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Abstract
Identifying the clinical implications and modifiable and unmodifiable factors of aging 
requires	 the	measurement	 of	 biological	 age	 (BA)	 and	 age	 gap.	 Leveraging	 the	 bio-
medical traits involved with physical measures, biochemical assays, genomic data, and 
cognitive	functions	from	the	healthy	participants	in	the	UK	Biobank,	we	establish	an	
integrative	BA	model	 consisting	 of	multi-	dimensional	 indicators.	 Accelerated	 aging	
(age	 gap	>3.2 years)	 at	 baseline	 is	 associated	 incident	 circulatory	 diseases,	 related	
chronic	disorders,	all-	cause,	and	cause-	specific	mortality.	We	identify	35	modifiable	
factors	for	age	gap	(p < 4.81 × 10−4),	where	pulmonary	functions,	body	mass,	hand	grip	
strength,	 basal	metabolic	 rate,	 estimated	 glomerular	 filtration	 rate,	 and	C-	reactive	
protein	show	the	most	significant	associations.	Genetic	analyses	 replicate	 the	pos-
sible	associations	between	age	gap	and	health-	related	outcomes	and	further	identify	
CST3 as an essential gene for biological aging, which is highly expressed in the brain 
and is associated with immune and metabolic traits. Our study profiles the landscape 
of biological aging and provides insights into the preventive strategies and therapeu-
tic targets for aging.
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1  |  INTRODUC TION

Aging	is	characterized	by	the	progressive	loss	of	physiological	func-
tions	and	regeneration	potential	in	multiple	tissues	and	organs	(Khan	
et al., 2017;	López-	Otín,	Blasco,	et	al.,	2023).	An	unappreciated	but	
important association between aging and multiple chronic disorders 
has been proposed for several decades, and aging is a shared mecha-
nism	and	the	major	risk	factor	of	various	common	diseases,	including	
malignant neoplasms, atherosclerotic cardiovascular diseases, neuro-
degenerative	disorders,	and	metabolic	syndromes	(Aunan	et	al.,	2017; 
Hou et al., 2019;	 Liberale	 et	 al.,	2022).	 Fortunately,	 recent	 studies	
suggested	that	aging	was	modifiable	(Partridge	et	al.,	2020)	and	have	
revealed	 some	 candidate	 behaviors	 or	 lifestyles	 that	 showed	 anti-	
aging	properties	in	animal	models,	like	caloric	restriction	(Fontana	&	
Partridge,	2015),	physical	activity	(Neufer	et	al.,	2015),	and	amino	acid	
restriction	(Levine	et	al.,	2014).	However,	the	modifiable	factors	for	
biological aging have not been systematically studied, and some other 
factors that may delay aging await discovery. In addition, genetics is 
also an essential approach for identifying the underlying mechanisms 
and pathways of biological aging, thus providing novel therapeutic 
targets	 and	 prevention	 opportunities	 for	 aging	 research	 (Melzer	
et al., 2020).	As	global	aging	population	is	still	growing	and	the	bur-
den	of	age-	related	diseases	is	increasing	rapidly	and	has	gradually	be-
come the most important causes of mortality and morbidity in elderly 
individuals	(GBD	2017	Disease	and	Injury	Incidence	and	Prevalence	
Collaborators, 2018;	Guo	et	al.,	2022),	revealing	the	clinical	implica-
tions and modifiable factors of aging and the underlying mechanisms 
is of great importance for reducing the socioeconomic and healthcare 
burden	of	age-	related	diseases,	thus	promoting	healthy	aging.

As	 individuals	 age	 at	different	 rates	 (Hamczyk	et	 al.,	2020),	 bi-
ological	age	 (BA)	was	proposed	as	a	 term	 to	estimate	 the	 rate	and	
extent of biological aging and reflect the biological and physiologi-
cal	functions	of	individuals	(Khan	et	al.,	2017).	Till	now,	multiple	BA	
models	have	been	proposed,	including	frailty	index,	Phenotypic	Age,	
Klemera-	Doubal	method	Biological	 Age	 (KDM-	BA),	 and	 epigenetic	
PhenoAge	 (Cesari	 et	 al.,	 2014; Chen et al., 2022;	 Klemera	&	Dou-
bal, 2006;	Levine	et	al.,	2018),	and	their	associations	with	some	com-
mon	diseases	were	also	reported.	However,	most	BA	measurements	
were	generated	with	solely	clinical	indicators	(i.e.,	Phenotypic	Age	or	
frailty	index)	or	domain-	specific	data	(i.e.,	epigenomics,	transcriptom-
ics,	or	metabolomics	aging	clocks).	In	addition,	aging	is	characterized	
by	 functional	 deterioration	 of	 multiple	 organs	 (Hernandez-	Segura	
et al., 2018).	 Therefore,	 a	 comprehensive	 BA	 measurement	 based	
on physical measures, biochemical assays, and omics data will thor-
oughly reflect the nature of biological aging and provide deeper in-
sights into the association of biological aging with health outcomes, 
and its underlying determinants and therapeutic targets.

In	addition,	previous	BA	measurements	were	mainly	generated	
by linear regression statistical modeling methods, which were lim-
ited by the curse of dimensionality and the complex correlation 
structure	of	the	indicators	(Rutledge	et	al.,	2022).	Machine	learning	
(ML)	can	learn	the	patterns	from	multi-	dimensional	data	to	build	the	
model	with	the	relevant	features	and	make	predictions	on	the	new	

data	(Baecker	et	al.,	2021; Rutledge et al., 2022).	Compared	with	the	
traditional	linear	regression	models,	ML	makes	inferences	at	individ-
ual	levels,	thus	having	great	potential	for	clinical	application	(Baecker	
et al., 2021).	Therefore,	ML-	based	algorithms	are	widely	used	to	re-
duce the number of features in the development of predictive mod-
els	(You	et	al.,	2022, 2023),	which	may	better	capture	the	complexity	
of	aging	(Rutledge	et	al.,	2022).

