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Abstract

Objective: Dysregulated appetite control is characteristic of anorexia nervosa (AN),

bulimia nervosa (BN), and obesity (OB). Studies using a broad range of methods sug-

gest the cerebellum plays an important role in aspects of weight and appetite control,

and is implicated in both AN andOB by reports of aberrant graymatter volume (GMV)

compared to nonclinical populations. As functions of the cerebellum are anatomically

segregated, specific localization of aberrant anatomy may indicate the mechanisms of

its relationship with weight and appetite in different states.We sought to determine if

there were consistencies in regions of cerebellar GMV changes in AN/BN and OB, as

well as across normative (NOR) variation.

Method: Systematic review andmeta-analysis using GingerALE.

Results: Twenty-six publications were identified as either case–control studies

(nOB = 277; nAN/BN = 510) or regressed weight from NOR data against brain volume

(total n = 3830). AN/BN and OB analyses both showed consistently decreased GMV

within Crus I and Lobule VI, but volume reduction was bilateral for AN/BN and unilat-

eral forOB. Analysis of theNORdata set identified a cluster in right posterior lobe that

overlapped with AN/BN cerebellar reduction. Sensitivity analyses indicated robust

repeatability for NOR and AN/BN cohorts, but foundOB-specific heterogeneity.

Discussion: Findings suggest that more than one area of the cerebellum is involved in

control of eating behavior and may be differentially affected in normal variation and

pathological conditions. Specifically, we hypothesize an association with sensorimotor

and emotional learning via Lobule VI in AN/BN, and executive function via Crus I inOB.
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1 INTRODUCTION

1.1 Importance of studying appetite control
mechanisms

Appetite control has a complex and multifaceted nature, and prob-

lems with eating behavior arise from a variety of genetic, cognitive,

emotional, and physiological factors. Irregular appetite patterns result

in abnormal body weight for height (indexed by the body mass index

[BMI]) as well as irregular metabolic/mental health (Alhussain et al.,

2016; Buyukkurt et al., 2021; Farshchi et al., 2005). For instance, obe-

sity (OB), characterized by a BMI of >30, is a major public health

concern pertaining to appetite dysregulation that is on the increase

and constitutes as a major risk factor for conditions such as hyper-

tension, diabetes, cardiovascular diseases, and cancer (Abell et al.,

2007; Arroyo-Johnson & Mincey, 2016; Zhang & Rodriguez-Monguio,

2012). In the past 35 years,worldwideOBprevalence rates havenearly

doubled, with 13% classifying with OB (WHO, 2014). At the oppo-

site end of the BMI scale are individuals with anorexia nervosa (AN)

who refrain from eating and harbor pathological fears of weight gain

and food consumption (APA, 2013). AN is a complex multidimensional

eating disorder characterized by pathologically decreased weight-for-

age/height, with lifetime prevalence as high as 4% (Smink et al., 2013).

Recently, publications found an increase in reported AN cases over

time, although increased incidencemay correlatewith increased speci-

ficity of reporting protocols (Erskine et al., 2016; Sweeting et al., 2015).

AN is relatively uncommon compared to other psychiatric disorders,

yet mortality rates are greater, reporting between 2% and 6% (Arcelus

et al., 2011; Wakeling, 1996). While AN and OB may not technically

be eating disorders at opposite ends of a singular spectrum, there are

prominent neuroanatomical (Allen et al., 2005; Amianto, D’Agata, et al.,

2013; Augustijn et al., 2019; Boghi et al., 2011; Brooks et al., 2011;

García-García et al., 2019; Kakoschke et al., 2019; Leggio & Olivito,

2018; Martín-Pérez et al., 2019; Milos et al., 2021; Nagahara et al.,

2014; Sanders et al., 2015), metabolic, and genetic (Bulik et al., 2019;

Chen et al., 2020; Fawcett & Barroso, 2010; Watson et al., 2019; Yang

et al., 2017) factors linking both disorders. It is therefore of significance

for research to identify mechanisms and neuroanatomical structures

regulating appetite or weight, whichmay serve as treatment targets.

Despite these priorities, roles of the cerebellum (displayed in Figure

S1; Diedrichsen & Zotow, 2015) in body weight or appetite control

(Mendoza et al., 2010; Tuulari et al., 2016; Zhu &Wang, 2008) receive

surprisingly little attention in appetite-related research, despite their

consistent implication. Traditionally, the cerebellum was thought to

solely serve motor coordination and somatic functions, but further

investigation reveals that this brain region plays a variety of diverse

roles. Researchers have reported the cerebellum demonstrates orga-

nizational similarity to that of the cerebral cortex (Herrup, 2000)

with anatomically segregated functions. Cerebellar contributions to

intrinsic connectivity networks have shown that particular regions of

the cerebellum are distinctly involved in different cognitive functions

(Habas et al., 2009; Stoodley, 2012; Stoodley & Schmahmann, 2009)

and implicated in five intrinsic connectivity networks, including the

executive control network (ECN; via Lobule VIIB; Crus I/II), default-

mode network (via Lobule IX), salience network (via Lobule VI), and

sensorimotor network (via Lobule VI) (Habas et al., 2009). Contrast-

ing traditional conceptualization, motor tasks are largely consigned to

Lobule VIIIa/b and represent limited cerebellar functionality (Stood-

ley & Schmahmann, 2009). Current views of the cerebellum implicate

it in homeostatic regulation (Saker et al., 2014; Supple Jr. & Kapp,

1993), executive/cognitive functionality (Buckner, 2013; Contreras-

Rodríguez et al., 2017; D‘Angelo & Casali, 2013; Habas et al., 2009;

Koziol et al., 2014; Leiner et al., 1986; Stoodley & Schmahmann, 2009;

Stoodley et al., 2012) (including habit formation [D‘Angelo & Casali,

2013], conditioning behaviors [D‘Angelo & Casali, 2013; Dolan, 1998;

