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Abstract
The	study	of	aging	and	its	mechanisms,	such	as	cellular	senescence,	has	provided	valuable	
insights into age-related pathologies, thus contributing to their prevention and treatment. 
The	current	abundance	of	high-throughput	data	combined	with	the	surge	of	robust	analysis	
algorithms has facilitated novel ways of identifying underlying pathways that may drive 
these pathologies. For the purpose of identifying key regulators of lung aging, we performed 
comparative analyses of transcriptional profiles of aged versus young human subjects and 
mice, focusing on the common age-related changes in the transcriptional regulation in lung 
macrophages,	T	cells,	and	B	 immune	cells.	 Importantly,	we	validated	our	findings	 in	cell	
culture	assays	and	human	lung	samples.	Our	analysis	identified	lymphoid	enhancer	binding	
factor 1 (LEF1) as an important age-associated regulator of gene expression in all three cell 
types across different tissues and species. Follow-up experiments showed that the differ-
ential expression of long and short LEF1 isoforms is a key regulatory mechanism of cellular 
senescence. Further examination of lung tissue from patients with idiopathic pulmonary 
fibrosis, an age-related disease with strong ties to cellular senescence, revealed a stark dys-
regulation of LEF1. Collectively, our results suggest that LEF1 is a key factor of aging, and its 
differential regulation is associated with human and murine cellular senescence.
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1  |  INTRODUC TION

It	 is	 generally	 accepted	 that	 as	 the	world's	 population	 is	 getting	
older due to the increase in life expectancy (Lauren Medina; 
Shannon Sabo; Jonathan Vespa; U.S. Census Bureau, 2020), the 
need of preventing and addressing age-associated pathologies will 
also	increase.	Therefore,	 it	 is	necessary	to	heighten	our	effort	 in	
understanding the complex mechanisms underlying healthy aging 
as	opposed	to	disease-ridden	survival.	On	the	molecular	and	cel-
lular	 level	 there	are	12	 identified	hallmarks	of	aging	 (López-Otín	
et al., 2023), which form a framework for age-related research. 
Cellular senescence, identified as one of the hallmarks of aging, is 
contributing to aging either through the accumulation of damaged 
senescent cells or the secretion of pro-inflammatory cytokines 
and matrix metalloproteases, often referred to as senescence 
associated secretory phenotype (SASP) (Di Micco et al., 2021; 
Rodier & Campisi, 2011). Cumulative evidence supports the exis-
tence of rather ubiquitous age-associated molecular mechanisms 
which can occur in multiple tissues/organs of the same organism 
or across different species (Barth et al., 2019). Research on multi-
ple organs and organisms suggests that addressing the underlying 
mechanisms of aging could impact the course of several patholo-
gies that are currently associated with old age.

While common mechanisms may underlie the process of aging in 
different organs, the unique physiology of each one of them as well 
as environmental stressors will also determine how aging impacts 
their	 fitness.	The	 lung,	as	an	organ,	presents	a	unique	system	due	
to its cellular complexity of at least 40 discrete cell types (Franks 
et al., 2008) with a large interface surface that is constantly chal-
lenged by diverse stressors. Advanced age is a significant risk factor 
for	several	 lung	diseases	 including	COPD	 (MacNee,	2016)	and	 IPF	
(Mora et al., 2017) which interestingly present some of the same 
irregularities in cellular mechanisms that are considered hallmarks 
of aging, including cellular senescence (Cho & Stout-Delgado, 2020; 
De Man et al., 2023; Han et al., 2023). Due to these similarities, 
the investigation of age-related molecular changes could lead to a 
better understanding of disease pathogenesis and eventually more 
efficient therapeutic interventions (Jia, Agudelo Garcia, et al., 2023; 
Karampitsakos et al., 2023).

In	 recent	 years,	 the	 abundance	 of	 molecular	 high-throughput	
data has supported the development of a plethora of functional 
and mechanistic computational analysis tools which are widely used 
to	analyze	gene	expression	data.	 Importantly,	many	of	 these	 tran-
scription	factor	(TF)	and	pathway	analysis	methods	are	successfully	
adapted for single cell RNA-seq (scRNA-seq) data (Holland, Szalai, 
& Saez-Rodriguez, 2020) and can provide meaningful insights into 
single cell biology (Jia, Rosas, et al., 2023).

In	 the	 current	work,	we	 analyzed	 scRNA-seq	 and	 bulk	 RNA-
seq data from human lung and blood samples of healthy donors as 
well	as	mouse	lung	samples,	focusing	on	macrophages,	T	cells,	and	
B cells which were abundant and well-identified in all datasets. 
Interestingly,	we	did	 not	 find	 any	 differentially	 expressed	 genes	
(young vs. aged) shared between human and murine immune cells. 

