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Abstract
The study of aging and its mechanisms, such as cellular senescence, has provided valuable 
insights into age-related pathologies, thus contributing to their prevention and treatment. 
The current abundance of high-throughput data combined with the surge of robust analysis 
algorithms has facilitated novel ways of identifying underlying pathways that may drive 
these pathologies. For the purpose of identifying key regulators of lung aging, we performed 
comparative analyses of transcriptional profiles of aged versus young human subjects and 
mice, focusing on the common age-related changes in the transcriptional regulation in lung 
macrophages, T cells, and B immune cells. Importantly, we validated our findings in cell 
culture assays and human lung samples. Our analysis identified lymphoid enhancer binding 
factor 1 (LEF1) as an important age-associated regulator of gene expression in all three cell 
types across different tissues and species. Follow-up experiments showed that the differ-
ential expression of long and short LEF1 isoforms is a key regulatory mechanism of cellular 
senescence. Further examination of lung tissue from patients with idiopathic pulmonary 
fibrosis, an age-related disease with strong ties to cellular senescence, revealed a stark dys-
regulation of LEF1. Collectively, our results suggest that LEF1 is a key factor of aging, and its 
differential regulation is associated with human and murine cellular senescence.
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1  |  INTRODUC TION

It is generally accepted that as the world's population is getting 
older due to the increase in life expectancy (Lauren Medina; 
Shannon Sabo; Jonathan Vespa; U.S. Census Bureau,  2020), the 
need of preventing and addressing age-associated pathologies will 
also increase. Therefore, it is necessary to heighten our effort in 
understanding the complex mechanisms underlying healthy aging 
as opposed to disease-ridden survival. On the molecular and cel-
lular level there are 12 identified hallmarks of aging (López-Otín 
et  al.,  2023), which form a framework for age-related research. 
Cellular senescence, identified as one of the hallmarks of aging, is 
contributing to aging either through the accumulation of damaged 
senescent cells or the secretion of pro-inflammatory cytokines 
and matrix metalloproteases, often referred to as senescence 
associated secretory phenotype (SASP) (Di Micco et  al.,  2021; 
Rodier & Campisi, 2011). Cumulative evidence supports the exis-
tence of rather ubiquitous age-associated molecular mechanisms 
which can occur in multiple tissues/organs of the same organism 
or across different species (Barth et al., 2019). Research on multi-
ple organs and organisms suggests that addressing the underlying 
mechanisms of aging could impact the course of several patholo-
gies that are currently associated with old age.

While common mechanisms may underlie the process of aging in 
different organs, the unique physiology of each one of them as well 
as environmental stressors will also determine how aging impacts 
their fitness. The lung, as an organ, presents a unique system due 
to its cellular complexity of at least 40 discrete cell types (Franks 
et al., 2008) with a large interface surface that is constantly chal-
lenged by diverse stressors. Advanced age is a significant risk factor 
for several lung diseases including COPD (MacNee, 2016) and IPF 
(Mora et  al.,  2017) which interestingly present some of the same 
irregularities in cellular mechanisms that are considered hallmarks 
of aging, including cellular senescence (Cho & Stout-Delgado, 2020; 
De Man et  al.,  2023; Han et  al.,  2023). Due to these similarities, 
the investigation of age-related molecular changes could lead to a 
better understanding of disease pathogenesis and eventually more 
efficient therapeutic interventions (Jia, Agudelo Garcia, et al., 2023; 
Karampitsakos et al., 2023).

In recent years, the abundance of molecular high-throughput 
data has supported the development of a plethora of functional 
and mechanistic computational analysis tools which are widely used 
to analyze gene expression data. Importantly, many of these tran-
scription factor (TF) and pathway analysis methods are successfully 
adapted for single cell RNA-seq (scRNA-seq) data (Holland, Szalai, 
& Saez-Rodriguez, 2020) and can provide meaningful insights into 
single cell biology (Jia, Rosas, et al., 2023).

In the current work, we analyzed scRNA-seq and bulk RNA-
seq data from human lung and blood samples of healthy donors as 
well as mouse lung samples, focusing on macrophages, T cells, and 
B cells which were abundant and well-identified in all datasets. 
Interestingly, we did not find any differentially expressed genes 
(young vs. aged) shared between human and murine immune cells. 

