%, and 13.52% of the variance in 
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4-methylphenol, 2-oxindole, phenol, N-phenylacetylglutamine, hip-
puric acid, and SBA concentrations, respectively, indicating that the 
corresponding species were the main contributors to the production 
of uremic toxins and bile salts. Significant correlations between bac-
teria and age were also observed in the case of E. coli, F. prausnitzii, D. 
piger, O. splanchnicus, B. wadsworthia, and O. splanchnicus (Table S6).

Based on the notion that the concentration of uremic toxins and 
bile salts might be influenced independently through other pathways 
(e.g., metabolite transport), we extended the random forest models to 
include species that lacked synthetases, whereby the updated model 
could account for an additional ~18.59% of the variance (Figure S10, 
Table S12). Although identified MGSs based on current methods might 
not capture the entire profile of the gut microbiota, high correlations 
among the gut microbiota, renal toxins, and bile salts were still found.

Some of the gut microbial species that were linked to uremic tox-
ins or bile salts were also correlated with the renal functional test 

indicators (Figure S11). In particular, a high proportion of the variance 
(an average of 21.76%) of eGFR, CREA, UREA, and UA was explained 
by the abundances of E. coli, Klebsiella michiganensis, Klebsiella qua-
sipneumoniae and Klebsiella pneumoniae (Figure  S11, Table  S13). In 
addition, Veillonella parvula and [Clostridium] spp. were significantly 
correlated with eGFR, hsCRP, and CREA. Adlercreutzia equolifa-
ciens was significantly correlated with hsCRP and UA (Figure S11, 
Table S13). Previous reports have emphasized that Klebsiella spp., E. 
coli, and V. parvula are linked to aging (Zhang et al., 2021).

3.5  |  Microbiota-metabolite interactions in 
aging and FMT experiments

Next, we carried out a mediation analysis to investigate the links 
among the gut microbiota, serum metabolites, and aging. For the 

F I G U R E  3 Covariation between serum metabolites and clinical parameters, as well as between serum uremic toxins and renal function 
indicators. The heatmap panel shows age-adjusted Spearman correlation coefficients (SCC) between serum metabolites and clinical 
parameters. +p < 0.05; *p < 0.01; **p < 0.001. CHOL, total cholesterol; CREA, creatinine; DBP, diastolic blood pressure; eGFR, estimated 
glomerular filtration rate; HDL, high-density lipoprotein; hsCRP, high-sensitivity c-reactive protein; LDL, low-density lipoprotein; SBP, 
systolic pressure; SOD, superoxide dismutase; TG, triglycerides; UA, uric acid.
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22 gut microbial features that were associated with both serum me-
tabolites and aging (FDR < 0.05), we applied a bidirectional media-
tion analysis to evaluate whether the effect of the gut microbiota on 
aging is mediated via serum metabolites. This approach established 
524 mediation linkages for the impact of the gut microbiota on serum 
metabolites through aging (p < 0.05 and Pinverse-mediation >0.05; 
Figure 5a, Table S14). Most of these linkages were related to the im-
pact of E. coli, R. ilealis, and F. prausnitzii on N-phenylacetylglutamine 
and 4-methylphenol (Figure 5a).

E. coli, harboring genes encoding indole and phenylacetylgluta-
mine synthetases, can convert tryptophan and phenylalanine into in-
dole or phenylacetylglutamic acid (Table S14). We observed that the 
effect of E. coli on aging is mediated via N-phenylacetylglutamine, 
2-oxindole, and 4-aminohippuric acid (Pmediation = 0.046, 0.002, and 
0.044; Figure 5b). We also observed that the effect of O. splanchni-
cus and D. piger on aging is mediated via p-cresol (Pmediation = 0.004, 
0.001, Figure 5b). In addition, the effect of D. piger on aging is medi-
ated via N-phenylacetylglutamine (Pmediation = 0.014, Figure 5b).

To verify our results, we transplanted the fresh gut microbiota 
from 20 elderly donors into mice treated with antibiotics. Compared 
with mice gavaged with physiological saline, those receiving the 
elderly microbiota exhibited significant differences in the gut mi-
crobiota and serum metabolome (Figure 5c, Figure S12a). Through 
analyses of the gut microbiota and serum metabolome at 2 weeks 
and 4 weeks, the abundances of Odoribacter and Desulfovibrio in the 
mice receiving the elderly microbiota were significantly elevated 

after 4 weeks (Figure S12b). Concomitantly, 17 markers related to im-
paired renal function were also significantly elevated after 4 weeks, 
especially 2-oxindole, p-cresol glucuronide, and phenylacetylglycine 
(Figure 5d,e). Overall, these results demonstrate that the gut micro-
biota of elderly individuals can regulate markers related to impaired 
renal function in the serum.