However,	when	we	examined	the	TF	activity	(regulons),	we	were	
able to identify lymphoid enhancer-binding factor 1 (LEF1) regulon 
as a common mechanism of aging in human and murine lungs and 
in human blood. More importantly, we provide experimental evi-
dence to support a direct functional role of the long LEF1 isoform 
in partially reversing cellular senescence through a possible new 
regulatory mechanism.

2  |  MATERIAL S AND METHODS

2.1  |  Datasets

For this project we used four publicly available datasets. (1) 
GSE128033, which includes human scRNA-seq samples taken from 
whole	lung	tissue	of	three	young	(age ≤ 23,	14,704	cells),	two	heathy	
aged	 (age ≥ 55,	 8573	 cells),	 and	 six	 IPF	 donors	 (age ≥ 69,	 26,538	
cells).	This	dataset	was	generated	by	our	group	 (Cruz	et	al.,	2021; 
Morse et al., 2019). (2) GSE122960, which includes human scRNA-
seq	samples	of	whole	 lung	tissues	of	two	young	(15,770	cells)	and	
three aged (21,981 cells) healthy donors (Reyfman et al., 2019). (3) 
GSE124872, which includes mouse scRNA-seq samples from whole 
lung tissue of seven 3-month-old (7672 cells) and eight 24-month-
old mice (7141 cells) (Angelidis et al., 2019). (4) GSE158699, which 
includes bulk RNA-seq data from blood samples from former and 
current	smokers	of	the	COPDGene	study	(Regan	et	al.,	2011).	This	
dataset was divided in two groups: young (n = 79,	age ≤ 55)	and	aged	
(n = 123,	age ≥ 75).

For human scRNA-seq data, we used all samples (never-smokers 
and former smokers; n = 10,	60,922	cells)	to	identify	main	cell	types	
via unsupervised clustering (package: Seurat; Stuart et al., 2019). 
Subsequently, we took special care to select healthy samples that 
are free of smoking-related or other pathologies by carefully ex-
amining the provided records of smoking status and lung histo-
pathology. We did so to ensure that the identified signals can be 
attributed	 to	 aging	 and	 not	 any	 aging	 confounders.	 This	 process	
eliminated other publicly available datasets we considered and re-
sulted in the exclusion of two samples from the above datasets. 
Donor 4 was a former smoker with abnormal cell type distribution 
(Figure S2); and Donor 2 was excluded due to the histopathology 
that indicated previous smoking or pollution exposure (Figure S3). 
Complete list of samples used in cell type identification and pre-
sented in Table S1.

2.2 | Digital cytometry

We	used	CIBERSORTx	(Newman	et	al.,	2019) to infer cell-type pro-
portions and cell-specific gene expression from the blood-derived 
bulk RNA-seq data. Deconvoluted cells with an imputed number of 
genes <5%	of	the	total	number	 in	the	bulk	RNA-seq	dataset	were	
excluded	from	our	analysis.	Only	CD4+-naïve	T	cells	had	an	imputed	
number of genes >5%.
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2.3  |  Differential gene expression data analysis

We used Seurat V3 (Stuart et al., 2019) on the human and mouse 
scRNA-seq data to determine differential gene expression between 
aged and young lungs. For the Mouse Lung dataset (ML), we first cre-
ated	a	Seurat	object	for	the	raw	counts	using	CreateSeuratObject.	
Then,	we	calculated	the	percentage	of	the	mitochondria	genes	(per-
cent.mt; function: PercentageFeatureSet). Cells with >5%	mitochon-
drial genes (variable: percent.mt) and with number of features <250	
or >2000	(variable:	nFeatures_RNA)	were	filtered	out.	The	filtered	
data were then normalized and scaled (functions: NormalizeData 
and ScaleData). We also used FindVariableFeatures to find the top 
2000 high variable genes. For the Human Lung dataset (HL), we fil-
tered out cells with high percentage of mitochondria genes (percent.
mt >35%)	and	with	number	of	 features	 less	 than	200	 (nFeatures_
RNA). Besides, we filtered out empty droplet and doublets identified 
by Scrublet and emptyDrops (Lun et al., 2019; Wolock et al., 2019). 
The	filtered	(missing)	data	were	then	imputed	using	SAVER	(Huang	
et al., 2018).	The	imputed	data	were	normalized	and	scaled	using	the	
sctransform	function,	and	the	number	of	UMIs	per	cell	as	well	as	the	
percentage of mitochondrial gene content were regressed out.