However, when we examined the TF activity (regulons), we were 
able to identify lymphoid enhancer-binding factor 1 (LEF1) regulon 
as a common mechanism of aging in human and murine lungs and 
in human blood. More importantly, we provide experimental evi-
dence to support a direct functional role of the long LEF1 isoform 
in partially reversing cellular senescence through a possible new 
regulatory mechanism.

2  |  MATERIAL S AND METHODS

2.1  |  Datasets

For this project we used four publicly available datasets. (1) 
GSE128033, which includes human scRNA-seq samples taken from 
whole lung tissue of three young (age ≤ 23, 14,704 cells), two heathy 
aged (age ≥ 55, 8573 cells), and six IPF donors (age ≥ 69, 26,538 
cells). This dataset was generated by our group (Cruz et al., 2021; 
Morse et al., 2019). (2) GSE122960, which includes human scRNA-
seq samples of whole lung tissues of two young (15,770 cells) and 
three aged (21,981 cells) healthy donors (Reyfman et al., 2019). (3) 
GSE124872, which includes mouse scRNA-seq samples from whole 
lung tissue of seven 3-month-old (7672 cells) and eight 24-month-
old mice (7141 cells) (Angelidis et  al., 2019). (4) GSE158699, which 
includes bulk RNA-seq data from blood samples from former and 
current smokers of the COPDGene study (Regan et al., 2011). This 
dataset was divided in two groups: young (n = 79, age ≤ 55) and aged 
(n = 123, age ≥ 75).

For human scRNA-seq data, we used all samples (never-smokers 
and former smokers; n = 10, 60,922 cells) to identify main cell types 
via unsupervised clustering (package: Seurat; Stuart et al., 2019). 
Subsequently, we took special care to select healthy samples that 
are free of smoking-related or other pathologies by carefully ex-
amining the provided records of smoking status and lung histo-
pathology. We did so to ensure that the identified signals can be 
attributed to aging and not any aging confounders. This process 
eliminated other publicly available datasets we considered and re-
sulted in the exclusion of two samples from the above datasets. 
Donor 4 was a former smoker with abnormal cell type distribution 
(Figure S2); and Donor 2 was excluded due to the histopathology 
that indicated previous smoking or pollution exposure (Figure S3). 
Complete list of samples used in cell type identification and pre-
sented in Table S1.

2.2 | Digital cytometry

We used CIBERSORTx (Newman et al., 2019) to infer cell-type pro-
portions and cell-specific gene expression from the blood-derived 
bulk RNA-seq data. Deconvoluted cells with an imputed number of 
genes <5% of the total number in the bulk RNA-seq dataset were 
excluded from our analysis. Only CD4+-naïve T cells had an imputed 
number of genes >5%.
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2.3  |  Differential gene expression data analysis

We used Seurat V3 (Stuart et al., 2019) on the human and mouse 
scRNA-seq data to determine differential gene expression between 
aged and young lungs. For the Mouse Lung dataset (ML), we first cre-
ated a Seurat object for the raw counts using CreateSeuratObject. 
Then, we calculated the percentage of the mitochondria genes (per-
cent.mt; function: PercentageFeatureSet). Cells with >5% mitochon-
drial genes (variable: percent.mt) and with number of features <250 
or >2000 (variable: nFeatures_RNA) were filtered out. The filtered 
data were then normalized and scaled (functions: NormalizeData 
and ScaleData). We also used FindVariableFeatures to find the top 
2000 high variable genes. For the Human Lung dataset (HL), we fil-
tered out cells with high percentage of mitochondria genes (percent.
mt >35%) and with number of features less than 200 (nFeatures_
RNA). Besides, we filtered out empty droplet and doublets identified 
by Scrublet and emptyDrops (Lun et al., 2019; Wolock et al., 2019). 
The filtered (missing) data were then imputed using SAVER (Huang 
et al., 2018). The imputed data were normalized and scaled using the 
sctransform function, and the number of UMIs per cell as well as the 
percentage of mitochondrial gene content were regressed out.