Habas et al., 2009, 2013; Molinari et al., 2008; Utz et al., 2015], proce-

dural knowledge storage [Dolan, 1998; Habas et al., 2009, 2013; Zhu

et al., 2011], working memory function [Molinari et al., 2008; Stood-

ley & Schmahmann, 2009], and cravings [Carnell et al., 2014]), and

emotional regulation (Adamaszek et al., 2017; Baumann & Matting-

ley, 2012; Buckner, 2013; Habas et al., 2009, 2013; Lupo et al., 2015;

Schmahmann & Pandya, 1997; Shobe, 2014; Stoodley & Schmahmann,

2009; Utz et al., 2015). Importantly, evidence suggests the cerebellum

may participate in aspects of food intake and appetite control through

multiple mechanisms, including physiological (i.e., feeding circuit con-

nectivity, response/influence on gut hormones/neurotransmitters),

cognitive (i.e., food palatability, feeding-related memories), and emo-

tional (i.e., food-related cravings) means (Cavdar et al., 2001; Wright

et al., 2016).

1.2 A cerebellar role in weight and appetite
regulation

On a physiological scale, the cerebellum interacts via extensive signal-

ing networks with the hypothalamus and insula, which both contain

networks specific to food intake (Cavdar et al., 2001; Contreras-

Rodríguez et al., 2017) via neural and hormonal mechanisms (Allen

et al., 2005; Contreras-Rodríguez et al., 2017; Zhao et al., 2017).

Enteric nervous system gut hormones, such as leptin and ghrelin,

interactively modulate regions of the brain associated with food

intake control including the cerebellum, hypothalamus, and brainstem

(Bouret et al., 2004; Hommel et al., 2006). In response to ghrelin, cere-

bellar activation decreases and likely works to stimulate appetite via

ghrelin-induced suppression of satiety hormones, such as cholecys-

tokinin, within vagal afferent neurons (Al Massadi et al., 2017; Gavello

et al., 2016; Jones et al., 2012). Recently, Choe et al. (2021) investi-

gated synchrony between basal gastric rhythm (governing both vagal

activity and peristalsis) and brain activity, identifying the strongest

phase-locked synchrony within the cerebellum (Choe et al., 2021) that

suggests a more direct relationship between gastric mechanisms and

cerebellar functionality.

The cerebellum is also implicated in genetic aspects associated with

body weight disorders. Beyond neuroanatomical/biological aspects

of appetite dysregulation, disorders on the extremes of the stan-

dard BMI measure (i.e., AN/OB) exhibit shared genetic and metabolic
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correlations (Chen et al., 2020; Fawcett &Barroso, 2010;Watson et al.,

2019; Yang et al., 2017). With genetic associations occurring in oppos-

ing directions, they have been termed metabolic “mirror images” of

one another (Bulik et al., 2019). Cerebellar tissues and pathways have

recently been implicated in aspects of genetic risk for both condi-

tions (Cheng et al., 2020; Watson et al., 2019). Evidence from AN- and

cerebellum-related studies suggests that deficits in cerebellar mRNA

expression occur in fetal and early-life AN pathogenesis (Cheng et al.,

2020), and altered cerebellar volume may explain body image distur-

bances in AN (Briatore et al., 2020; Gaudio et al., 2011; Leibovitz et al.,

2018; Watson et al., 2019). In OB, a multitude of genes have been

associated with increased risk, predominantly the fat mass (FTO) and

melanocortin-4 receptor genes. FTO is expressed in regions such as

the hypothalamus, hippocampus, and cerebellum (Madsen et al., 2009;

McTaggart et al., 2011; Miller et al., 2009; Wang et al., 2012), and

research suggests it is highly associated with OB outcome (Fawcett &

Barroso, 2010; Yang et al., 2017).

The cerebellum is also repeatedly reported to participate in neu-

robiological modulation of dopaminergic and serotonergic signaling

(Cutando et al., 2022; Oostland & Hooft, 2016), which becomes

dysregulated in conditions of abnormal weight/BMI (Berridge et al.,

2010; Bohon, 2017; Carter et al., 2016; Kawakami et al., 2022; Kaye

et al., 2013; van Galen et al., 2018). Dopaminergic-related mech-

anisms driving both OB and AN have also been associated with

addiction-resembling behavior related to eating behavior (Barbarich-

Marsteller et al., 2011; Berridge, 2009; O’Hara et al., 2015). Recently,

Low et al. (2021) used a reverse-translational approach to identify

a cerebellar-based satiation network. In humans, food cues activate

cerebellar output neurons to promote satiation through reductions

in phasic dopaminergic responses to food. As such, the cerebellum

is likely implicated in altered neurobiological mechanisms associated

with dysregulated appetite or weight, such as those with AN/OB.

Importantly, extant literature also suggests that the cerebellummay

participate in more conscious domains of appetite, such as emotional

andcognitive aspectsdriving appetitivebehaviors. The cerebellummay

play a substantive role in cognitive aspects of appetite control via an

individuals’ subjective feeling of craving or outcome expectation built

off previous experience and memory (Carnell et al., 2014; Garrison

et al., 2016; Geliebter et al., 2016;Moreno-Rius &Miquel, 2017; Noori

et al., 2016; Tomasi et al., 2015). The cerebellum is also associatedwith

traits of impulsivity and loss-of-control (LOC) eating. Recent investi-

gations also unveiled cerebellar roles in the portion size effect (PSE)

(Herman et al., 2015; Rolls et al., 2006; Steenhuis & Poelman, 2017),

thephenomenonwheremore is eatenwhen largequantities of foodare

available (English et al., 2019).

1.3 Cerebellar volume and dysregulation of
appetite

Structural associations between the cerebellum and conditions of

dysregulated BMI and appetite have been consistently documented.