In	order	to	create	clusters	for	the	different	cell	 types,	we	per-
formed Principal Component Analysis (PCA) to reduce the di-
mensionality	 of	 the	 data	 (function:	 RunPCA).	 The	 FindNeighbors	
function was then used to construct a shared nearest neighbor 
(SNN) graph on the dimensionally reduced data from the first 10 
principal components. For Human Lung dataset, we further removed 
the effect from technical or biological confounders using Harmony, 
and SSN graph was constructed using corrected PCA embeddings 
(Korsunsky et al., 2019).	The	FindClusters	function	was	utilized	to	
identify the cell clusters. Each cluster was identified by differentially 
expressed genomic signatures or automated cell type annotation. 
For	automated	cell	type	annotation,	we	used	the	scCATCH	package	
(Shao et al., 2020) where the findmarkergenes function is applied 
with p-value	threshold	of	0.05	and	logFC	threshold	of	0.25	to	find	
marker	 genes	 for	 each	 cluster	 and	 then	 the	 scCATCH	 function	 is	
utilized	 to	 identify	 the	corresponding	cell	 types.	To	perform	DGE	
analysis between the aged and young cells, we subset the Seurat 
object by cell type and applied the FindMarkers function with 
ident.1 = “old”	and	ident.2 = “young”	and	the	default	parameters.

For the bulk RNA-seq data from the human blood, we used 
the limma R-package (Ritchie et al., 2015) to regress out the effect 
of gender and smoking status of the selected subjects from the 
COPDGene	 dataset.	 The	 differentially	 expressed	 genes	 were	 de-
fined as the genes with FDR adjusted p < 0.05	 and	 abs	 (log2−fold 
change) >0.25	for	all	datasets.

2.4  |  Regulon activity

The	set	of	TFs	and	their	transcriptional	targets	(i.e.,	regulons)	used	
for the analysis of the human and mouse lung datasets were de-
fined using DoRothEA (Garcia-Alonso et al., 2019; Holland, Szalai, 

et al., 2020;	Holland,	Tanevski,	et	al.,	2020). Each regulon is con-
sidered as a gene set and converted into a GeneSet object using 
the GeneSet() function from the GSEABase package (Morgan 
et al., 2021). We used the Escape package (Borcherding et al., 2021) 
to calculate Single Sample Gene Set Enrichment (ssGSEA) scores for 
each	regulon	using	the	enrichIt()	function.	The	ssGSEA	scores	were	
calculated for the young and old cells in each cell type separately 
and the differential ssGSEA score was calculated by subtracting the 
average score of the young cells from the average score of the old 
cells (i.e., diff_score = avg(ssGSEA_old) – ssGSEA_young)). We used 
the wilcox. test() function in R to calculate the Wilcoxon p-value 
and used the p.adjust() function to find the adjusted p-values using 
the false discovery rate method (FDR) for all regulons.

2.5  |  Cell–cell communication analysis

We used the CellChat R package (version 1.1.3; Jin et al., 2021) to infer 
and analyze intercellular communication via ligand-receptor integra-
tions. CellChat algorithm (Jin et al., 2021) exploits the built-in informa-
tion of a signaling molecule interaction database and infers a quantitative 
detection of intercellular communication networks. Conserved and 
context-specific signaling pathways were identified by comparing the 
overall	information	flow	at	different	conditions	(age	group).	The	infor-
mation flow of a signaling pathway represents the overall communi-
cation probability among all pairs of cell types in the ligand-receptor 
network.	Only	signaling	pathways	with	a	difference	of	scaled	informa-
tion flow >10 and P value <0.05	were	selected	for	visualization.

2.6  |  Cell culture

Primary mouse embryonic fibroblasts (MEF) were isolated from 
wild-type	 C57BL/6J	mice	 as	 previously	 described	 and	 cultured	 in	
DMEM	(4.5 g/L	glucose)	supplemented	with	10%	FBS	for	different	
days	at	37°C	with	5%	CO2.

2.7  |  pBabe-LEF1 construct and retroviral infection

pBabe-puro LEF1 (the long isoform) was a gift from Joan Massague 
(Addgene plasmid # 27023; http:// n2t. net/ addge ne: 27023 ; 
RRID:Addgene_27,023). Retroviruses were produced by transiently 
transfecting	HEK293T	cells	with	a	mixture	of	pBabe/pBabe-LEF1	
and pCL-ampho plasmids. Seventy-two hours after transfection, 
retroviruses were collected and used to infect day 1MEFs with a 
MOI	of	3	for	48 h	in	the	presence	of	8 μg/mL polybrene.