In	 the	present	study,	we	used	the	Light	Gradient	Boosting	Ma-
chine	(LightGBM)	algorithm	to	develop	an	integrative	BA	model	using	
multi-	dimensional	data	in	the	UK	Biobank,	a	large	longitudinal	cohort	
of	middle-	aged	and	older	adults	with	a	median	follow-	up	period	of	
more	than	10 years	(Figure 1).	We	screened	59,316	healthy	individu-
als	throughout	baseline	and	follow-	up,	developed	the	BA	model	with	
physical measures, biochemical assays, cognitive functions, and ge-
nomics	data,	 and	 then	 calculated	 the	age	gap,	 the	deviation	of	BA	
from	chronological	age	(CA).	Next,	we	tested	the	longitudinal	disease	
and	mortality	 risk	 of	 age	 gap	 in	 unhealthy	 individuals.	We	 further	
evaluated the genetic associations between age gap and the common 
health-	related	outcomes.	Then,	we	identified	the	modifiable	factors	
for age gap and evaluated to what extent these factors delayed bio-
logical aging. Finally, we identified the genetic determinants of age 
gap	and	 their	 underlying	phenotypic	mechanisms.	Our	work	 sheds	
light	on	the	complexity	of	biological	aging	and	its	relevance	to	health-	
related outcomes, modifiable traits, and genetic architecture, thus 
providing insights into the potential interventions for aging.

2  |  RESULTS

2.1  |  Predictors selection for biological age

After	 screening,	 59,316	 healthy	 participants	 without	 any	 health-	
related	outcomes	at	baseline	or	during	the	follow-	up	were	included	
(Figure S1 and Table S1).	The	participants	had	a	median	age	of	57 years	
and	were	predominantly	women	(31,530	[53.2%])	and	of	white	eth-
nicity	(55,609	[93.8%]).	We	divided	all	healthy	participants	into	train-
ing	sets	 (60%),	 testing	sets	 (20%),	and	validation	sets	 (20%).	Of	 the	
118	candidate	predictors	(Table S2),	we	first	selected	the	top	50	pre-
dictors	based	on	 their	 importance	 to	 chronological	 age	 (CA).	 Some	
highly	correlated	predictors	were	 identified,	 like	 forced	vital	capac-
ity	 (FVC)	and	forced	expiratory	volume	 in	1-	second	 (FEV1),	systolic	
blood	pressure	(SBP),	diastolic	blood	pressure	(DBP),	and	pulse	pres-
sure	 (PP).	 Therefore,	 hierarchical	 clustering	was	 further	 conducted	
to	eliminate	multicollinearity	(Figure S2).	A	total	of	37	predictors	re-
mained	and	were	ranked	based	on	their	importance	to	CA	(Figure 2a).	
To	determine	the	predictors	for	constructing	the	BA	model,	a	sequen-
tial	forward	selection	scheme	was	implemented.	The	performance	of	
the	BA	model,	which	was	determined	by	mean	absolute	error	(MAE)	
shown on the right axis, was profiled by the line chart in Figure 2a 
(the	full	data	can	be	found	in	Table S3).	Finally,	the	top	20	phenotypes	
were	selected	as	predictors	for	constructing	the	BA	model.	We	pro-
filed	the	BA	model	performance	in	the	validation	set	(n = 11,862;	Fig-
ure 2b).	In	all	individuals,	the	MAE	was	4.49.	The	model	performance	
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was	relatively	better	among	females,	with	an	MAE	of	4.33	than	that	of	
males	(MAE = 4.68).	In	addition,	lasso	regression	selected	48	features	
(Table S4),	yielding	an	MAE	of	4.90	in	all	individuals	(Figure S3).

2.2  |  Longitudinal associations of age gap 
with diseases

To	test	the	associations	of	age	gap	with	the	risk	of	common	health-	
related	 outcomes,	 we	 predicted	 BA	 in	 unhealthy	 participants	

with	 complete	 data	 (n = 257,336;	 Table S5)	 and	 calculated	 the	
age	 gap	 (BA	minus	CA).	 The	 participants	were	 divided	 into	 four	
groups	based	on	 the	age	gap	quartiles	 (Q1:	 age	gap	<	 −3.9;	Q2:	
−3.9 ≤ age	 gap	 <	 −0.5;	 Q3:	 −0.5 ≤ age	 gap	 <3.2;	 Q4:	 age	 gap	
≥3.2).	Among	 the	70	 common	health-	related	outcomes	 included	
in	the	analysis	 (see	Table S6	for	further	details),	during	a	median	
of	 12.88	 (Q1,	 12.24;	 Q3,	 13.53)	 years	 of	 follow-	up,	 the	 lowest	
and	 highest	 age	 gap	 quartiles	 were	 nominally	 associated	 with	
43	 outcomes	 (p < 0.05;	 Figure 2c and Table S7).	 After	 Bonfer-
roni	 corrections	 (adjusted	 p = 0.05/70 = 7.14 × 10−4),	 we	 found	