In order to create clusters for the different cell types, we per-
formed Principal Component Analysis (PCA) to reduce the di-
mensionality of the data (function: RunPCA). The FindNeighbors 
function was then used to construct a shared nearest neighbor 
(SNN) graph on the dimensionally reduced data from the first 10 
principal components. For Human Lung dataset, we further removed 
the effect from technical or biological confounders using Harmony, 
and SSN graph was constructed using corrected PCA embeddings 
(Korsunsky et al., 2019). The FindClusters function was utilized to 
identify the cell clusters. Each cluster was identified by differentially 
expressed genomic signatures or automated cell type annotation. 
For automated cell type annotation, we used the scCATCH package 
(Shao et al., 2020) where the findmarkergenes function is applied 
with p-value threshold of 0.05 and logFC threshold of 0.25 to find 
marker genes for each cluster and then the scCATCH function is 
utilized to identify the corresponding cell types. To perform DGE 
analysis between the aged and young cells, we subset the Seurat 
object by cell type and applied the FindMarkers function with 
ident.1 = “old” and ident.2 = “young” and the default parameters.

For the bulk RNA-seq data from the human blood, we used 
the limma R-package (Ritchie et al., 2015) to regress out the effect 
of gender and smoking status of the selected subjects from the 
COPDGene dataset. The differentially expressed genes were de-
fined as the genes with FDR adjusted p < 0.05 and abs (log2−fold 
change) >0.25 for all datasets.

2.4  |  Regulon activity

The set of TFs and their transcriptional targets (i.e., regulons) used 
for the analysis of the human and mouse lung datasets were de-
fined using DoRothEA (Garcia-Alonso et al., 2019; Holland, Szalai, 

et al., 2020; Holland, Tanevski, et al., 2020). Each regulon is con-
sidered as a gene set and converted into a GeneSet object using 
the GeneSet() function from the GSEABase package (Morgan 
et al., 2021). We used the Escape package (Borcherding et al., 2021) 
to calculate Single Sample Gene Set Enrichment (ssGSEA) scores for 
each regulon using the enrichIt() function. The ssGSEA scores were 
calculated for the young and old cells in each cell type separately 
and the differential ssGSEA score was calculated by subtracting the 
average score of the young cells from the average score of the old 
cells (i.e., diff_score = avg(ssGSEA_old) – ssGSEA_young)). We used 
the wilcox. test() function in R to calculate the Wilcoxon p-value 
and used the p.adjust() function to find the adjusted p-values using 
the false discovery rate method (FDR) for all regulons.

2.5  |  Cell–cell communication analysis

We used the CellChat R package (version 1.1.3; Jin et al., 2021) to infer 
and analyze intercellular communication via ligand-receptor integra-
tions. CellChat algorithm (Jin et al., 2021) exploits the built-in informa-
tion of a signaling molecule interaction database and infers a quantitative 
detection of intercellular communication networks. Conserved and 
context-specific signaling pathways were identified by comparing the 
overall information flow at different conditions (age group). The infor-
mation flow of a signaling pathway represents the overall communi-
cation probability among all pairs of cell types in the ligand-receptor 
network. Only signaling pathways with a difference of scaled informa-
tion flow >10 and P value <0.05 were selected for visualization.

2.6  |  Cell culture

Primary mouse embryonic fibroblasts (MEF) were isolated from 
wild-type C57BL/6J mice as previously described and cultured in 
DMEM (4.5 g/L glucose) supplemented with 10% FBS for different 
days at 37°C with 5% CO2.

2.7  |  pBabe-LEF1 construct and retroviral infection

pBabe-puro LEF1 (the long isoform) was a gift from Joan Massague 
(Addgene plasmid # 27023; http://​n2t.​net/​addge​ne:​27023​; 
RRID:Addgene_27,023). Retroviruses were produced by transiently 
transfecting HEK293T cells with a mixture of pBabe/pBabe-LEF1 
and pCL-ampho plasmids. Seventy-two hours after transfection, 
retroviruses were collected and used to infect day 1MEFs with a 
MOI of 3 for 48 h in the presence of 8 μg/mL polybrene.