2.8  |  Immunoblots

Whole	 cell	 lysates	 were	 isolated	 from	 MEFs	 with	 RIPA	 buffer	
(150 Mm	NaCl,	 1%	Triton	X-100,	0.5%	 sodium	deoxycholate,	 0.1%	

http://n2t.net/addgene:27023
https://scicrunch.org/resolver/RRID:Addgene_27,023
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SDS,	and	50 mM	Tri	(pH 7.4)	with	protease	and	phosphatase	inhibi-
tors). Protein concentrations were determined by Bradford assays 
(Bio-Rad), and aliquots were snap-frozen in liquid nitrogen and 
stored	at	−80°C	until	usage.	Immunoblot	analyses	were	performed	
as described previously (Zhu et al., 2015).	 Briefly,	 25 μg proteins 
separated	 by	 4%–20%	 gradient	 SDS-PAGE	 gels	 (Bio-Rad)	 were	
transferred	 to	 nitrocellulose	 membranes,	 blocked	 in	 TBST	 buffer	
supplemented	with	5%	bovine	serum	albumin	(BSA)	or	5%	fat-free	
milk and incubated overnight with primary anti-LEF1 antibody (Cell 
Signaling,	#2230),	anti-p16	antibody	 (ThermoFisher,	#	PA5-20379)	
at 4°C overnight. Blots were incubated with an appropriate second-
ary antibody coupled to horseradish peroxidase at room tempera-
ture	for	1 h	and	reacted	with	ECL	reagents	per	the	manufacturer's	
(Thermo	 Scientific)	 suggestion	 and	 detected	 by	Biorad	ChemiDoc	
MP	Imaging	System.

Human	 lung	 tissues	 were	 homogenized	 and	 lysed	 in	 RIPA	
buffer. Proteins were quantified by Pierce™ BCA Protein Assay 
(Thermo	 Scientific).	 Equal	 amounts	 of	 proteins	 (50 μg) from cell 
preparations were separated by sodium dodecyl sulfate-polyacryl-
amide gel electrophoresis (SDS-PAGE) and electrotransferred to 
a	 PVDF	 membrane	 (Bio-Rad)	 using	 a	 Trans-Blot	 Turbo™	 trans-
fer system (Bio-Rad). After transfer, membranes were washed in 
TBS-T	 (10 mM	Tris,	pH 8.0,	150 mM	NaCl,	0.05%	Tween	20),	 and	
blocked	with	TBS-T	supplemented	with	5%	non-fat	dry	milk	(Dry	
Powder	Milk,	RPI)	for	1 h	at	RT.	Then,	membranes	were	incubated	
overnight	at	4°C	with	different	primary	antibodies	in	TBS-T	against	
LEF-1	 (1:500,	 Antibody#	 2230,	 Cell	 Signaling	 Technology),	 and	
β-actin	 (1:30,000,	 A3854,	 Sigma-Aldrich).	 Next	 day,	 membranes	
were washed, and incubated with horseradish peroxide-conju-
gated secondary antibody (1:2000, Antibody#7074, Cell Signaling 
Technology)	 for	 1 h	 at	 RT.	 Following	 additional	wash	 steps	with	
TBS-T,	membranes	were	treated	with	Clarity™	western	ECL	sub-
strate (Bio-Rad). Quantification was performed by measurement 
of	 signal	 intensity	 with	 Image	 J	 software	 (National	 Institute	 of	
Health, Bethesda, MD, USA). Statistical analysis was performed 
using	 the	pairwise	non-parametric	Mann–Whitney	 test	 from	 the	
GraphPad Prism software.

2.9  |  qRT-PCR

Total	mRNA	was	isolated	from	MEFs	with	PureLink	RNA	mini	kit	(Life	
Technologies)	 with	 additional	 on-column	DNase	 digestion	 step	 to	
remove	genomic	DNA	per	the	manufacturer's	instructions.	Reverse	
transcription	was	 carried	out	 using	5 μg of RNA using Superscript 
III	(Life	Technologies)	per	the	manufacturer's	instructions.	For	gene	
expression analyses, cDNA samples were diluted 1/30-fold (for all 
other genes except for 18sRNA) and 1/900-fold (for 18sRNA). qPCR 
was performed using the SYBR green system with sequence-specific 
primers (Table S2). All data were analyzed with 18S or β-actin as the 
endogenous control and all amplicons span introns. Data were ana-
lyzed and presented with GraphPad Prism software. Plots show in-
dividual	data	points	and	bars	at	the	mean ± SEM.	One-tailed	t-tests 

were used to compare means between groups, with significance set 
at p < 0.05.

2.10  |  Senescence-associated β -galactosidase 
(SA-β -gal) assay

Cells were washed twice with phosphate-buffered saline (PBS; 
pH 7.2),	 fixed	with	0.5%	glutaraldehyde	 in	PBS	and	washed	 in	PBS	
supplemented	with	1 mM	MgCl2.	Cells	were	stained	at	37°C	in	X-Gal	
solution	(1 mg/mL	X-Gal,	0.12 mM	K3Fe[CN]6,	0.12 mM	K4Fe[CN]6,	
1 mM	MgCl2	in	PBS	at	pH 6.0).	The	staining	was	performed	for	24 h	
at 37°C.