F I G U R E  1 Graphical	abstract	of	the	study.	Top	part,	the	study	participants	and	development	of	biological	age	model.	The	study	included	
59,316	healthy	participants	in	the	UK	Biobank	and	considered	8276	phenotypes	for	developing	biological	age	model.	All	healthy	participants	
were	further	divided	into	training	set	(60%),	validation	set	(20%),	and	testing	set	(20%).	LightGBM	algorithm	was	conducted	to	identify	the	
most	important	predictors	for	biological	age	and	build	the	model	and	the	top	20	predictors	were	selected.	Then	the	age	gap,	the	difference	
between	the	estimated	biological	age	and	chronological	age,	was	calculated	within	the	participants.	Middle	part,	the	associations	of	age	
gap	with	diseases	and	mortality.	We	tested	the	longitudinal	associations	of	age	gap	with	70	common	health-	related	outcomes,	all-	cause	
mortality	and	cause-	specific	mortality,	and	the	genetic	correlations	of	age	gap	with	common	health-	related	outcomes.	Bottom	part,	the	
modifiable	and	unmodifiable	factors	for	age	gap.	We	identified	34	modifiable	factors	and	9	genomic	risk	loci	for	age	gap	and	profiled	the	
pleiotropy	of	rs3761280	in	the	UK	Biobank.	ALP,	alkaline	phosphatase;	ApoA,	apolipoprotein	A;	CI,	confidence	interval;	COPD,	chronic	
obstructive	pulmonary	disease;	CRP,	C-	reactive	protein;	eGFR,	estimated	glomerular	filtration	rate;	HR,	hazard	ratio;	IGF-	1,	insulin	growth	
factor	1;	LightGBM,	Light	Gradient	Boosting	Machine;	LTL,	leukocyte	telomere	length;	PP,	pulse	pressure;	RDW,	red	blood	cell	distribution	
width;	TC,	total	cholesterol.
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F I G U R E  2 Predictor	selection,	performance,	and	implications	of	biological	age.	(a)	The	barplot	showed	the	importance	of	phenotypes,	
which	was	the	square	root	of	the	gain	value	generated	from	the	LightGBM	algorithm.	The	line	chart	showed	the	MAE	when	adding	the	
phenotypes	into	the	biological	age	model.	(b)	The	scatter	plot	shows	the	distributions	of	biological	age	and	chronological	age	of	the	
participants.	Each	scatter	indicated	a	single	participant.	The	MAE	and	correlation	coefficient	of	the	model	are	shown	in	the	left	top	part	of	
the	plot.	(c)	Associations	of	age	gap	with	common	health-	related	outcomes.	The	forest	plot	shows	the	results	of	Cox	proportional	hazards	
regression	analyses.	Only	the	outcomes	with	nominally	statistical	significance	(p < 0.05)	are	shown	in	the	figure	with	the	corresponding	
ICD-	10	codes.	The	Cox	proportional	model	was	adjusted	for	age	at	the	recruitment,	gender,	ethnicity,	education	score,	smoking	status,	
alcohol	drinking	status,	Townsend	deprivation	index,	overall	health	rating,	and	number	of	medications/treatments	taken.	The	second	and	the	
third	quartiles	of	age	gap	(Q2	and	Q3)	are	set	as	the	reference,	and	other	quartiles	are	marked	with	different	colors.	CI,	confidence	interval;	
HR,	hazard	ratio;	ICD,	international	classification	of	diseases;	IGF-	1,	insulin	growth	factor;	MAE,	mean	absolute	error;	SHBG,	sex	hormone	
binding globulin.
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that	 the	 highest	 age	 gap	 quartile	 was	 mainly	 associated	 with	
diseases	 of	 the	 circulatory	 system,	 including	 hypertension	 (HR	
[95%	 CI]:	 1.42	 [1.36–	1.47],	 p = 2.00 × 10−69),	 ischemic	 heart	 dis-
eases	 (1.26	 [1.20–	1.33],	 p = 1.46 × 10−17),	 myocardial	 infarction	
(1.26	 [1.15–	1.38],	 p = 7.41 × 10−7),	 arrhythmias	 (1.11	 [1.05–	1.17],	
p = 3.23 × 10−4),	 heart	 failure	 (1.50	 [1.36–	1.65],	 p = 4.37 × 10−17),	
atherosclerosis	 (1.77	 [1.44–	2.16],	 p = 4.12 × 10−8),	 stroke	 (1.29	
[1.17–	1.43],	 p = 1.04 × 10−6),	 and	 cerebral	 infarction	 (1.27	 [1.12–	
1.43],	p = 2.16 × 10−4).	In	addition	to	diseases	of	circulatory	system,	
a higher age gap was also associated with some relevant chronic 
conditions,	like	anemia	(1.10	[1.05–	1.16],	p = 2.68 × 10−4),	diabetes	
(1.50	[1.41–	1.60],	p = 1.47 × 10−34),	chronic	obstructive	bronchitis	
(1.51	 [1.40–	1.62],	p = 8.39 × 10−27),	 and	 renal	 failure	 (1.52	 [1.43–	
1.61],	 p = 6.02 × 10−45).	 Some	 associations	 between	 the	 highest	
age	gap	quartile	and	brain	disorders	were	also	observed,	including	
dementia	(1.34	[1.14–	1.57],	p = 3.95 × 10−4),	disorders	due	to	sub-
stance	abuse	(1.23	[1.17–	1.30],	p = 5.26 × 10−15),	and	epilepsy	(1.35	
[1.14–	1.60],	 p = 4.70 × 10−4).	 However,	we	 found	 that	 the	 lowest	
age	 gap	 quartile	 was	 associated	 with	 incident	 cancer,	 including	
any	cancers	(1.05	[1.02–	1.08],	p = 1.49 × 10−4)	and	prostate	cancer	
(1.18	[1.12–	1.26],	p = 1.20 × 10−8).