2.8  |  Immunoblots

Whole cell lysates were isolated from MEFs with RIPA buffer 
(150 Mm NaCl, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% 

http://n2t.net/addgene:27023
https://scicrunch.org/resolver/RRID:Addgene_27,023
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SDS, and 50 mM Tri (pH 7.4) with protease and phosphatase inhibi-
tors). Protein concentrations were determined by Bradford assays 
(Bio-Rad), and aliquots were snap-frozen in liquid nitrogen and 
stored at −80°C until usage. Immunoblot analyses were performed 
as described previously (Zhu et  al.,  2015). Briefly, 25 μg proteins 
separated by 4%–20% gradient SDS-PAGE gels (Bio-Rad) were 
transferred to nitrocellulose membranes, blocked in TBST buffer 
supplemented with 5% bovine serum albumin (BSA) or 5% fat-free 
milk and incubated overnight with primary anti-LEF1 antibody (Cell 
Signaling, #2230), anti-p16 antibody (ThermoFisher, # PA5-20379) 
at 4°C overnight. Blots were incubated with an appropriate second-
ary antibody coupled to horseradish peroxidase at room tempera-
ture for 1 h and reacted with ECL reagents per the manufacturer's 
(Thermo Scientific) suggestion and detected by Biorad ChemiDoc 
MP Imaging System.

Human lung tissues were homogenized and lysed in RIPA 
buffer. Proteins were quantified by Pierce™ BCA Protein Assay 
(Thermo Scientific). Equal amounts of proteins (50 μg) from cell 
preparations were separated by sodium dodecyl sulfate-polyacryl-
amide gel electrophoresis (SDS-PAGE) and electrotransferred to 
a PVDF membrane (Bio-Rad) using a Trans-Blot Turbo™ trans-
fer system (Bio-Rad). After transfer, membranes were washed in 
TBS-T (10 mM Tris, pH 8.0, 150 mM NaCl, 0.05% Tween 20), and 
blocked with TBS-T supplemented with 5% non-fat dry milk (Dry 
Powder Milk, RPI) for 1 h at RT. Then, membranes were incubated 
overnight at 4°C with different primary antibodies in TBS-T against 
LEF-1 (1:500, Antibody# 2230, Cell Signaling Technology), and 
β-actin (1:30,000, A3854, Sigma-Aldrich). Next day, membranes 
were washed, and incubated with horseradish peroxide-conju-
gated secondary antibody (1:2000, Antibody#7074, Cell Signaling 
Technology) for 1 h at RT. Following additional wash steps with 
TBS-T, membranes were treated with Clarity™ western ECL sub-
strate (Bio-Rad). Quantification was performed by measurement 
of signal intensity with Image J software (National Institute of 
Health, Bethesda, MD, USA). Statistical analysis was performed 
using the pairwise non-parametric Mann–Whitney test from the 
GraphPad Prism software.

2.9  |  qRT-PCR

Total mRNA was isolated from MEFs with PureLink RNA mini kit (Life 
Technologies) with additional on-column DNase digestion step to 
remove genomic DNA per the manufacturer's instructions. Reverse 
transcription was carried out using 5 μg of RNA using Superscript 
III (Life Technologies) per the manufacturer's instructions. For gene 
expression analyses, cDNA samples were diluted 1/30-fold (for all 
other genes except for 18sRNA) and 1/900-fold (for 18sRNA). qPCR 
was performed using the SYBR green system with sequence-specific 
primers (Table S2). All data were analyzed with 18S or β-actin as the 
endogenous control and all amplicons span introns. Data were ana-
lyzed and presented with GraphPad Prism software. Plots show in-
dividual data points and bars at the mean ± SEM. One-tailed t-tests 

were used to compare means between groups, with significance set 
at p < 0.05.

2.10  |  Senescence-associated β -galactosidase 
(SA-β -gal) assay

Cells were washed twice with phosphate-buffered saline (PBS; 
pH 7.2), fixed with 0.5% glutaraldehyde in PBS and washed in PBS 
supplemented with 1 mM MgCl2. Cells were stained at 37°C in X-Gal 
solution (1 mg/mL X-Gal, 0.12 mM K3Fe[CN]6, 0.12 mM K4Fe[CN]6, 
1 mM MgCl2 in PBS at pH 6.0). The staining was performed for 24 h 
at 37°C.