This includes evidence from loss-of-function studies (Zhu & Wang,

2008), as well as animal studies where lesions or removal of cere-

bellar hemispheres leads to reduced appetite, pathological weight

loss, and increased mortality rate (Colombel et al., 2002). In humans,

Oya et al. (2014) report a high proportion of cerebellar tumor detec-

tion with associated AN. Similarly, cerebellar degeneration associated

with ataxia correlates with increased likelihood of being underweight

or experiencing abnormal appetite (Kronemer et al., 2021; Rönne-

farth et al., 2020; Ross et al., 2015; Sánchez-Kuhn et al., 2017). Due

to appetite disturbances emerging post-cerebellar structural abnor-

malities, these studies indicate that cerebellar deficits could play a

causative role in the loss of appetite.

Cerebellar volume has also been directly associated with condi-

tions of under- and overeating. Excess weight (BMI > 25.5) or OB

(BMI > 30.0) has been associated with both increased (Brooks et al.,

2011) and decreased concentrations of gray matter volume (GMV) in

the left (Brooks et al., 2011), bilateral (Kakoschke et al., 2019), and

bilateral posterior (García-García et al., 2019) cerebellum. Prefronto-

cerebellar circuits, implicated in cognition, emotion, executive function,

and error detection, exhibit volume reduction in those with OB (Allen

et al., 2005; Brooks et al., 2011). Recovery from OB is also associated

with positive changes in cerebellar volume and is thought to be impor-

tant in treatment as well as conditioning of eating behavior (Augustijn

et al., 2019). Differences in cerebellar volume have been noted in both

rat and human models of AN (Fagundo et al., 2012; Moyse et al., 2019;

O’Hara et al., 2015). Within humans, cerebellar atrophy and cellu-

lar loss are associated with AN disease duration and poor treatment

success (Milos et al., 2021), persist after weight recovery, and are sug-

gested to play a role in maintaining a low body weight (Boghi et al.,

2011; Nagahara et al., 2014). A multimodal meta-analysis by Zhang

et al. (2018) identified bilateral reduction of the cerebellum in those

with AN, suggested to be associatedwith symptoms or traits of dietary

restriction and appetitive inflexibility (Zhang et al., 2018). A system-

atic volumetric review by Seitz et al. (2018) also demonstrated that

volumetric atrophy of the cerebellum upon assessment predicted AN

outcome at 1-year follow-up.

Altogether, the cerebellummay function as a pivotal point of behav-

ioral or associative tuning in relation to cognitive aspects of appetite

regulation. Schmahmann et al. (2019) identified associations between

the posterior cerebellar lobes and cognition, proposing “The Dysme-

tria of Thought” (DoT) theory. This theory suggests that, by receiving

multimodal inputs and establishing procedurally optimized behavioral

modulation, the cerebellum modulates cognition in a similar way to

which it smooths and fine-tunes coordination of motor behavior. In

cases of DoT, the cerebellum may perform similarly regarding altered

input and integration of appetite-related stimuli, such as formation of

rigid, repetitive, or inflexible individualized food-relatedmodels, mem-

ories, and expectations formed from previous interactions with food

stimuli. Cerebellar regions attending to salience of stimuli, such as

Lobule VI, may be associated with body weight/appetite changes via

formations of negative associations with food that could contribute

toward dietary restriction or rigidity. Alternatively, cognitive/executive

abnormalities reported in those with OB may suggest associations

with cerebellar regions prominent to the ECN, such as Crus I, where
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the reward value or experiential engagement with food stimuli may

be too “positively” integrated, contributing toward repetitive engage-

ment with stimuli to prolong or increase the frequency of a rewarding

experience.

1.4 Aims of study

Evidence provided by wide-ranging cerebellar research demonstrates

that the cerebellum is important in modulating aspects of appetite

control and implicated in both OB and AN. However, whether iden-

tical or differing areas of the cerebellum are associated with AN and

OB is unclear. This systematic review aimed to examine cerebellar

anatomy reported in case–control AN and OB literature, as well as

across the weight range via normative (NOR)/nonclinical populations

to investigate whether cerebellar structure differs across body weight

states and disorders. We generated two alternative hypotheses: We

first hypothesized that a singular area of the cerebellum, such as

Crus I (implicated in executive control circuits [Augustijn et al., 2019]),

would be associated with abnormal BMI conditions, and that respec-

tive regions affected in OB and AN would be similar. Our alternative,

competing hypothesis was that separate cerebellar regions would be

altered across conditions and shown in distinct regions. For instance,

Crus I volume could be primarily affected in OB, while Lobule VI vol-

ume (implicated in salience/sensorimotor circuits) could be primarily

affected in AN.

2 METHODOLOGY

2.1 Selection of literature

Literature was searched on June 29, 2022 using SCOPUS, PubMed

Central (PMC), andWeb of Science (WoS) using identical search crite-

ria. SCOPUS identified 2638 publications involving cerebellar volume

during OB—search criteria: (cerebell* AND obesity AND MRI) and 572

publications regardingAN (cerebell* ANDanorexia ANDMRI). PMC iden-

tified 4950 publications relating toOB, aswell as 461 papers regarding

AN. Lastly, 2588 and 233 papers were identified throughWoS regard-

ing cerebellar characteristics in those with OB and AN, respectively.

Inclusion criteria involved presence of key phrases utilized in search,

including “gray literature,” or findings produced outside of traditional

publishing. Exclusion criteria were as follows: (1) publications older

than10years, asCB imagingmethodshave significantly improved since

2010 (Gutierrez et al., 2014; Sirin et al., 2005); (2) animal studies; (3)

publications not reporting case–control studies; (4) inclusion of clini-

cal groups/correlations unrelated to the study scope; (5) publications

not utilizing voxel-based morphometry (i.e., diffusion tensor imag-

ing/functional MRI [fMRI] studies); and (6) publications with results

not reported in Talairach/MNI coordinates. Individual studies fitting

criteria were additionally collected frommeta-analyses (n= 3).