2.3  |  Longitudinal associations of age gap 
with mortality

We	 further	 tested	 the	 longitudinal	 associations	 of	 age	 gap	 with	
all-	cause	 and	 cause-	specific	 mortality	 among	 the	 unhealthy	 par-
ticipants	and	found	that	the	highest	age	gap	quartile	was	associated	

with	a	27%	higher	hazard	for	all-	cause	mortality	(HR	[95%	CI]:	1.27	
[1.19–	1.34],	p = 4.29 × 10−15; Figure 3 and Table S8).	Consistent	with	
the	 results	 of	 incident	 diseases,	 the	 highest	 age	 gap	 quartile	was	
significantly associated with the mortality due to diseases of the 
circulatory	system	(1.54	[1.38–	1.71],	p = 3.55 × 10−15),	hypertension	
(1.70	[1.36–	2.13],	p = 3.30 × 10−6),	and	 ischemic	heart	disease	(1.58	
[1.35–	1.85],	 p = 1.07 × 10−8)	 after	 Bonferroni	 corrections	 (adjusted	
p = 0.05/70 = 7.14 × 10−4).	In	addition,	we	also	observed	positive	as-
sociations	between	the	highest	age	gap	quartile	and	some	chronic	
disorders	 (including	 diabetes,	 chronic	 obstructive	 bronchitis,	 dis-
ease	of	the	liver,	and	renal	failure).	Overall,	the	longitudinal	survival	
analysis of the age gap among the unhealthy participants suggested 
that	the	highest	age	gap	was	positively	associated	with	the	risk	of	
incident diseases of the circulatory system, but negatively associ-
ated	with	the	risk	of	incident	cancers.	While	age	gap	was	positively	
associated	with	all-	cause	and	cause-	specific	mortality.

2.4  |  Modifiable factors for age gap

Then	we	investigated	the	modifiable	factors	for	biological	age	gap.	We	
first	screened	118	modifiable	factors	with	low	missing	values	in	the	UK	
Biobank.	The	factors	included	in	the	BA	model	were	excluded,	leaving	
104	modifiable	 factors	categorized	 into	11	clusters	 (Table S9).	After	
Bonferroni correction, we identified 35 modifiable factors for age gap 
(p < 4.81 × 10−4, Figure 4a and Table S10).	The	most	significant	factors	
were	pulmonary	functions	(FVC:	p = 1.7 × 10−210;	PEF:	p = 8.01 × 10−127).	
Some	 modifiable	 factors	 associated	 with	 anthropometry	 were	 in-
versely	associated	with	higher	age	gap,	 including	body	fat-	free	mass	

F I G U R E  3 Associations	of	age	gap	with	all-	cause	and	cause-	specific	mortality.	The	forest	plot	shows	the	results	of	Cox	proportional	
hazards	regression	analyses.	Only	the	outcomes	with	nominally	statistical	significance	(p < 0.05)	were	shown	in	the	figure	with	the	
corresponding	ICD-	10	codes.	The	Cox	proportional	model	was	adjusted	for	age	at	the	recruitment,	gender,	ethnicity,	education	score,	
smoking	status,	alcohol	drinking	status,	Townsend	deprivation	index,	overall	health	rating,	and	number	of	medications/treatments	taken.	
The	lowest	quantile	of	age	gap	(Q1)	is	set	as	the	reference,	and	other	quantiles	are	marked	with	different	colors.	CI,	confidence	interval;	HR,	
hazard	ratio;	ICD,	international	classification	of	diseases.
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(p = 7.23 × 10−53),	body	water	mass	(p = 6.18 × 10−52),	hand	grip	strength	
(p = 7.45 × 10−45),	 and	 basal	 metabolic	 rate	 (p = 1.20 × 10−40).	 While	
higher body fat percentage was positively associated with a higher age 
gap	(p = 7.90 × 10−17).	In	addition,	several	biochemical	assays	were	also	
candidate	modifiable	factors	 for	age	gap,	 like	eGFR	 (p = 1.02 × 10−35)	
and	CRP	(p = 6.88 × 10−33).

The	 effects	 of	 the	 significant	 modifiable	 factors	 on	 age	 gap	
were further profiled in Figure 4b.	We	found	that	the	current	alco-
hol	 drinkers	had	 a	0.82-	year	 lower	 age	gap.	However,	 the	 current	
smokers	 had	 a	 1.30-	year	 higher	 age	 gap.	 A	 higher	 body	 fat-	free	
mass	per	one-	standard	deviation	(1-	SD)	was	associated	with	a	1.06-	
year decrease age gap, and the effect of body water mass on age 
gap	was	similar	(β = −1.04	per	1-	SD	increase).	Regarding	pulmonary	
functions,	FVC	and	PEF	were	associated	with	a	lower	age	gap,	with	
1.67	and	1.12 years	per	1-	SD	increase	in	FVC	and	PEF,	respectively.	
Compared with the participants reporting fair or poor health ratings, 
those	with	good	or	excellent	health	status	had	a	0.85-	year	lower	age	
gap.	The	participants	with	a	history	of	dentures	had	a	0.50	increase	
in age gap compared with those without a history of tooth diseases. 
In	addition,	 the	participants	with	nervous	feelings	had	a	0.47-	year	
higher	age	gap	than	those	without	nervous	feelings.	We	also	found	
that compared with participants who sometimes or rarely did man-
ual or physical jobs, those who usually or always did manual or phys-
ical	jobs	had	a	0.58-	year	higher	age	gap.