3.6  |  Specific patterns associated with aging in 
long-living individuals

Centenarians, as a model of extreme aging, may provide informa-
tion on the relationships among the gut microbiota, healthy aging, 
and longevity. Here, we found that the four age groups differed 
with respect to eGFR, particularly nonagenarians and centenar-
ians (Figure 6a). Although the eGFR in these long-living individuals 
(nonagenarians and centenarians) was significantly (Wilcoxon rank-
sum test, p < 0.001) lower than that in younger individuals (young-
middle-aged and elderly), gradually flattened slopes of eGFR decline 
were observed in the case of extreme aging. Since a higher GFR is 
associated with healthy aging (Eriksen et al., 2020), we used eGFR 
as an indicator to stratify the long-living individuals and younger 
individuals (low-eGFR group and high-eGFR group). We found that 
24.2% (31/128) and 41.4% (53/128) of age-related metabolites 
were significantly associated (FDR q < 0.05) with the eGFR in long-
living individuals and younger individuals, respectively (Table S16). In 

F I G U R E  4 Age-dependent relationships between the gut microbiota and serum metabolites. Network view of uremic toxins/bile acids 
and metagenomic species (MGSs). Squares represent uremic toxins or bile acids, and the surrounding connected circles represent the species 
that were used in the random forest models. Unclassified bacterial species are not included in the figure. SBAs, secondary bile acids.
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particular, 16 and 25 markers of renal impairment were significantly 
correlated with the eGFR in long-living and young individuals, re-
spectively, and were enriched in the low-eGFR group (Figure S13, 
Table S16), indicating that longevity might depend on the mainte-
nance of renal function. In addition, no significant association (FDR 

q > 0.05) between the gut microbiota and eGFR was found in long-
living or younger individuals.

To interpret the finding of “delayed aging of kidneys” in 
long-living individuals, we classified the fluctuation trends of the 
levels of uremic toxins according to age into three distinct clusters 

F I G U R E  5 Mediation analysis and FMT experiments identify linkages between the gut microbiome, metabolites, and aging. (a) Parallel 
coordinates chart showing the 168 mediation effects of serum markers of impaired renal functions that were significant at p < 0.05. Shown 
are markers of impaired renal functions (left), microbial factors (middle) and age (right). The curved lines connecting the panels indicate the 
mediation effects, with colors corresponding to different metabolites and microbes. (b) Analysis of the effect of O. splanchnicus, D. piger 
and E. coli on aging as mediated by hippuric acid, N-phenylacetylglutamine, 2-oxindole, and 4-aminohippuric acid. (c) PCA shows a clear 
separation between the serum metabolome of mice gavaged with saline and those gavaged with feces from elderly humans. (d) Differences 
in metabolites related to renal function in the serum metabolome between mice gavaged with saline and those gavaged with feces from 
elderly humans, as well as changes in their metabolite levels at different time points (p < 0.1). (e) Changes at 2 and 4 weeks in 2-oxindole, 
phenylacetylglycine, and p-cresol glucuronide in mice gavaged with saline and those gavaged with feces from elderly humans (p < 0.1).
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(Figure  6b): cluster 1, with levels of markers of impaired kidney 
function increasing steadily with age, mainly including hippuric 
acid, phenylacetylglutamine, acetylated methionine and valine, 
and 3-methylhistidine; cluster 2, with levels of markers of impaired 
kidney function increasing slowly in centenarians, mainly includ-
ing derivatives of hippuric acid, p-cresol, and phenylacetylglycine; 
cluster 3, with levels of markers of impaired kidney function de-
creasing in centenarians compared with nonagenarians, mainly 
including indole derivatives, phenylalanine and phenylalanine de-
rivatives. The cluster 3 trend of markers of impaired kidney func-
tion levels was of particular interest, as the derivatives of indole 
may promote cellular senescence and premature aging through 
toxic alterations in the internal milieu (Adijiang et  al.,  2010; 
Stenvinkel & Larsson, 2013).

Similar trends for specific gut microbes underpinned the role of 
the gut microbiota in delaying the accumulation of markers of im-
paired kidney function in centenarians. Bacteria with increased, rel-
ative abundances in the older individuals could also be classified into 
three clusters (Figure 6c): cluster 1 mainly included D. piger, Alistipes 
finegoldii, and C. symbiosum; cluster 2 mainly included E. coli; and 
Cluster 3 mainly included E. cloacae. The covariation of specific gut 
microbes (E. coli and E. cloacae) and specific uremic toxins (deriva-
tives of hippuric acid, p-cresol, and indole) indicated the potential 
impact of the gut microbiota on renal function. Notably, E. coli and 
E. cloacae have been reported to be involved in the production of 
the precursors of uremic toxins in the intestine (Kikuchi et al., 2017).