3  |  RESULTS

3.1  |  Age-related gene expression changes are 
cell- and species-specific

To	 uncover	 important	 drivers	 of	 aging,	 we	 examined	 publicly	
available	human	and	murine	scRNA-seq	lung	datasets.	The	data-
sets included young and aged healthy donors. As a first step, 
we clustered the different cell types (Figure 1, UMAPs and 
Figure S1) and we identified seven cell types that were found 
in	 both	 datasets	 (i.e.,	Macrophages,	 T	 Cells,	 B	 Cells,	 AT1,	 AT2,	
Club	 Cells,	 and	 Endothelial	 Cells).	 The	 mouse	 lung	 dataset	 in-
cluded a separate cluster of Dendritic Cells whereas the human 
lung dataset included separate clusters for Monocyte, Fibroblast, 
Ciliated, Mast, Lymphatic Endothelial, and Smooth Muscle Cells. 
Subsequently, we performed differential gene expression (DGE) 
analysis between samples from old and young donors, focusing 
on immune cell types that were well represented in both data-
sets. Further analysis showed that each cell type displayed sig-
nificant age-related changes in the expression of multiple genes 
but, only 24 genes were found in all immune cell types (Figure 1, 
top volcano plots): NDUFA13, RPS4Y1, HNRNPC, ANKRD28, 
LRRFIP1,	 FKBP5,	 TSC22D3,	KLF6,	 FOS,	NBEAL1,	CD44ATP5D, 
EIF5A, CST3, S100A11, GRN, FIS1, S100A9, SNHG8, NDUFA3, 
ATP5I, NDUFB1, POLR2L and IFITM3. Similarly (Figure 1, bot-
tom volcano plots), we found eight genes significantly changing 
with	age	across	macrophages,	T	cells,	and	B	cells	 in	 the	murine	
dataset: Scgb1a1, Igkc, Malat1, mt-Rnr2, Gm26924, Ighm, Igha, Igj. 
Interestingly,	 none	 of	 the	 differentially	 expressed	 genes	 was	
common for both species.

3.2  |  Cell–cell communication analysis revealed 
dysregulation of age-related cellular pathways

We used CellChat to generate an information flow for each signaling 
pathway that was identified in lung cells from both young and aged 
donors, and our analysis revealed age-related changes in several 
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of	these	pathways.	 In	aged	cells,	we	observed	a	dramatic	 increase	
in	 ANXA1	 (annexin	 A1),	 LGALS9	 (galectin	 9),	 and	 IL1	 (interleu-
kin	1)	 network	 activity	while	TENASCIN	and	SEMA3	 (semaphorin	
3)	 networks	 suffered	 a	 significant	 decrease.	 To	 a	 lesser	 extent,	

uteroglobin-related protein 1 (UGRP1), C-type lectin domain (CLEC), 
macrophage	migration	inhibitory	factor	(MIF),	and	angiopoietin	like	
(ANGPTL)	network	activities	were	also	increased	in	aged	cells	while	
ITGB2	decreased	(Figure 2a).

F I G U R E  1 Identification	of	differentially	expressed	genes	in	the	human	and	mouse	lung	datasets.	UMAP	plots	show	the	main	clusters	in	
the	human	and	mouse	lung	datasets.	Volcano	plots	show	differentially	expressed	genes	in	human	and	murine	lung	Macrophages,	T	Cells,	and	
B cells. Significance threshold is set at adj.p < 0.05.	The	names	of	the	top	10	highly	upregulated/downregulated	genes	are	shown.

F I G U R E  2 Age-related	differences	in	the	activity	of	cell	communication	networks	and	regulons.	(a)	Information	Flow	of	CellChat	inferred	
signaling ligands in young and aged human lungs. (b) Calculation of the differential regulon activity (ssGSEA score difference) in human lung 
Macrophages,	T	Cells,	B	cells	(TOP),	and	murine	Macrophages,	T	Cells,	B	Cells	(BOTTOM).	(c)	Identification	of	common	regulons	between	
human (lung and blood) and mouse (lung) cells. Heatmap shows the difference between the average regulon ssGSEA scores in old versus 
young samples, with FDR <0.1 in all cell types. HB, human blood; HL, human lung; ML, mouse lung.
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3.3  |  LEF1 regulon is consistently found less active 
in aged subjects

Focusing on the immune cells that were used in our DEG analysis, 
we compared regulon activity between young and aged donors. 
To	this	end,	we	calculated	ssGSEA	scores	for	all	regulons	included	
in the DoRothEA gene regulatory network and found that 141 
regulons were significantly changed with age in humans (Wilcoxon 
p < 0.05)	 (Figure 2b, top) while 132 regulons were significantly 
changed in mice (Figure 2b, bottom). Based on differential regu-
lon activity, we identified 70 regulons showing a significant age-
related	 change	 in	 both	 human	 and	murine	 lung	 cells.	 To	 narrow	
down the search for factors that could have a more universal role 
in	aging,	we	analyzed	data	from	the	COPDGene	study.	We	calcu-
lated the differential ssGSEA scores of the blood samples from 
old and young healthy donors, compared them to our previous 
results,	 and	 found	 nine	 common	 regulons	 (CEBPD,	 E2F5,	 ESR1,	
ETV4,	 IRF2,	 LEF1,	MBD2,	 PGR,	 and	 TFAP2A)	 that	 were	 signifi-
cantly changed in our human lung, mouse lung, and human blood 
samples.	 Of	 these	 nine,	 only	 LEF1 regulon activity was consist-
ently decreased with age in all datasets (Figure 2c).