We	also	characterized	the	modifiable	factors	for	age	gap	in	men	
and	women,	 respectively	 (Figures S4 and S5; Tables S11 and S12).	
After	 multiple	 comparisons,	 we	 identified	 24	 and	 29	 modifiable	
factors	 for	men	and	women,	 respectively.	Therefore,	a	 total	of	19	
modifiable	 factors	 were	 shared	 by	 the	 entire	 and	 gender-	specific	
populations	(Figure S6).

2.5  |  Genetic determinants for age gap

To	provide	 a	 comprehensive	 picture	 of	 age	 gap	 and	 to	 better	 un-
derstand	 the	 etiology	 of	 age-	related	 diseases,	 we	 next	 sought	 to	
identify	the	genetic	determinants	of	biological	age	gap.	To	this	end,	
we	performed	a	genomewide	association	study	(GWAS)	analysis	and	
exomewide	association	study	(ExWAS)	analysis	of	biological	age	gap	
in	White	British	healthy	participants	 in	 the	UK	Biobank	 (n = 9008;	
Figure 5a,b).	 The	 quantile-	quantile	 plot	 of	 GWAS	 and	 ExWAS	 is	
shown in Figures S7 and S8.	In	GWAS	analysis,	nine	genomic	risk	loci	
significantly associated with age gap were identified after False Dis-
covery	Rate	corrections	(FDR <0.05, Figure 5a).	The	loci	tagged	by	
rs3761280	showed	the	most	significant	association	(p = 3.17 × 10−17).	
See	Table S13	 for	 complete	 details	 of	 the	 loci.	 The	 single	 nucleo-
tide	polymorphism	(SNP)-	based	heritability	for	age	gap	was	20.9%.	
In	ExWAS	common	variant	analysis,	only	variants	in	CST3 were sig-
nificantly associated with age gap after False Discovery Rate correc-
tions	(FDR <0.05, Figure 5b).	See	Table S14 for complete details. In 
ExWAS	gene-	based	 rare	variant	analysis,	we	 failed	 to	 identify	any	
genes significantly associated with age gap after multiple compari-
sons	(Figure S9).

Next,	 we	 performed	 a	 linkage	 disequilibrium	 score	 correla-
tion	 (LDSC)	 analysis	 of	 age	 gap	 with	 the	 common	 health-	related	
outcomes	 (see	 Table S15	 for	 the	 details	 about	 the	 summary-	level	
GWAS	data	sets)	identified	in	survival	analyses	(Figure 5c).	The	full	
information	about	LDSC	analysis	is	shown	in	Table S16. Our analy-
ses further supported the possible associations between biological 
age	gap	and	diseases	of	circulatory	system	(hypertension:	Rg = 0.21,	
p = 0.01;	 myocardial	 infarction:	 Rg = 0.20,	 p = 0.04;	 pulmonary	 em-
bolism: Rg = 0.36,	 p = 0.04;	 atherosclerosis:	Rg = 0.25,	 p = 0.04)	 and	
chronic	 diseases	 (obesity:	 Rg = 0.16,	 p = 0.04;	 chronic	 obstructive	
bronchitis: Rg = 0.28;	 p < 0.01;	 renal	 failure:	 Rg = 0.43,	 p = 0.02),	
though the genetic correlations did not survive correction for mul-
tiple comparisons.

FUnctional	Mapping	and	Annotation	(FUMA)	was	used	to	anno-
tate	the	candidate	single	nucleotide	polymorphisms	(SNPs)	in	linkage	
disequilibrium	with	one	of	the	independent	significant	SNPs	via	po-
sitional	mapping	(Table S17).	Gene	Ontology	(GO)	analysis	suggested	
that the genes were mainly associated with the biological processes 
associated	with	 translation	 (translational	 initiation	 and	 protein	 lo-
calization	to	plasma	membrane;	Figure S10).	Kyoto	Encyclopedia	of	
Genes	and	Genomes	(KEGG)	analysis	indicated	that	the	genes	were	
associated	 with	 the	 pathways	 associated	 with	metabolism	 (cAMP	
signaling pathway and glycosphingolipid biosynthesis; Figure S10).	
See	Table S18	for	complete	results	of	GO	and	KEGG	analysis	of	the	
mapped genes.

2.6  |  Expression- based and pleiotropy analysis  
of CST3

In	GWAS	analysis	of	age	gap,	rs3761280	located	within	gene	CST3 
showed	 the	most	 significant	 association	 (Figure 6a).	We	also	 con-
ducted	 GWAS	 analysis	 of	 age	 gap	 in	 9008	 healthy	 and	 201,795	
unhealthy	White	British	participants	and	also	found	a	significant	as-
sociation	of	rs3761280	with	age	gap	(Figure S11).

Leveraging	 Genotype	 Tissue	 Expression	 (GTEx)	 database,	 we	
found that CST3 was highly expressed in the brain, particularly basal 
ganglia	 and	 cortex	 (Figure 6b).	 Then	 we	 analyzed	 single-	nucleus	
RNA	sequencing	(snRNA-	seq)	data	of	the	human	brain,	suggesting	
astrocytes and mural cells expressed relatively higher levels of CST3 
(Figure 6c).	Colocalization	 analysis	 indicated	 that	CST3 expression 
levels in 10 tissues and age gap shared a causal variant with strong 
or	suggestive	evidence	(Table S19).