Two publications (Huang et al., 2019; Frank et al., 2013) could not

be further assessed as findings consisted of increased cerebellar vol-

ume/positive correlations, and insufficient positive coordinate-based

data were available across cohorts to generate meta-analytic posi-

tive CB findings. Three AN publications (Joos et al., 2010; Amianto,

Caroppo, et al., 2013; D’Agata et al., 2015) included individuals with

bulimia nervosa (BN) that contributed to AN findings. As both condi-

tions report with significant diagnostic crossover, with 34.1% of AN

individuals experiencing crossover to BNover a 7-year follow-up (Eddy

et al., 2008), these papers were included to form the AN/BN cohort.

Due to the limited literature, we were unable to correct for age and

gender across data sets.

In summary, six OB (Dommes et al., 2013; Jauch-Chara et al.,

2015; Mueller et al., 2012; Ou et al., 2015; Shan et al., 2019; Wang

et al., 2017) and 11 AN/BN (Amianto, Caroppo, et al., 2013; Bomba

et al., 2015; D’Agata et al., 2015; Fonville et al., 2014; Gaudio et al.,

2011; Joos et al., 2010; Lenhart et al., 2022; Mishima et al., 2021;

Phillipou et al., 2018) papers included coordinates and were selected

for final analysis (participant numbers: ncase–control =787; nOB =134vs.

nHC = 143; nAN = 228 and nBN = 48 vs. nHC = 234) (Table 1; Figure 1).

As an exploratory assessment of condition-specific effects, an AN-

only cohort was comprised by excluding three previously included AN

papers (Amianto, Caroppo, et al., 2013; D’Agata et al., 2015; Joos et al.,

2010) evaluating those with BN in conjunction with AN (eight papers;

nAN = 178 vs. nHC = 185).

While conducting the OB literature search, publications were iden-

tified evaluating correlations between BMI and GMV in nonclinical,

NORpopulations that fell in linewith remaining inclusion criteria (n=9

papers; 10 studies) (Figley et al., 2016; Janowitz et al., 2015; Kurth

et al., 2013; Masouleh et al., 2016; Walther et al., 2010; Weise et al.,

2013, 2019; Yao et al., 2016). As authorswithin theNORsubgrouppre-

dominantly conducted recruitment using community-based methods

and data repositories, participant aggregation generated larger sample

sizes than the OB and AN/BN literature. These publications evaluated

weight states across the BMI spectrum, with all but one (Figley et al.,

2016) study (n = 8/9 papers) including individuals with excess weight,

and all but three (Figley et al., 2016; Janowitz et al., 2015; Weise

et al., 2019) studies (n = 6/9 papers) including those with OB. Papers

were included in a separate NOR data set for analysis (participant

number= 3830) for a total participant sample size of n= 4617.

2.2 Voxel-based morphometry and ALE analysis

Cerebellar coordinates (values depicted in Table S1) were respectively

incorporated into GingerALE, an activation likelihood estimate (ALE)

meta-analysis software using both Talairach and MNI space (Eickhoff

et al., 2009). GingerALE converted Talairach coordinates toMNI space

using the icbm2tal transform. The p-value thresholds for individual

analyses were conducted at the whole-brain level and corrected for

family-wise error (FWE; .05) at 1000 permutations and set to p < .01.

First, individual observations on respective AN/BN (n = 510) and OB

(n = 277) cohorts were conducted, with a third analysis investigat-

ing negative correlations between BMI and cerebellar volume within

an NOR data set (n = 3830). As an additional analysis, the AN data
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F IGURE 1 Flowchart depicting the identification (a), abstract screening (b), categorization (c), and final selection (d) of papers. Three papers
were also found frommeta-analyses (Dommes et al., 2013; Huang et al., 2019;Weise et al., 2019). AN, anorexia nervosa; BN, bulimia nervosa; CB,
cerebellum; Coord., coordinates; fMRI, functional magnetic resonance imaging;MNI, Montreal Neurological Institute; MRI, magnetic resonance
imaging; NOR, normative; OB, obesity; Tal, Talairach; VBM, voxel-basedmorphometry.

set was reassessed upon exclusion of publications (Amianto, Caroppo,

et al., 2013; D’Agata et al., 2015; Joos et al., 2010) evaluating volu-

metric differences in BN (AN-only) but not further investigated for

overlap. Condition-respective findings were assessed for overlap via

logical overlays and conjunction analyses to visualize combinatorial

clusterswithinAN/BN-OB,AN/BN-NOR, andOB-NORdata sets. Jack-

knife analyses were conducted to assess robustness of findings via

identical reassessment of cohort data upon one-by-one omission of

publications. Additional information regarding cerebellar parcellation,

subregion locations, and conjunction analysis thresholding is described

within the Supporting Information.

3 RESULTS

3.1 Volumetric reduction in OB

Within OB studies, volume of the cerebellum was found to be

decreased in the left cerebellar hemisphere, with no bilateral effect.

The cluster contained a volume of 3.58 cm3 with a cluster center of

−27, −56, −31. Analysis revealed four peaks of significance partially

anteriorly and posteriorly located (Table 2). Specific cerebellar regions

affected are Lobule VI, Crus I, and the dentate gyrus (Figure 2).

3.2 Volumetric reduction in AN/BN

The AN/BN GingerALE analysis revealed two significant clusters dis-

playing bilateral reduction of cerebellar volume. The larger cluster

was located within the left posterior lobe and contained a volume of

7.09 cm3 with a cluster center of−25,−55,−31. The region contained

an additional seven peaks, with four of these occurring in the poste-

rior lobe (Table 3). The smaller cluster comprising 4.56 cm3 was located

in the right hemisphere, with three of five peaks located in the ante-

rior lobe. Identified subregions included Crus I, the bilateral Lobule

IV, and the bilateral dentate (Figure 3). Contrasting AN/BN findings,

the exploratory AN-only GingerALE analysis revealed no significant

clusters displaying volumetric reduction within the cerebellum.