3.4  |  LEF1 expression is dysregulated during 
cellular senescence

Since	 cellular	 senescence	 is	 a	 major	 hallmark	 of	 aging	 (López-Otín	
et al., 2023), we next examined whether LEF1 expression also changes 
during cellular senescence. Primary mouse embryonic fibroblasts un-
dergo spontaneous cellular senescence in culture, characterized by 
flattened cell morphology, increased expression of senescence marker 
CDKN2A/p16INK4a/p16,	 and	 increased	 senescence-associated	
β-galactosidase (SA-β-Gal) activity (Figure 3a,d; Guan et al., 2020; 
Manning & Kumar, 2010).	 Interestingly,	 we	 detected	 two	 LEF1	 iso-
forms that were regulated in a completely anti-parallel fashion. While 
the	longer	LEF1	isoform	(WT-LEF1)	(~60 kD)	was	decreasing	to	unde-
tectable levels during cellular senescence, the shorter isoform (~40 kD)	
gradually increased (Figure 3a).	The	size	of	the	shorter	protein	is	con-
sistent with the size of a dominant-negative LEF1 isoform, lacking the 
N-terminus β-catenin-binding domain (Hovanes et al., 2001).

To	 investigate	 whether	 the	 decrease	 in	 the	 longer	 LEF1	 iso-
form contributes to cellular senescence, we ectopically expressed 
the longer LEF1 isoform in MEFs at Day 1 and quantify its impact 
on cellular senescence progression (Figure 3b).	The	ectopic	 longer	
LEF1 isoform expression resulted in the significant downregulation 
of p16 expression but did not affect some other of the commonly 
cellular senescence markers, although IL1α expression was margin-
ally reduced (Figure 3c). Nevertheless, staining with β-galactosidase 
showed a significant decrease of more than threefold, in the num-
ber of senescent cells upon the ectopic expression of longer isoform 
LEF1 (Figure 3d).	 Together,	 these	 results	 demonstrate	 a	 possible	
role of the longer isoform of LEF1 in partially attenuating cellular 
senescence.

3.5  |  LEF1 regulon activity in IPF lungs

Due to the important role aging and cellular senescence play in 
the	pathophysiology	of	 idiopathic	pulmonary	 fibrosis	 (IPF)	 (Kellogg	
et al., 2021), we checked LEF1 expression in lung tissue from Normal/
Healthy	 and	 IPF	 lung	donors	 (Figure 4a,b).	 Since	 IPF	patients	 tend	
to be older and their phenotype is shaped by both age and disease, 
we included in our analysis aged-matched healthy lung donors. 
Immunoblot	assays	of	lung	tissue	showed	an	overall	increase	in	LEF1	
protein	 in	older	healthy	and	 IPF	donors.	Quantification	of	 the	 two	
isoforms in all donor groups revealed a higher increase in the short 
isoform	(FC = 4.9)	than	the	long	isoform	(FC = 3.7)	in	healthy	old	lungs	
compared to healthy young lungs. Although less significant, the same 
trend	was	observed	in	IPF	lungs	where	the	short	and	long	isoforms	
showed a 3.4- versus a 2.1-fold change increase respectively. When 
the relative abundance of both isoforms was evaluated as the ratio 
to the total LEF1 signal, we observed a significant increase in the 
relative amount of the short LEF1 isoform (Figure 4b) coupled with a 
significant decrease in the relative amount of the long LEF1 isoform.

When we examined the activity of LEF1 regulon in lung im-
mune	 cells	 from	upper	 lung	 lobes	 (IPF_ULL),	which	 typically	 show	
very	little	histological	change,	and	lower	lung	lobes	(IPF_LLL),	which	
are greatly affected by the disease (Jia, Rosas, et al., 2023; Morse 
et al., 2019), we found that overall, the activity was decreased in the 
upper	lobe	of	IPF	lungs,	supporting	the	presence	of	aging/senescent	
cells.	Interestingly,	immune	cells	from	the	lower	and	highly	fibrotic	
IPF	 lung	 lobes	 show	 increased	LEF1	 regulon	activity,	 suggesting	a	
more complex LEF1 regulatory pathway in advanced fibrosis that is 
not limited to cellular senescence (Figure 4c).