Then	we	further	 investigated	the	pleiotropy	of	 rs3761280	 in	
the	UK	Biobank	(Tables S20 and S21).	We	found	that	rs3761280	
was	 nominally	 associated	 with	 14	 biomedical	 traits	 (Figure 6d).	
As	 expected,	 rs3761280	 was	 significantly	 associated	 with	 cys-
tatin	C	 level	 (Z-	score = −121.157,	p < 0.001;	 Table S21).	Of	 note,	
rs3761280	 showed	 an	 association	 with	 another	 biomarker	 of	
aging,	 leukocyte	 telomere	 length	 (Z-	score = −2.391,	 p = 0.017).	
Some	associations	with	predictors	in	the	BA	model	were	also	ob-
served,	like	mean	time	to	identify	matches,	alkaline	phosphatase,	
PP,	 total	 cholesterol,	 and	 IGF-	1.	 In	 addition,	 some	 associations	
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with	 inflammatory	 traits	were	observed,	 like	 the	count	of	baso-
phil, monocyte, and lymphocyte.

3  |  DISCUSSION

Our	study	has	used	large-	scale	biobank	data	to	develop	an	integra-
tive	BA	model.	 Compared	with	 the	 previous	BA	model	 generated	
with	solely	physical	measures	or	biochemical	assays,	our	BA	model	
was	 a	 comprehensive	 model	 composed	 of	 multi-	dimensional	 in-
dicators, including cognition, anthropometry, physical measures, 
biochemical	markers,	and	genomic	data.	Next,	we	showed	that	the	
highest	 age	 gap	 was	 associated	 with	 the	 risk	 of	 multiple	 health-	
related outcomes, especially circulatory diseases and related chronic 

disorders.	Meanwhile,	 age	 gap	 was	 positively	 associated	with	 all-	
cause	and	cause-	specific	mortality.	We	further	identified	35	modifi-
able	factors	for	age	gap,	highlighting	body	fat-	free	mass	and	water	
mass,	basal	metabolic	rate,	pulmonary	functions,	and	smoking	status	
as candidate factors for delaying aging. Finally, genetic analyses in-
cluding	GWAS	and	ExWAS	identified	CST3 as a novel gene associ-
ated with biological aging.

Machine	learning,	a	data-	driven	strategy,	has	been	widely	used	
to	 discover	 the	 essential	 indicators	 of	 BA,	 build	 BA	 models,	 and	
identify	 accelerated	 aging	 individuals	 (Gialluisi	 et	 al.,	 2022;	 Tian	
et al., 2023;	 Zhong	et	 al.,	2020).	A	 recent	 study	has	 trained	brain	
age	models	 in	amyloid-	negative	cognitively	normal	subjects	 (Millar	
et al., 2023),	which	supported	our	feature	selection	and	model	de-
velopment in healthy participants. Consistent with most previous 

F I G U R E  4 The	associations	of	the	modifiable	factors	and	biological	age	gap	in	healthy	participants.	(a)	The	circular	barplot	shows	the	
associations	of	the	modifiable	factors	with	biological	age	gap.	The	association	with	a	p-	value	of	<1 × 10−50	was	rounded	to	1 × 10−50.	The	
red dashed line indicates the threshold of adjusted p-	value	(4.81 × 10−4).	The	modifiable	factors	were	filled	with	different	colors	based	on	
the	categories.	The	red	text	indicates	positive	associations	with	age	gap	(β > 0),	and	the	light	blue	text	indicated	negative	association	with	
age	gap	(β < 0).	(b)	The	forest	plot	showed	the	estimated	effects	of	the	factors	significantly	associated	with	biological	age	gap.	The	x-	axis	
indicates the β	coefficient	of	the	traits.	The	bar	indicated	the	95%	CI.	Continuous	traits	were	estimated	for	1-	SD	increase	in	the	trait.	Binary	
traits	were	estimated	as	yes	versus	no.	Good	health	status	was	compared	with	fair	or	poor.	A	brisk	walking	pace	was	compared	with	a	steady	
or	slow	pace.	Usually	standing	and	manual	jobs	were	compared	with	sometimes,	rarely,	or	never.	ALT,	alanine	aminotransferase;	ApoA,	
apolipoprotein	A;	ApoB,	apolipoprotein	B;	CRP,	C-	reactive	protein;	eGFR,	estimated	glomerular	filtration	rate;	FVC,	forced	vital	capacity;	
GGT,	gamma	glutamyltransferase;	Hb,	hemoglobin	concentration;	HDL,	high-	density	lipoprotein	cholesterol;	LDL,	low-	density	lipoprotein	
cholesterol;	Lp(a),	lipoprotein	A;	MET,	metabolic	equivalent	task;	PEF,	peak	expiratory	flow;	PM10,	particulate	matter	with	diameter	less	than	
or	equal	to	10	micrometers;	TG,	triglycerides.
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studies, our study revealed that blood pressure, pulmonary function, 
and	 glycated	 hemoglobin	 were	 essential	 indicators	 for	 BA	 (Chen	
et al., 2023;	Gao	et	al.,	2023).	Pulse	pressure,	the	difference	between	
systolic and diastolic blood pressure, was identified as an essential 
predictor for aging in our feature selection, while most previous 
studies	used	systolic	blood	pressure	to	build	BA	(Chen	et	al.,	2023; 
Gao	et	al.,	2023;	Tian	et	al.,	2023).	Pulse	pressure	is	a	marker	reflect-
ing	arterial	stiffness	(Safar,	2018)	and	a	recent	cross-	sectional	study	
has	shown	that	PP	was	associated	with	accelerated	epigenetic	aging	
(Xiao	et	al.,	2022).	A	cohort	study	with	32,833	participants	reported	
that	PP	gradually	increased	as	early	as	in	the	fourth	decade	and	con-
tinued	throughout	the	life	course	(Ji	et	al.,	2020).	In	addition	to	PP,	
our	study	also	identified	some	novel	predictors	for	BA.	For	instance,	
we found that cognitive functions were candidate predictors for 
aging, which were usually included in calculating brain or cognitive 
age	(Anatürk	et	al.,	2021;	Tian	et	al.,	2023;	Yu	et	al.,	2022).	The	great	
importance	of	cognitive	functions	in	BA	further	suggests	the	close	
correlation between the aging body and the brain. In addition, cysta-
tin C, an index of renal function and a potential predictor of cardio-
vascular	risk	(Chen	et	al.,	2023;	Shlipak	et	al.,	2005)	was	the	second	