3.3 NOR analysis: Cerebellum GMV versus BMI

Analysis of the NOR data set evaluating correlations between volu-

metric measures and BMI revealed a singular posterior cluster where

cerebellum GMV negatively correlated with BMI. The cluster had a

volume of 8.02 cm3 with a cluster center at 30, −71, −32 (Table 4;
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F IGURE 2 Cerebellar volume reduction of obesity subjects relative to healthy controls, spanning the right cerebellumwith a range of z=−20
to−40 and y=−50 to−65 in both axial (2.1A–F) and coronal (2.2A–F) orientations. C1, Crus 1; D., dentate; L, left; R, right; VI, Lobule 6.

F IGURE 3 Cerebellar volume reduction of anorexia nervosa/bulimia nervosa subjects relative to healthy controls, spanning the bilateral
cerebellumwith a range of z=−10 to−45 and y=−45 to−70 in axial (3.1A–H) and coronal (3.2A–G) orientations. A., anterior; C1, Crus 1; CB,
cerebellum; D., dentate; L, left; P., posterior; R, right; VI, Lobule 6; VIIIa, Lobule 8a.
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TABLE 2 Coordinates of significance in OB studies (n= 6).

Region (OB<HC)

MNI coordinates

Volume (cm3) ALE score p Zx y z

L CB –27 –56 –31 3.58 .00960 5.89× 10–5 3.85

L CB, anterior L. –32 –56 –28 .00956 5.89× 10–5 3.85

L CB, anterior L. –30 –60 –26 .00941 6.13× 10–5 3.84

L CB, posterior L. –28 –54 –34 .00920 1.36× 10–4 3.64

L CB, posterior L. –18 –54 –34 .00878 2.27× 10–4 3.51

Abbreviations: ALE, activation likelihood estimation; CB, cerebellum; HC, healthy control; L, left; L., lobe; MNI, Montreal Neurological Institute; OB, obesity;

R, right.

TABLE 3 Coordinates of significance in AN/BN studies (n= 11).

Region (AN/BN<HC)

MNI coordinates
Volume

(cm3) ALE score p Zx y z

L CB –25 –55 –31 7.09 .0106 2.10× 10–5 4.10

L CB, anterior L. –24 –54 –26 .0106 2.10× 10–5 4.10

L CB, posterior L. –28 –56 –36 .0105 2.18× 10–5 4.09

L CB, posterior L. –36 –48 –36 .00983 5.41× 10–5 3.87

L CB, posterior L. –18 –58 –34 .00973 6.88× 10–5 3.81

L CB, anterior L. –20 –48 –30 .00960 7.23× 10–5 3.80

L CB, anterior L. –30 –54 –16 .00923 1.37× 10–4 3.64

L CB, posterior L. –20 –68 –36 .00916 1.72× 10–4 3.56

R CB 24 –56 –26 4.56 .0105 2.20× 10–5 4.09

R CB, anterior L. 26 –56 –34 .0105 2.20× 10–5 4.09

R CB, anterior L. 28 –50 –16 .0103 2.45× 10–5 4.06

R CB, anterior L. 24 –50 –26 .0102 2.63× 10–5 4.04

R CB, posterior L. 22 –62 –12 .00975 5.68× 10–5 3.86

R CB, posterior L. 22 –62 –40 .00932 1.18× 10–4 3.68

Abbreviations: ALE, activation likelihood estimation; AN, anorexia nervosa; BN, bulimia nervosa; CB, cerebellum; HC, healthy control; L, left; L., lobe; MNI,

Montreal Neurological Institute; R, right.

TABLE 4 Clusters associated with increased BMI in NOR populations (n= 9/10).

Region (NOR; CBGMV vs. BMI)

MNI coordinates

Volume (cm3) ALE score p Zx y z

RCB 30 –71 –32 8.02 .0224 1.39× 10–8 5.56

R CB, posterior L. 28 –70 –42 .0224 1.39× 10–8 5.56

R CB, posterior L. 44 –72 –30 .0207 5.54× 10–8 5.31

R CB, posterior L. 18 –66 –30 .0189 4.14× 10–7 4.93

R CB, posterior L. 28 –80 –24 .0138 1.50× 10–5 4.17

R CB, posterior L. 34 –78 –28 .0133 1.91× 10–5 4.12

L CB, posterior L. 36 –72 –18 .011 6.86× 10–5 3.81

Abbreviations: ALE, activation likelihood estimation; BMI, body mass index; CB, cerebellum; L, left; L., lobe; GMV, gray matter volume; MNI, Montreal

Neurological Institute; NOR, normative; R, right.
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F IGURE 4 Volume reduction within a normative sample analysis spanning the right cerebellumwith a range of z=−15 to−50 and y= 60
to−85 in axial (4.1A–I) and coronal (4.2A–G) orientations. C1, Crus 1; C2, Crus 2; D., dentate; L, left; P., posterior; R, right; VI, Lobule 6; VIIb, Lobule
7b; VIIIa/b, Lobule 8a/b.

Figure4). The cluster comprised sevenpeaks, all locatedwithin thepos-

terior lobe affecting regions such as right Crus I/II, Lobule VI, Lobule

VIIb, and the dentate.

3.4 Pooled volumetric reduction and conjunction
analyses

Pooling combinations of data (AN/BN-OB, AN/BN-NOR, OB-NOR)

showed that cerebellar volume reduction significantly overlapped

across cohorts, but these reductions were also largely distinct accord-

ing to body weight condition as well as across BMI (Figure S2). OB

and NOR clusters were exclusive to the left and right hemispheres,

respectively, while AN/BN clusters were bilaterally located. Logi-

cal overlays on MANGO delineated significant intercondition overlap,

which prompted three conjunction analyses (Figure 5). The AN/BN–

OB conjunction analysis revealed a large region of overlap. The cluster

was located in the left Lobule VI with a volume of 0.214 cm3 and

center coordinates of −24, −55, −33 (Figure 6.1; Table 5). Conjunc-

tion analyses between clinical cohorts and the NOR cohort conducting

correlational analyses between volume and BMI revealed additional

findings. The AN/BN–NOR conjunction analysis revealed a unilateral

overlapof structural reduction. The clusterwas0.0296 cm3 with a clus-

ter center of 23,−64,−39, and primarily locatedwithin right LobuleVI,

but also affected the surrounding Crus II and dentate nucleus regions

(Figure 6.2; Table 5). No overlap or combinatorial clusters fallingwithin

our significance threshold were found in the OB–NOR conjunction

analysis.