3  |  RESULTS

3.1  |  Age-related gene expression changes are 
cell- and species-specific

To uncover important drivers of aging, we examined publicly 
available human and murine scRNA-seq lung datasets. The data-
sets included young and aged healthy donors. As a first step, 
we clustered the different cell types (Figure  1, UMAPs and 
Figure  S1) and we identified seven cell types that were found 
in both datasets (i.e., Macrophages, T Cells, B Cells, AT1, AT2, 
Club Cells, and Endothelial Cells). The mouse lung dataset in-
cluded a separate cluster of Dendritic Cells whereas the human 
lung dataset included separate clusters for Monocyte, Fibroblast, 
Ciliated, Mast, Lymphatic Endothelial, and Smooth Muscle Cells. 
Subsequently, we performed differential gene expression (DGE) 
analysis between samples from old and young donors, focusing 
on immune cell types that were well represented in both data-
sets. Further analysis showed that each cell type displayed sig-
nificant age-related changes in the expression of multiple genes 
but, only 24 genes were found in all immune cell types (Figure 1, 
top volcano plots): NDUFA13, RPS4Y1, HNRNPC, ANKRD28, 
LRRFIP1, FKBP5, TSC22D3, KLF6, FOS, NBEAL1, CD44ATP5D, 
EIF5A, CST3, S100A11, GRN, FIS1, S100A9, SNHG8, NDUFA3, 
ATP5I, NDUFB1, POLR2L and IFITM3. Similarly (Figure  1, bot-
tom volcano plots), we found eight genes significantly changing 
with age across macrophages, T cells, and B cells in the murine 
dataset: Scgb1a1, Igkc, Malat1, mt-Rnr2, Gm26924, Ighm, Igha, Igj. 
Interestingly, none of the differentially expressed genes was 
common for both species.

3.2  |  Cell–cell communication analysis revealed 
dysregulation of age-related cellular pathways

We used CellChat to generate an information flow for each signaling 
pathway that was identified in lung cells from both young and aged 
donors, and our analysis revealed age-related changes in several 
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of these pathways. In aged cells, we observed a dramatic increase 
in ANXA1 (annexin A1), LGALS9 (galectin 9), and IL1 (interleu-
kin 1) network activity while TENASCIN and SEMA3 (semaphorin 
3) networks suffered a significant decrease. To a lesser extent, 

uteroglobin-related protein 1 (UGRP1), C-type lectin domain (CLEC), 
macrophage migration inhibitory factor (MIF), and angiopoietin like 
(ANGPTL) network activities were also increased in aged cells while 
ITGB2 decreased (Figure 2a).

F I G U R E  1 Identification of differentially expressed genes in the human and mouse lung datasets. UMAP plots show the main clusters in 
the human and mouse lung datasets. Volcano plots show differentially expressed genes in human and murine lung Macrophages, T Cells, and 
B cells. Significance threshold is set at adj.p < 0.05. The names of the top 10 highly upregulated/downregulated genes are shown.

F I G U R E  2 Age-related differences in the activity of cell communication networks and regulons. (a) Information Flow of CellChat inferred 
signaling ligands in young and aged human lungs. (b) Calculation of the differential regulon activity (ssGSEA score difference) in human lung 
Macrophages, T Cells, B cells (TOP), and murine Macrophages, T Cells, B Cells (BOTTOM). (c) Identification of common regulons between 
human (lung and blood) and mouse (lung) cells. Heatmap shows the difference between the average regulon ssGSEA scores in old versus 
young samples, with FDR <0.1 in all cell types. HB, human blood; HL, human lung; ML, mouse lung.
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3.3  |  LEF1 regulon is consistently found less active 
in aged subjects

Focusing on the immune cells that were used in our DEG analysis, 
we compared regulon activity between young and aged donors. 
To this end, we calculated ssGSEA scores for all regulons included 
in the DoRothEA gene regulatory network and found that 141 
regulons were significantly changed with age in humans (Wilcoxon 
p < 0.05) (Figure  2b, top) while 132 regulons were significantly 
changed in mice (Figure 2b, bottom). Based on differential regu-
lon activity, we identified 70 regulons showing a significant age-
related change in both human and murine lung cells. To narrow 
down the search for factors that could have a more universal role 
in aging, we analyzed data from the COPDGene study. We calcu-
lated the differential ssGSEA scores of the blood samples from 
old and young healthy donors, compared them to our previous 
results, and found nine common regulons (CEBPD, E2F5, ESR1, 
ETV4, IRF2, LEF1, MBD2, PGR, and TFAP2A) that were signifi-
cantly changed in our human lung, mouse lung, and human blood 
samples. Of these nine, only LEF1 regulon activity was consist-
ently decreased with age in all datasets (Figure 2c).