most	essential	predictor	for	BA.	Likely,	another	renal	function	index,	
sodium	in	the	urine,	was	also	a	predictor	of	BA,	thus	highlighting	that	
renal dysfunction was closely associated with aging.

Accelerated	 aging	 was	 associated	 with	 various	 categories	 of	
diseases. Recent studies have shown that aging acceleration was 
associated with cardiovascular diseases, depression and anxiety, 
diabetes,	 and	 cognitive	 impairment	 (Chen	 et	 al.,	 2023; Forrester 
et al., 2021;	Gao	et	al.,	2023;	Gialluisi	et	al.,	2022).	Our	study	iden-
tified some novel associations of biological age gap, thus expanding 
the	 clinical	 significance	 of	 biological	 aging.	We	 first	 reported	 the	
positive association between age gap and some chronic disorders 
(anemia	and	gout)	and	infections	(any	or	bacterial	infections).	Nota-
bly, some inverse associations of age gap were also observed, espe-
cially	with	cancers.	This	unexpected	association	could	be	explained	
by	issues	in	methodology,	like	unmeasured	or	residual	confounding	
factors.	 Moreover,	 some	 biological	 mechanisms	 may	 explain	 the	
negative	 association.	 Several	 aging	 hallmarks	 (telomere	 attrition	
and	stem	cell	exhaustion)	were	antineoplastic	 (López-	Otín,	Pietro-
cola, et al., 2023).	Moreover,	 the	malignant	cells	were	hyperactive	
with a rapid cell cycle and increased energy consumption, while the 

F I G U R E  5 The	genetic	determinants	and	correlations	of	biological	age	gap.	(a)The	Manhattan	plot	shows	the	results	of	GWAS	analysis	
of	biological	age	gap	in	healthy	participants.	The	y-	axis	indicated	the	associations	of	the	association	of	the	locus	with	biological	age	gap.	
The	loci	with	FDR < 0.05	were	marked.	(b)	The	Manhattan	plot	shows	the	results	of	ExWAS	common	variant	analysis	of	biological	age	gap	
in	healthy	participants.	The	y-	axis	indicated	the	associations	of	the	association	of	the	locus	with	biological	age	gap.	The	loci	with	FDR < 0.05	
were	marked.	(c)	The	forest	plot	shows	the	results	of	LDSC	analysis	of	biological	age	gap	with	the	common	health-	related	outcomes	that	
age	gap	was	associated	with	the	longitudinal	survival	analysis.	The	health-	related	outcomes	were	filled	with	different	colors	based	on	the	
category.	The	outcomes	that	biological	age	gap	nominally	associated	were	marked	with	an	asterisk.	ExWAS,	exomewide	association	study;	
GWAS,	genome-	wide	association	study;	LDSC,	linkage	disequilibrium	score	correlation.
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F I G U R E  6 Expression	analysis	and	pleiotropy	of	CST3.	(a)	Regional	association	plot	of	CST3	in	healthy	White	British	participants.	The	
region covering CST3 ± 0.4 Mb	was	shown	in	the	locus	zoom	plot.	The	SNP	rs3761280	was	highlighted	and	filed	with	purple	color.	The	
colors	within	the	dots	indicated	the	levels	of	linkage	disequilibrium.	(b)	Tissue	expression	levels	of	CST3.	The	barplot	shows	the	top	10	most	
CST3-	expressed	tissues	in	GTEx	v7.	The	x-	axis	indicates	the	relative	expression	levels	[log2(TPM + 1)].	(c)	Cell	type	expression	of	CST3. 
The	top	section	shows	the	UMAP	of	brain	single-	nucleus	transcriptomic	data.	Each	dot	represented	an	individual	cell	and	was	filled	with	
different	colors	based	on	the	result	of	clustering	and	annotation.	The	bottom	section	shows	the	expression	level	of	CST3	in	the	brain.	(d)	The	
pleiotropy	of	rs3761280	in	the	UK	Biobank.	The	x-	axis	indicated	the	z- score	of	the	association	between	rs3761280	and	the	characteristics.	
GTEx,	genotype	tissue	expression;	HDL,	high-	density	lipoprotein;	OPC,	oligodendrocyte	progenitor	cell;	RDW,	red	blood	cell	distribution	
width;	Rel.Exp,	relative	expression;	snRNA-	seq,	single-	nucleus	RNA	sequencing;	TPM,	transcripts	per	million;	UMAP,	uniform	manifold	
approximation	and	projection;	WHR,	waist–	hip	ratio.	*p < 0.05,	**p < 0.01.
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senescent	cells	were	hypoactive	with	an	arrested	cell	cycle	(Aunan	
et al., 2017).	 To	 further	 investigate	 the	 implications	 of	 biological	
aging, we tested its associations with mortality, suggesting that age 
gap	 was	 a	 promising	 predictor	 of	 all-	cause	mortality.	 Intriguingly,	
we	found	that	age	gap	was	positively	associated	with	cause-	specific	
mortality, including cancers and diseases of multiple systems. In ad-
dition to the putative association between age gap and cancer and 
cardiovascular	diseases	(Tian	et	al.,	2023),	our	study	also	identified	
novel associations of age gap with mortality due to diseases of other 
systems, including hemopoietic, endocrine, digestive, and musculo-
skeletal	systems.	Overall,	our	BA	model	showed	predictive	value	in	
all-	cause	and	cause-	specific	mortality.