4  |  DISCUSSION

In	 this	work,	we	 investigate	the	 important	 topic	of	mechanisms	of	
aging	 and	 aging-related	pathologies.	 The	 study	of	 such	multipara-
metric phenomena could benefit from computational approaches 
that take advantage of the increasing number of available datasets, 
which include samples from a wide spread of age groups. Although 
many of these studies do not directly question the effects of aging, 
their control samples constitute a really underexplored valuable re-
source.	 In	our	analyses,	we	utilized	and	compared	data	from	three	
different	sources:	scRNAseq	data	from	an	IPF-related	study,	blood	
bulk	RNAseq	data	from	healthy	smoker	population	of	COPDGene®,	
and scRNAseq data from an aging-related mouse study.

Our	aim	was	to	identify	key	pathways	that	are	affected	through-
out	 aging	 in	 all	 immune	 cells	 under	 investigation.	 In	 accordance	
with a previous study (Barth et al., 2019), the conservation of dif-
ferentially expressed genes across tissues and species was limited. 
Nevertheless, when we focused on alterations in intercellular com-
munication,	 ANXA1,	 LGALS9,	 and	 IL1	 signaling	 pathways	 showed	
significant	activation	with	age	while	TENASCIN	and	SEMA3	showed	
significant	decline.	ANXA1	has	a	known	anti-inflammatory	role	(Jia	
et al., 2013; Rubinstein et al., 2019) and the observed activation 
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could indicate a response to an age-related inflammatory state (in-
flammaging; Franceschi et al., 2018).	The	IL1	cytokine	signaling	has	
been implicated in the inflammation of several tissues including the 
lung (Borthwick, 2016) as well as in promoting cellular senescence 
(Maier et al., 1990).	GALECTIN9	has	emerged	as	a	multipotent	im-
munomodulatory molecule (John & Mishra, 2016) and a biomarker of 
disease	severity	(Moar	&	Tandon,	2021).	The	decreased	TENASCIN	
signaling, another diverse immune response mechanism (Midwood & 
Orend,	2009), could associate with the age-related decline of the im-
mune system (Weyand & Goronzy, 2016). SEMA3 signaling has been 
implicated in immune cell migration, cooperation and deactivation 
(Kiseleva & Rutto, 2022) and its decreased activity in older donors 
could be associated with compromised immune response as well as 
prolonged inflammation.

Further analysis based on the activity of regulatory modules (reg-
ulons), in all cell types and species, resulted in ubiquitous age-related 
differences in 13 regulons. LEF1 regulon was the only regulon with 
a consistent pattern of age-dependent activity in both human and 
murine	immune	cells.	LEF1	is	a	TF	expressed	in	B	and	T	cells	(Elyahu	
et al., 2019; Milatovich et al., 1991).	It	is	implicated	in	various	cancers	
where its overexpression is associated with poor prognosis (Erdfelder 
et al., 2010; Eskandari et al., 2018). LEF1 interacts with β-catenin 
(Behrens et al., 1996) and SMAD2-3 (Labbé et al., 2000), key mole-
cules	in	the	Wnt	and	TGF-β	pathways	respectively.	Interestingly,	Wnt	
and	TGF-β signaling pathways can independently or synergistically 
regulate LEF1 targets (Labbé et al., 2000). Both pathways are dysreg-
ulated in cellular senescence and aging (Hu et al., 2020;	Tominaga	&	
Suzuki, 2019) and LEF1 is found to be downregulated in certain aged 

F I G U R E  3 LEF1	is	implicated	in	cellular	
senescence. (a) Representative images of 
the morphology of MEFs at Day 3 and Day 
13	after	culturing.	Immunoblot	detection	
of p16 and LEF1 expression at different 
days. Ponceau S staining is provided 
as	a	loading	control.	(b)	Immunoblot	
detection of LEF1 in cells expressing 
pBabe-empty vector or pBabe-LEF1 (long 
isoform) construct. (c) qPCR analysis of 
the expression of Lef1 and four common 
senescence	markers	at	day	9	(8 days	post	
retroviral infection) in MEFs. Results are 
shown as relative expression changes 
compared to cells transfected with the 
empty vector. (d) Representative images 
(left) and quantification (right) of SA-β-Gal 
staining in control or LEF1-overexpressing 
MEFs	at	day	9	(8 days	post	retroviral	
infection).
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tissues (Barth et al., 2019). Moreover, haplosufficiency in the LEF1 
locus has been associated with low bone mass (Noh et al., 2009), a 
common feature of aging. While the function of long LEF1 isoform 
and the significance of LEF1 expression levels have been studied, 
the fluctuation of the smaller isoform, lacking the β-catenin binding 
domain, has less clear consequences. Some studies suggest that the 
small isoform acts as a dominant negative variant inhibiting β-catenin 

binding and consequently promoter activation (Hovanes et al., 2001), 
while other studies support a more complex role where the short 
isoform has distinct targets and biological functions (Edmaier 
et al., 2013). Notably, we observed that the overall LEF1 regulon 
activity invariably decreased with age but the expression profiles 
of several LEF1 target genes did not change consistently among the 
various cell types and across organisms, indicating that downstream 