3.4  |  LEF1 expression is dysregulated during 
cellular senescence

Since cellular senescence is a major hallmark of aging (López-Otín 
et al., 2023), we next examined whether LEF1 expression also changes 
during cellular senescence. Primary mouse embryonic fibroblasts un-
dergo spontaneous cellular senescence in culture, characterized by 
flattened cell morphology, increased expression of senescence marker 
CDKN2A/p16INK4a/p16, and increased senescence-associated 
β-galactosidase (SA-β-Gal) activity (Figure  3a,d; Guan et  al.,  2020; 
Manning & Kumar,  2010). Interestingly, we detected two LEF1 iso-
forms that were regulated in a completely anti-parallel fashion. While 
the longer LEF1 isoform (WT-LEF1) (~60 kD) was decreasing to unde-
tectable levels during cellular senescence, the shorter isoform (~40 kD) 
gradually increased (Figure 3a). The size of the shorter protein is con-
sistent with the size of a dominant-negative LEF1 isoform, lacking the 
N-terminus β-catenin-binding domain (Hovanes et al., 2001).

To investigate whether the decrease in the longer LEF1 iso-
form contributes to cellular senescence, we ectopically expressed 
the longer LEF1 isoform in MEFs at Day 1 and quantify its impact 
on cellular senescence progression (Figure 3b). The ectopic longer 
LEF1 isoform expression resulted in the significant downregulation 
of p16 expression but did not affect some other of the commonly 
cellular senescence markers, although IL1α expression was margin-
ally reduced (Figure 3c). Nevertheless, staining with β-galactosidase 
showed a significant decrease of more than threefold, in the num-
ber of senescent cells upon the ectopic expression of longer isoform 
LEF1 (Figure  3d). Together, these results demonstrate a possible 
role of the longer isoform of LEF1 in partially attenuating cellular 
senescence.

3.5  |  LEF1 regulon activity in IPF lungs

Due to the important role aging and cellular senescence play in 
the pathophysiology of idiopathic pulmonary fibrosis (IPF) (Kellogg 
et al., 2021), we checked LEF1 expression in lung tissue from Normal/
Healthy and IPF lung donors (Figure  4a,b). Since IPF patients tend 
to be older and their phenotype is shaped by both age and disease, 
we included in our analysis aged-matched healthy lung donors. 
Immunoblot assays of lung tissue showed an overall increase in LEF1 
protein in older healthy and IPF donors. Quantification of the two 
isoforms in all donor groups revealed a higher increase in the short 
isoform (FC = 4.9) than the long isoform (FC = 3.7) in healthy old lungs 
compared to healthy young lungs. Although less significant, the same 
trend was observed in IPF lungs where the short and long isoforms 
showed a 3.4- versus a 2.1-fold change increase respectively. When 
the relative abundance of both isoforms was evaluated as the ratio 
to the total LEF1 signal, we observed a significant increase in the 
relative amount of the short LEF1 isoform (Figure 4b) coupled with a 
significant decrease in the relative amount of the long LEF1 isoform.

When we examined the activity of LEF1 regulon in lung im-
mune cells from upper lung lobes (IPF_ULL), which typically show 
very little histological change, and lower lung lobes (IPF_LLL), which 
are greatly affected by the disease (Jia, Rosas, et al., 2023; Morse 
et al., 2019), we found that overall, the activity was decreased in the 
upper lobe of IPF lungs, supporting the presence of aging/senescent 
cells. Interestingly, immune cells from the lower and highly fibrotic 
IPF lung lobes show increased LEF1 regulon activity, suggesting a 
more complex LEF1 regulatory pathway in advanced fibrosis that is 
not limited to cellular senescence (Figure 4c).