Our results revealing the interplay between the gut microbi-
ota and the serum metabolome suggest that delayed renal aging in 

long-living individuals may reflect diminished accumulation of cer-
tain markers of impaired kidney function.

4  |  DISCUSSION

Based on residents from a Chinese longevity county, with long-
living individuals (nonagenarians and centenarians) as healthy 
aging controls, this study aimed to examine the possible relation-
ship between renal function and age-associated alterations in the 
human gut microbiota and serum metabolome using an integrated 
omics approach. Our results indicated that the effect of the gut 
microbiota on serum metabolites increased with age and that 
many age-associated gut microbes (E. coli, O. splanchnicus, and 
D. piger in particular) and serum metabolites, including markers 
of impaired renal function and bile acids, were highly correlated. 
The relationships between renal functions (eGFR, CREA, UREA, 
and UA), serum metabolites, and the gut microbiota further in-
dicated a possible impact of the gut microbiota in the aging pro-
cess. Through mediation analyses, we revealed putative causal 
relationships among the gut microbiota (E. coli, O. splanchnicus, 
and D. piger), markers related to impaired renal function (p-cresol, 
N-phenylacetylglutamine, 2-oxindole, and 4-aminohippuric acid) 
and age. The FMT experiment demonstrated that the feces of el-
derly individuals could influence markers related to impaired renal 
function in the serum. Thus, this study not only revealed changes 
in the serum metabolome and the gut microbiota in the process 
of aging but also indicated a route by which the gut microbiota 

F I G U R E  6 Different fluctuation trend patterns of age-related markers related to impaired renal function and the age-related gut 
microbiota in the oldest individuals. (a) The relationship between eGFR and age in different age groups. (b, c) Different fluctuation trend 
patterns of age-related markers related to impaired renal function (b) and age-related gut microbiota (c). Cluster1: metabolites different in 
centenarians ≥1.2* metabolites in nonagenarians, Cluster2: metabolites different in centenarians <1.2* metabolites in nonagenarians and 
metabolites in centenarians >metabolites in nonagenarians, Cluster3: metabolites different in centenarians ≤metabolites in nonagenarians.
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affects aging indirectly through its effect on renal function via the 
production of metabolites associated with impaired renal function.

Unlike the previously reported (Wu et  al.,  2019; Zhang 
et al., 2021) cross-sectional study of aging, we adopted a multiomics 
approach and combined the correlation between gut microbiota and 
serum metabolome to analyze the aging process in more detail. Our 
analyses showed that the effect sizes of the gut microbiota on serum 
metabolites increased with age. It has been reported that the intes-
tinal mucosal barrier does not deteriorate with age per se (Saltzman 
et al., 1995; Valentini et al., 2014), but low-grade chronic inflamma-
tion and mild diseases may impair the intestinal barrier, potentially 
indicative of chronic renal disease (CKD) (Meijers et al., 2018). Under 
normal circumstances, the kidneys excrete metabolites that serve 
as markers of impaired renal functions in urine. Most renal prob-
lems are caused by the gradual loss of glomerular filtration function, 
whereby transport of potentially toxic compounds from the blood 
to the urine is impaired, leading to their accumulation in the body 
(Vanholder et al., 2001). The accumulation of these compounds has 
a negative impact on many body functions and leads to gradual en-
dogenous poisoning (Vanholder et al., 2008). The levels of creatinine 
and pseudouridine in the urine metabolome of healthy elderly peo-
ple were reported to be lower than that those of young people (Chen 
et al., 2020), which is consistent with the notion that renal problems 
can occur with age. With increasing age, in general, glomerular filtra-
tion function decreases, which leads to the failure to effectively re-
move metabolites associated with impaired renal function from the 
blood, accompanied by a decrease in these metabolites in the urine.

Consistent with previous gut microbiota studies (Rampelli 
et al., 2020; Wu et al., 2019), we observed age-dependent changes 
in the abundances of E. coli, F. prausnitzii, and O. splanchnicus. E. coli 
was one of the most noticeable species that changed in abundance 
with age and was predicted to be associated with the production 
of several metabolite markers of impaired renal functions, including 
indole, p-cresol, and phenylacetylglutamine. In keeping with our re-
sults, E. coli has been reported to be involved in the degradation of 
tryptophan into indole or p-cresol (Yanofsky, 2007). Other species 
associated with the production of important markers of impaired 
renal function included D. piger and O. splanchnicus, identified as 
participating in the production of phenylacetylglutamine, indole, 
and p-cresol. Notably, D. piger, as a potentially “harmful” bacterium, 
was recently reported to synthesize more toxins than it can degrade 
(Popkov et al., 2022). O. splanchnicus is capable of generating all four 
protein-bound uremic toxin precursor metabolites under anaerobic 
conditions (Gryp et al., 2020). Our work thus suggests that the met-
abolic alterations in the intestinal tract contributed significantly to 
the accumulation of uremic toxins in serum with age, and species 
producing these marker metabolites clearly contribute significantly 
to the accumulation of gut-derived uremic toxins with aging.