F I G U R E  4 LEF1	expression	in	human	lung	tissue	lysates.	(a)	LEF1	immunoblot	of	four	normal	healthy	young,	four	healthy	old,	and	four	
IPF	human	lung	tissue	lysates.	(b)	Quantification	of	LEF1	isoforms	using	β-actin used as a loading control. Data represent the mean value ± 
SEM (n = 4	samples	evaluated	per	group).	*p < 0.03,	pairwise	non-parametric	Mann–Whitney	test.	(c)	Violin	plot	graphs	showing	LEF1	ssGSEA	
scores	in	human	lung	immune	cells.	IPF,	idiopathic	pulmonary	fibrosis;	IPF-LLL,	lower	lung	lobe;	IPF-ULL,	upper	lung	lobe.
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signals	may	be	diverse	and	cell-type	specific.	This	could	explain	why	
many studies were unable to detect significant conservation in DGE 
profiles of the immune cells across species; and it is consistent with 
previous reports that aging could have a subtle transcriptional signa-
ture depending on the tissue type (Barth et al., 2019), further hinder-
ing the detection of ubiquitous aging-driving factors.

Immunodetection	 of	 LEF1	 in	mouse	 embryonic	 fibroblasts	 re-
vealed a senescence-associated dysregulation of two distinct iso-
forms.	The	longer	isoform	showed	a	steady	decrease	with	increased	
replicative senescence (indicated by increased p16 expression, a 
known senescence marker; Guan et al., 2020), while the short iso-
form was gradually upregulated. Ectopic expression of the longer 
isoform prevented replicative senescence, supporting the role of the 
full-length LEF1 in cell proliferation (Hao et al., 2019). Previous work 
had shown that LEF1 can inhibit p16 expression through promoter 
binding (Delmas et al., 2007).	In	view	of	the	key	role	of	cellular	se-
nescence	in	IPF	(De	Man	et	al.,	2023; Schafer et al., 2017), we mea-
sured the protein levels of both LEF1 isoforms in tissue lung samples 
from	healthy	and	IPF	donors.	It	is	important	to	note	that	lung	tissue	
in	general	and	IPF	fibrotic	tissue	in	particular	present	a	challenging	
material for analysis due to the high cell type heterogeneity and the 
spatial diversity of the disease progression. Whereas lung immune 
cells from older subjects show a less active LEF1 regulon, suggest-
ing a possible decrease in the long LEF1 isoform expression, pro-
tein	 levels	were	 increased	 in	both	healthy	old	and	 IPF	 lung	 tissue.	
Interestingly,	 in	old	and	 IPF	 lungs,	 the	relative	amount	of	 the	 long	
isoform decreased while that of the short isoform increased, which 
is reminiscent of the LEF1 dysregulation pattern in our senescent 
MEFs. Unsurprisingly, the LEF1 regulon activity was decreased in the 
upper	lung	lobes	of	IPF	patients	in	agreement	with	our	findings	in	old	
healthy	 lungs.	This	suggests	that	 immune	cells	from	older	 lungs	as	
well	as	normal-looking	areas	from	IPF	lungs	could	undergo	a	LEF1/
senescence-related decline. LEF1 regulon activity in the immune 
cells of the highly fibrotic lower lobes appears elevated, suggesting 
a	diverse	and	rather	more	proliferative	state	in	these	cells.	Overall,	
our results show that LEF1 levels in lung tissue are mainly defined 
by donor age, but specifically in immune cells LEF1 may orchestrate 
two diverse responses depending on the disease state.

Although we limited the computational analysis to macrophages, 
T	 cells	 and	 B	 cells,	 we	 were	 able	 to	 identify	 LEF1	 as	 a	 common	
age-dependent	 regulator.	Our	 findings	 indicate	 that	LEF1	protects	
from cellular senescence, but due to its pleiotropic nature, we can-
not exclude that could promote aging through different pathways 
that	 counteract	 its	 anti-senescence	 role.	 Taking	 into	 consider-
ation the key role of immune cells in aging and disease (Franceschi 
et al., 2018; Fulop et al., 2018; Jia, Agudelo Garcia, et al., 2023), our 
results offer a significant contribution to the field. Without a doubt, 
more research is required to determine whether LEF1 dysregulation 
is intrinsic to the aging process, leading to increased vulnerability 
to cellular malfunction and disease. Clearly though, LEF1 dysregu-
lation, and by extension, the dysregulation of its downstream cellu-
lar factors and pathways, appears to be cell-specific, which dictates 
more targeted and precise approaches for future aging studies.
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