3.5 Sensitivity analyses

Sensitivity analyses were conducted on all available cohort data sets

(Table S2). One-by-one omission of publications identified hetero-

geneity across OB findings, in which the left posterior and anterior

cerebellar clusters were present in three of six analyses. In contrast,

NOR and AN/BN findings were robust, with the right posterior cere-

bellar cluster demonstrating repeatability in 10 of 10NOR analyses, as

well as left and right AN/BN cerebellar clusters appearing in 11 of 11

and nine of 11 analyses, respectively.While the AN-only cohort did not

report findings, the jackknife analysis identified the left posteriorCBas

reduced upon removal of Lenhart et al. (2022), Phillipou et al. (2018),

Fonville et al. (2014), and Bomba et al. (2015).

4 DISCUSSION

4.1 Cerebellar differences: OB versus AN/BN
versus HC

Compiling data from OB and AN/BN publications, as well as from

correlations between BMI and brain volume, confirm cerebellar struc-

ture to be significantly decreased within varying BMI states and on
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F IGURE 5 Family-wise error (FWE)-corrected overlay clusters visualizing decreases in volume fromAN/BN (blue), OB (red), and NOR (green)
data. Regions of the cerebellumwhere AN/BN andOB data overlap are shown in purple, while an overlap in AN/BN andNOR data is displayed in
cyan. No overlap betweenOB andNOR data was present. Panels A–C andD–F depict the logical overlays in axial and coronal orientations,
respectively. AN, anorexia nervosa; BN, bulimia nervosa; L, left; NOR, normative; OB, obesity; R, right.

extremes of the spectrum of body weight disorders. However, we are

unable to conclude that cerebellar alterations occur in AN alone, with

existing differences between AN-only and AN/BN cohorts potentially

due to global atrophy of gray matter associated with AN-predominant

weight loss. As such, subsequent interpretation of identified findings

and potential structural mechanisms will focus on the combinatorial

appetitive dysregulation presented by the AN/BN cohort. From cohort

data, regions Crus I and Lobule VI were most consistently and sig-

nificantly affected, identifying two cerebellar regions with respective

executive and sensorimotor functionality associatedwith conditions of

dysregulatedBMI. In addition, findings indicate both condition-specific

differences as well as significant overlap in cerebellar GMV reduction

between AN/BN, OB, and NOR cohorts. Reduced GMV in Lobule VI,

Crus I, and the dentate nucleus was present in AN/BN, OB, and NOR

cohorts but differed according to hemisphere. In the NOR popula-

tion, affected regions correlating with increased BMI overlapped with

cerebellar reduction seen in AN/BN, but not theOB analysis. Differen-

tial hemispheric involvement of two regions that reportedly comprise

distinct corticocerebellar circuits leads us to suggest that multiple

cerebellar regions are reliably and consistently involved across states

of appetite dysfunction.Understandingof these regional functionsmay

provide insight as to how the cerebellum may differentially contribute

to the dysregulation of bodyweight.

Crus I, structurally reduced in AN/BN, OB, and NOR cohorts,

is reported to play predominant executive-, memory-, and some

emotional-related functions. Crus I and II contain specific functional

localization that corresponds to cerebral cortical zones (Edge et al.,

2003; Guell et al., 2018; Habas et al., 2009; Heinitz et al., 2017;Marron

et al., 2019; Stoodley & Schmahmann, 2009) and falls within the ECN

(Habas et al., 2009; Stoodley, 2012; Stoodley & Schmahmann, 2009).

In typical populations, this network plays roles in executive function,

spatial attention (Ciricugno et al., 2020), and verbal working memory

(Edge et al., 2003; Guell et al., 2018; Iglói et al., 2015; Shen et al., 2020;

Stoodley & Schmahmann, 2009), as well as goal-directed behavior via

communication with the hippocampus (Iglói et al., 2015). Recently,

Crus II is reported to serve emotional self-experience and social men-

talizing (Van Overwalle et al., 2020), expanding emotional roles played

by posterior cerebellar lobes.

Functional hemispheric differences reported in Crus I may explain

how the cerebellum is implicated, but likely plays distinct roles in cases

of pathological under- and overeating. Bilateral cerebellar reduction

has previously been associated in those with AN (Zhang et al., 2018).
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F IGURE 6 Subsequent conjunction analysis combining respective AN/BN andOB data (6.1) as well as AN/BN andNOR data (6.2) to visualize
affected regions of overlap. Analyses confirm an overlap in volumetric decrease in both AN/BN andOB subjects, as well as AN/BN andNOR
subjects primarily within Lobule VI (p< .05). Subfigures 6A/B, C/D, and D/E depict the combinatorial clusters in axial, coronal, and sagittal
orientations, respectively. No overlap betweenOB andNOR data was identified. AN, anorexia nervosa; BN, bulimia nervosa; C2, Crus 2; D.,
Dentate; NOR, normative; OB, obesity; VI, Lobule 6.

Despite no cluster-based findings within the exploratory AN-only

cohort, Crus I reduction within the AN/BN cohort may be associated

with general executive and attentional deficits reported in undereating

(Gaudio et al., 2018), such as body image disturbance and behav-

ioral rigidity toward food. Alternatively, reduction of Crus I within this

cohort may be more strongly associated with BN-specific symptoma-

tology, such as altered traits of impulsivity or LOC eating. Additionally,

volumetric reduction of Crus II was only identified within the NOR

and AN/BN findings, suggesting socioemotional functions of Crus II

could play a less prominent role in those with OB. Crus I reduction

was specific to the left hemisphere in the OB cohort, which interest-

ingly overlaps with previous unilateral cerebellar PSE (English et al.,

2019) findings as well as regions activated in spatial attention (Cir-

icugno et al., 2020) and social processing tasks (Guell et al., 2018).