4  |  DISCUSSION

In this work, we investigate the important topic of mechanisms of 
aging and aging-related pathologies. The study of such multipara-
metric phenomena could benefit from computational approaches 
that take advantage of the increasing number of available datasets, 
which include samples from a wide spread of age groups. Although 
many of these studies do not directly question the effects of aging, 
their control samples constitute a really underexplored valuable re-
source. In our analyses, we utilized and compared data from three 
different sources: scRNAseq data from an IPF-related study, blood 
bulk RNAseq data from healthy smoker population of COPDGene®, 
and scRNAseq data from an aging-related mouse study.

Our aim was to identify key pathways that are affected through-
out aging in all immune cells under investigation. In accordance 
with a previous study (Barth et al., 2019), the conservation of dif-
ferentially expressed genes across tissues and species was limited. 
Nevertheless, when we focused on alterations in intercellular com-
munication, ANXA1, LGALS9, and IL1 signaling pathways showed 
significant activation with age while TENASCIN and SEMA3 showed 
significant decline. ANXA1 has a known anti-inflammatory role (Jia 
et  al.,  2013; Rubinstein et  al.,  2019) and the observed activation 
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could indicate a response to an age-related inflammatory state (in-
flammaging; Franceschi et al., 2018). The IL1 cytokine signaling has 
been implicated in the inflammation of several tissues including the 
lung (Borthwick, 2016) as well as in promoting cellular senescence 
(Maier et al., 1990). GALECTIN9 has emerged as a multipotent im-
munomodulatory molecule (John & Mishra, 2016) and a biomarker of 
disease severity (Moar & Tandon, 2021). The decreased TENASCIN 
signaling, another diverse immune response mechanism (Midwood & 
Orend, 2009), could associate with the age-related decline of the im-
mune system (Weyand & Goronzy, 2016). SEMA3 signaling has been 
implicated in immune cell migration, cooperation and deactivation 
(Kiseleva & Rutto, 2022) and its decreased activity in older donors 
could be associated with compromised immune response as well as 
prolonged inflammation.

Further analysis based on the activity of regulatory modules (reg-
ulons), in all cell types and species, resulted in ubiquitous age-related 
differences in 13 regulons. LEF1 regulon was the only regulon with 
a consistent pattern of age-dependent activity in both human and 
murine immune cells. LEF1 is a TF expressed in B and T cells (Elyahu 
et al., 2019; Milatovich et al., 1991). It is implicated in various cancers 
where its overexpression is associated with poor prognosis (Erdfelder 
et  al.,  2010; Eskandari et  al.,  2018). LEF1 interacts with β-catenin 
(Behrens et al., 1996) and SMAD2-3 (Labbé et al., 2000), key mole-
cules in the Wnt and TGF-β pathways respectively. Interestingly, Wnt 
and TGF-β signaling pathways can independently or synergistically 
regulate LEF1 targets (Labbé et al., 2000). Both pathways are dysreg-
ulated in cellular senescence and aging (Hu et al., 2020; Tominaga & 
Suzuki, 2019) and LEF1 is found to be downregulated in certain aged 

F I G U R E  3 LEF1 is implicated in cellular 
senescence. (a) Representative images of 
the morphology of MEFs at Day 3 and Day 
13 after culturing. Immunoblot detection 
of p16 and LEF1 expression at different 
days. Ponceau S staining is provided 
as a loading control. (b) Immunoblot 
detection of LEF1 in cells expressing 
pBabe-empty vector or pBabe-LEF1 (long 
isoform) construct. (c) qPCR analysis of 
the expression of Lef1 and four common 
senescence markers at day 9 (8 days post 
retroviral infection) in MEFs. Results are 
shown as relative expression changes 
compared to cells transfected with the 
empty vector. (d) Representative images 
(left) and quantification (right) of SA-β-Gal 
staining in control or LEF1-overexpressing 
MEFs at day 9 (8 days post retroviral 
infection).
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tissues (Barth et al., 2019). Moreover, haplosufficiency in the LEF1 
locus has been associated with low bone mass (Noh et al., 2009), a 
common feature of aging. While the function of long LEF1 isoform 
and the significance of LEF1 expression levels have been studied, 
the fluctuation of the smaller isoform, lacking the β-catenin binding 
domain, has less clear consequences. Some studies suggest that the 
small isoform acts as a dominant negative variant inhibiting β-catenin 

binding and consequently promoter activation (Hovanes et al., 2001), 
while other studies support a more complex role where the short 
isoform has distinct targets and biological functions (Edmaier 
et  al.,  2013). Notably, we observed that the overall LEF1 regulon 
activity invariably decreased with age but the expression profiles 
of several LEF1 target genes did not change consistently among the 
various cell types and across organisms, indicating that downstream 