The impact of aging on the serum metabolome is obviously influ-
enced by diet, but the effect of diet is difficult to disentangle. On the 
one hand, the dietary habits of people of different ages are based on 
preferences or availability, which are particularly likely to differ be-
tween urban and rural areas. Our research was based on household 

surveys and cluster sampling within a relatively small area, so the 
dietary habits, diet structure, and physical activity habits of all par-
ticipants were relatively similar and homogeneous. On the contrary, 
with increasing age, degenerative changes occur in the digestive 
system, which may lead to difference in dietary preferences, thus 
eliciting changes in gut microbes and metabolites. This physiological 
change is difficult to eliminate. In addition, regarding internal fac-
tors, aging is also associated with a decline in metabolic capacity, 
specifically reflected in the weakening of anabolism and the increase 
in catabolism, and elderly individuals often present a relatively mal-
nourished state compared to middle-aged individuals. Thus, age-de-
pendent differences in diets, lifestyle, and genetics altogether may 
lead to changes in the gut microbiota and thus changes in the pro-
duction of metabolites that may affect renal function.

The extent to which changes in the gut microbiota and kidney 
function are causally linked needs further clarification. FMT exper-
iments have demonstrated that the feces from elderly individuals 
could elevate relevant markers related to kidney function in serum, 
but tracing these changes back to the changes in key bacteria and 
corresponding metabolites might fully explain the importance of the 
gut microbiota in the aging process. In fact, a previous study has 
emphasized the relevance of renal function with regard to prema-
ture aging (Kooman et al., 2014). As people age, progressive declines 
in multiorgan functions are inevitable (López-Otín et al., 2013). The 
decline in renal function might weaken the detoxification capacity 
of the aged body and may accelerate the aging process (Weinstein 
& Anderson,  2010). Severely impaired renal function may lead to 
fatal conditions, such as CKD (Liyanage et al., 2015). The progres-
sion of renal function deterioration to CKD and its comorbidities 
are closely related to the accumulation of toxic metabolites in the 
blood (Zhang et al., 2012) with numerous marker metabolites being 
produced by the gut microbiota via the conversion of diet-derived 
AAAs and polyphenols (Wang et al., 2020). We, therefore, propose 
that age-dependent changes in the composition and functional po-
tential of the gut microbiota contribute, at least in part, to the aging 
process and that maintenance of gut microbiota homeostasis and 
kidney health may enhance physical fitness in long-living individu-
als. Future research using targeted analysis of serum metabolites 
will be necessary to further our understanding of the importance 
of perturbations of the gut microbiota and serum metabolome in 
aging and longevity. To better study the effect of the gut microbiota 
in the process of aging, examination of the fecal metabolome and 
transcriptome of the gut'microbiota will be needed, adding crucial 
functional information.

Our findings contribute to the growing body of evidence on the 
relationship between gut microbiota and aging. while a recent study 
also address the potential association of gut microbiota with longev-
ity with 16S sequencing and found centenarians were reflected by the 
gut microbiome with youth-associated signatures (Pang et al., 2023), 
our study differs from it in several ways. Firstly, we just focused on a 
longevity county approved by the Chinese Gerontology Society, po-
tentially reducing the confounding of genetic background and life-
style such as diet; and validated with external cohorts. Secondly, our 
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research took a multiomics approach by comprehensively examining 
profiling of the metagenome and serum metabolome. This enabled 
us to investigate the microbial producers of these metabolites and 
their changes throughout the aging process, thereby enhancing our 
understanding of aging. Lastly, our study has uncovered unique mi-
crobial signatures and metabolites, as well as metabolic pathways 
that have not been previously reported in aging studies. These find-
ings not only advance our knowledge of the complex mechanisms 
underlying aging but also offer potential new targets for interven-
tions aimed at promoting healthy aging and longevity.

In summary, this study revealed important characteristics of the 
gut microbiota and serum metabolome during aging and how age-re-
lated changes in the gut microbiota are associated with an accumu-
lation of distinct markers of impaired renal function in the blood. In 
particular, the accumulation of markers of impaired renal functions 
and a reduction in renal function may accelerate the aging process, 
emphasizing the importance of gut microbiota alterations and mark-
ers of impaired renal function in healthy aging.
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