Thus, cerebellar volume reduction in cases of overeating or OB seen

in this meta-analysis may suggest altered measures of food-related

attention, impulsivity,workingmemory, or loss of control, aspects char-

acteristic ofOB (Coppin et al., 2014;Cortese&Vincenzi, 2011;Cortese

et al., 2016; Pineda-Alhucema et al., 2018; Wu et al., 2017; Yang et al.,

2018; Zhang et al., 2018). However, sensitivity analyses reported het-

erogeneity among OB study findings, likely due to lacking study power

from limited literature. Further region-of-interest structural studies as

well as resting-state and fMRI tasks relating to impulsivity, working

memory, anddecisionmakingwould aid in furthering condition-specific

interpretations from this work.

Within NOR populations, reduction of Crus I was associated with

increased BMI, but reduction was unilateral to the right hemisphere

and included reduction of Crus II, suggesting that differential mecha-

nismsmayunderly distinct contributions towardweight gain.However,

it is important to note the differential study power between cohorts,

with NOR findings derived from a significantly larger sample size

than in those with OB. While findings corroborate concepts that

the cerebellum is multimodally associated with differing aspects of

BMI increase, such as homeostatic- versus nonhomeostatic-associated

weight gain, futureevaluationofNORpopulationsexcluding thosewith

OBwould further solidify interpretations.

LobuleVI consistently reportedwith structural reduction inAN/BN,

OB, and NOR cohorts, and its known functional distinction from Crus I

furthers the concept that more than one region of the cerebellum par-

ticipates in aspects of the dysregulation of body weight. Lobule VI has

recently been recognized as serving several cognitive and emotional

functions, and plays roles in the salience (Cacciola et al., 2017; Habas

et al., 2009; Seeley et al., 2007; Stoodley & Schmahmann, 2009, 2010),

somatomotor, ventral attention, and visual networks (Van Overwalle
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TABLE 5 Conjunction analysis clusters of significance in AN/BN, NOR, andOB cohorts.

Study

MNI coordinates

Volume (cm3)

Volume

breakdown (%) ALE scorex y z

(AN/BN–OB)

L CB –24 –55 –33 0.214 54.9%Ant.; 45.1%

Post.

.00850

L CB, posterior –28 –54 –34 .00854

L CB, posterior –18 –56 –34 .00768

(AN/BN–NOR)

R CB 23 –64 –39 0.029 100%Post. .00690

RCB, posterior 24 –64 –40 .00689

(OB–NOR)

NS

Abbreviations: ALE, activation likelihood estimation; AN, anorexia nervosa; Ant., anterior lobe; BN, bulimia nervosa; CB, cerebellum; L, left; NOR, normative;

NS, not significant; OB, obesity; Post., posterior lobe; R, right.

et al., 2020). Roles of the salience network, predominantly repre-

sented via Lobule VI, involve autonomic and interoceptive processing

in response to various forms of salience such as emotion, reward,

and homeostatic regulation (Craig, 2002; Critchley et al., 2004; Eisen-

berger et al., 2003). Tractography studies demonstrate connections

between the motor cortex, Lobule VI, and dentate nucleus (Habas &

Manto, 2018; Kelly & Strick, 2003), and fMRI studies report consis-

tent Lobule VI activity in emotional, social, and environmental learning

tasks (Bermpohl et al., 2006; Olivo et al., 2018; Takahashi et al., 2004).

Computational models also support that circuits implicated in Lobule

VI are important for Pavlovian conditioning and emotional learning

(Adams et al., 2013; Barrett et al., 1708; Brown et al., 2013; Pezzulo,

2012; Pu et al., 2020), including perceptual inferences such as startle

responses and spontaneous behavior (Friston & Herreros, 2016). Such

mechanismsmay contribute toANorBNvia development of food aver-

sion or negative food/weight associations that tend to exacerbate low

dietary intake or restriction. Alternatively, food may be conditioned as

an excessively rewarding or positive stimulus, whichmay be associated

with overeating or LOC consumption.

Similar to Crus I findings, differential hemispheric reduction of Lob-

ule VI across cohorts suggests differential cerebellar involvement.

While the exploratory AN-only analysis identified no clusters of inter-

est, the AN/BN analysis identified bilateral reduction of Lobule VI.

Those with AN have previously demonstrated reduced bilateral vol-

ume of the mid-posterior cerebellum, which is suggested to contribute

toward characteristicANsymptoms such as food aversion (Zhang et al.,

2018), but further functional studies focusing on the cerebellum are

warranted to further understand this relationship, as well as additional

studies are needed to distinguish between AN and BN findings. Reduc-

tion of Lobule VI in OB was restricted to the left hemisphere, which

contains regions specific to social processing tasks (Guell et al., 2018).

In contrast to the OB cohort, reduction of Lobule VI volume within the

NOR population was specific to the right hemisphere. While there is

currently no specific ascribed role to the right LobuleVI, differinghemi-

sphericity of effect between OB and NOR cohorts similarly suggests

differential cerebellar participation in pathological/nonpathological

overeating.

Reduction of the dentate nucleus was also seen in AN/BN, OB, and

NOR cohorts. This region is highly connected to the hypothalamus and

thought to interact with the lateral hypothalamic area, ventromedial

nucleus, dorsomedial nucleus, andparaventricular nucleus tomodulate

forelimb movements in food grasping behavior (Martin et al., 2000).

As with previous findings, the recruitment of the dentate nucleus

within multiple cohorts not only suggests cerebellar implication in

both nonpathological and clinical states of body weight dysregulation,

which may functionally differ due to associations with opposing hemi-

spheres, but also that multiple cerebellar regions are associated with

the dysregulation of bodyweight and BMI.