F I G U R E  4 LEF1 expression in human lung tissue lysates. (a) LEF1 immunoblot of four normal healthy young, four healthy old, and four 
IPF human lung tissue lysates. (b) Quantification of LEF1 isoforms using β-actin used as a loading control. Data represent the mean value ± 
SEM (n = 4 samples evaluated per group). *p < 0.03, pairwise non-parametric Mann–Whitney test. (c) Violin plot graphs showing LEF1 ssGSEA 
scores in human lung immune cells. IPF, idiopathic pulmonary fibrosis; IPF-LLL, lower lung lobe; IPF-ULL, upper lung lobe.
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signals may be diverse and cell-type specific. This could explain why 
many studies were unable to detect significant conservation in DGE 
profiles of the immune cells across species; and it is consistent with 
previous reports that aging could have a subtle transcriptional signa-
ture depending on the tissue type (Barth et al., 2019), further hinder-
ing the detection of ubiquitous aging-driving factors.

Immunodetection of LEF1 in mouse embryonic fibroblasts re-
vealed a senescence-associated dysregulation of two distinct iso-
forms. The longer isoform showed a steady decrease with increased 
replicative senescence (indicated by increased p16 expression, a 
known senescence marker; Guan et al., 2020), while the short iso-
form was gradually upregulated. Ectopic expression of the longer 
isoform prevented replicative senescence, supporting the role of the 
full-length LEF1 in cell proliferation (Hao et al., 2019). Previous work 
had shown that LEF1 can inhibit p16 expression through promoter 
binding (Delmas et al., 2007). In view of the key role of cellular se-
nescence in IPF (De Man et al., 2023; Schafer et al., 2017), we mea-
sured the protein levels of both LEF1 isoforms in tissue lung samples 
from healthy and IPF donors. It is important to note that lung tissue 
in general and IPF fibrotic tissue in particular present a challenging 
material for analysis due to the high cell type heterogeneity and the 
spatial diversity of the disease progression. Whereas lung immune 
cells from older subjects show a less active LEF1 regulon, suggest-
ing a possible decrease in the long LEF1 isoform expression, pro-
tein levels were increased in both healthy old and IPF lung tissue. 
Interestingly, in old and IPF lungs, the relative amount of the long 
isoform decreased while that of the short isoform increased, which 
is reminiscent of the LEF1 dysregulation pattern in our senescent 
MEFs. Unsurprisingly, the LEF1 regulon activity was decreased in the 
upper lung lobes of IPF patients in agreement with our findings in old 
healthy lungs. This suggests that immune cells from older lungs as 
well as normal-looking areas from IPF lungs could undergo a LEF1/
senescence-related decline. LEF1 regulon activity in the immune 
cells of the highly fibrotic lower lobes appears elevated, suggesting 
a diverse and rather more proliferative state in these cells. Overall, 
our results show that LEF1 levels in lung tissue are mainly defined 
by donor age, but specifically in immune cells LEF1 may orchestrate 
two diverse responses depending on the disease state.

Although we limited the computational analysis to macrophages, 
T cells and B cells, we were able to identify LEF1 as a common 
age-dependent regulator. Our findings indicate that LEF1 protects 
from cellular senescence, but due to its pleiotropic nature, we can-
not exclude that could promote aging through different pathways 
that counteract its anti-senescence role. Taking into consider-
ation the key role of immune cells in aging and disease (Franceschi 
et al., 2018; Fulop et al., 2018; Jia, Agudelo Garcia, et al., 2023), our 
results offer a significant contribution to the field. Without a doubt, 
more research is required to determine whether LEF1 dysregulation 
is intrinsic to the aging process, leading to increased vulnerability 
to cellular malfunction and disease. Clearly though, LEF1 dysregu-
lation, and by extension, the dysregulation of its downstream cellu-
lar factors and pathways, appears to be cell-specific, which dictates 
more targeted and precise approaches for future aging studies.
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