Lastly, a lack of cluster-based findings within the AN-only analy-

sis contrast previous reports of cerebellar atrophy in AN (Boghi et al.,

2011; Seitz et al., 2018; Zhang et al., 2018) and its structural suscepti-

bility to starvation (Boghi et al., 2011), and do not align with reports of

whole-brain reduction in thosewithAN (Amianto, D’Agata, et al., 2013;

Fonville et al., 2014). Findings from this study suggest aforementioned

structural cerebellar contributions underlying ANpathophysiology are

unlikely to be distinct to cerebellar subregions and may be partially or

fully consequent of whole-brain reduction characteristic of starvation.

4.2 Cerebellar overlap: OB versus AN/BN versus
HC

Volumetric overlap amongAN/BN,OB, andNORcohorts revealed that

cases of dysregulated appetite across the BMI-spectrum exhibit signif-

icant reduction in similar cerebellar regions, which have been known

for distinct sensorimotor (Lobule VI) and executive (Crus I/II) roles

and suggest multimodal cerebellar association across the BMI spec-

trum. Structural reduction in cases of AN/BN andOB, as well as within

NOR populations assessing cerebellar volume alongside increased

BMI, was predominant to Lobule VI and Crus I. Findings relating to
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nonpathological BMI increase via theNORcohort aswell as theAN/BN

cohort overlapped within the right Lobule VI, Crus II, and dentate

nucleus. Alternatively, Lobule VI and Crus I were both reduced in OB

and NOR data sets, but difference of effect according to hemisphere

meant no overlap in volume reduction was identified. The implica-

tion of similar cerebellar regions yet differing hemisphericity of effect

again suggests that while these cerebellar regions participate in differ-

ing forms of body weight states, the main sources of variation among

NOR populationsmay be quite different to those driving differences in

clinical conditions.

4.3 Limitations

4.3.1 Number of studies

Our review was limited by low study numbers used for some individ-

ual analyses, and we were unable to provide sufficient information

on race/ethnicity and socioeconomic status. Availability of data also

prevented further evaluation into sex, age, hormonal differences, and

brain inflammation values across participants. Due to such limita-

tions, we confined our analysis to changes in GMV. Future research

wouldbenefit fromutilizingmore specified imaging technology catered

to WMV alterations, such as diffusion tensor imaging and diffusion-

weighted imaging.

Similarly, while there is no definitive instruction on the minimum

number of studies needed to conduct an ALE meta-analysis, the Gin-

gerALE (2.0) manual mentions that a minimum of 20–30 coordinates

per experiment, as seen in our analyses, is sufficient to produce sig-

nificant and valid clusters for simple paradigms. Later on, Eickhoff

et al. (2016) recommended approximately 15–17 studies for reliabil-

ity of analysis results, which were not present in our study. While

cohort-specific sensitivity analyses were implemented to attempt to

account for heterogeneity across findings, little can be done to correct

or adjust for small sample sizes viaGingerALE.Amethodof counteract-

ing potentially unreliable results from future smaller studies would be

to analyze small-cohort findings alongside larger data sets, or to incor-

porate quantifications of bias from small sample sizes (i.e., Egger test)

within GingerALE software utility.

4.3.2 Assumptions

The research question posed by this review—to determine if areas of

the cerebellum involved in different disorders of appetite control were

the same or distinct, was driven by a review of the literature provid-

ing extensive evidence that the cerebellum is implicated in disorders

of appetite control (see Section 1). Therefore, our study is based on

this assumption and does not independently verify it. This is because

weonly reviewed studies that included cerebellum findings rather than

all MRI studies of eating disorders. Additionally, both AN/BN and OB

are associatedwith elevated inflammationwithin the brain (Seitz et al.,

2019; Spyridaki et al., 2016), which may influence findings related to

volumetric reduction of the cerebellum. Future studies would benefit

from including brain inflammation factors within analysis.

4.3.3 Causality and direction of effects

Further, we are unable to verify the direction of causation in found

associations. A common limitation in neuroimaging studies is their

capacity to determine causality. The studies reviewed here are only

able to demonstrate associations between volume abnormalities and

condition, and it is unclear whether reduced volumes are a cause or

subsequent effect.

4.3.4 Bulimia nervosa

Although we excluded themajority of BN patients, approximately 20%

of clinical AN data consisted of those with BN that we were unable

to remove. As there were insufficient BN papers (n = 3) to conduct

individualized cohort analyses for AN and BN, data sets were thus

pooled into one AN/BN cohort. While there is a significant overlap

in comorbidity and symptomatology between those with AN and BN

(D’Agata et al., 2015), including this groupmay have resulted in volume

reduction not linked to states relating to those with AN, and find-

ings from this meta-analysis are unable to distinguish between those

with mixed AN/BN pathology and those with AN alone. We attempted

to mitigate limitations regarding AN/BN etiological heterogeneity by

conducting an exploratory assessmentwithAN-only publications.Nev-

ertheless, our study still focuseson reduced cerebellar volume ineating

disorders, which is clearly the case for bulimic individuals.

5 CONCLUSION

While theories proposing cerebellar functions in emotional, cognition,

and conditioning behaviors are now receiving wide acceptance, a role

in weight and appetite is rarely discussed. In this review, we found

utility in exploring cerebellar differences and similarities in states at

opposite ends of the body weight dimension, and collated structural

evidence from many sources. Altogether, results of our ALE analyses

support the concept that the cerebellum is associated with dysregu-

lated appetite, eating disorders, and body weight in both pathological

and nonpathological states. We found that while cerebellar associa-

tions with bodyweight issues recruited similar regions, hemispherical

effects differed according to the type of appetitive condition, sug-

gesting different cerebellar circuitry contributing to eating behavior

between nonclinical and pathological populations. Such findings add

to a body of evidence theorizing cerebellar participation in appetite-

and feeding-related domains. Utilizing our knowledge of the emotional

and cognitive functions of the cerebellum will assist in identifying

novel remedial approaches to manage disorders of appetite regula-

tion as well as increase efficacy of interventions provided to clinical

populations.
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