Anti-	aging	 strategies	 have	 been	 the	 focus	 in	 aging	 research.	
Previous	studies	have	proved	multiple	modifiable	factors	for	aging-	
related	disorders	 (Schloss	et	al.,	2020;	Yu	et	al.,	2020).	Therefore,	
revealing the modifiable factors for aging will not only help delay 
aging,	but	also	help	prevent	the	occurrence	of	age-	related	disorders.	
However, the modifiable factors of biological aging have not been 
systematically	 characterized.	A	 recent	 large-	scale	 study	 in	 the	UK	
Biobank	has	revealed	71	traits	associated	with	leukocyte	telomere	
length,	a	potential	biomarker	of	aging	(Bountziouka	et	al.,	2022).	Our	
study	found	35	candidate	modifiable	factors	of	age	gap.	Some	fac-
tors,	including	smoking	and	pulmonary	function,	have	been	shown	to	
be	associated	with	epigenetic	aging	acceleration	(Oblak	et	al.,	2021).	
Pulmonary	 function	 starts	 to	 decline	 at	 age	 25,	 with	 FEV1	 and	
FVC	decreasing	by	about	23–	30 mL	per	year	 (Roman	et	al.,	2016).	
Therefore,	respiratory	muscle	training	and	respiratory	rehabilitation	
serve	as	promising	 strategies	 for	delaying	biological	 aging	 (Roman	
et al., 2016;	Skloot,	2017).	Previous	studies	have	shown	that	body	
fat-	free	mass	decreased	significantly	in	the	elderly	population	(Kyle	
et al., 2001),	 which	 showed	 predictive	 value	 in	mortality	 (Genton	
et al., 2013).	However,	 the	 association	 between	 body	water	mass	
and	biological	aging	was	 rarely	 reported.	The	 impaired	 renal	 func-
tion, physical, and cognitive disabilities in older adults would reduce 
body	water	mass	and	increase	the	risk	of	dehydration,	which	in	turn	
leads	to	higher	mortality	and	morbidity	(Hooper	et	al.,	2014).	Never-
theless, higher fat percentage was associated with accelerated aging 
in	our	 results.	These	analyses	highlighted	 the	 importance	of	body	
composition in the aged population and indicated that caloric restric-
tion, aerobic, and resistance exercises were promising interventions 
for	biological	aging	(Batsis	&	Villareal,	2018).	Factors	reflecting	renal	
functions	were	 also	 significantly	 associated	with	 aging,	 like	eGFR,	
urea, and potassium in the urine, thus supporting the importance 
of	the	kidney	in	aging	(O'Sullivan	et	al.,	2017).	Our	study	also	found	
that	nervous	feelings	were	associated	with	biological	aging.	An	ob-
servational study has suggested that mood disorders were associ-
ated	with	accelerated	aging	(Simon	et	al.,	2006).	However,	the	causal	
associations need to be clarified as accelerated aging also contrib-
uted	 to	 anxiety	 (Gao	 et	 al.,	 2023).	 In	 addition,	 some	 associations	
should be interpreted with caution in our study. For instance, our 
study	showed	that	current	alcohol	drinking	was	negatively	associ-
ated	with	biological	aging.	The	unexpected	association	could	be	ex-
plained by the unadjusted effect measures or residual confounding 

(Kojima	et	al.,	2018, 2019).	 In	addition,	most	previous	studies	sug-
gested	that	 tea	had	protective	effects	on	aging	 (Feng	et	al.,	2021; 
Zhang	et	al.,	2021).	However,	some	studies	have	found	that	excess	
tea	intake	has	an	adverse	impact	on	cognition	and	is	associated	with	
Alzheimer's	disease	(Hu	et	al.,	2022;	Sun	et	al.,	2023).

In addition to the modifiable factors for aging, genetic factors 
were	reported	to	contribute	to	approximately	50%	of	the	total	vari-
ance	of	aging	(Gialluisi	et	al.,	2022).	In	an	Eastern	Asian	cohort,	Lin	
revealed that loci in GCKR, APOE, and FGF5	were	associated	with	BA	
acceleration	 (Lin,	2022).	Our	study	has	 leveraged	both	genotyping	
and	exome	sequencing	data	to	reveal	CST3	as	a	candidate	risk	gene	
for biological aging. CST3	encodes	cystatin	C,	a	marker	of	glomerular	
filtration	rate	and	an	essential	inhibitor	of	cysteine	proteases	(Suk-
hova et al., 2005).	Notably,	cystatin	C	is	also	the	second	most	essen-
tial	predictor	of	BA,	so	the	results	of	our	genetic	association	analyses	
further strengthen the evidence that cystatin C may play a role in 
biological	age	from	the	genetic	perspective.	In	a	community-	based	
cohort	study	of	older	adults	aged	more	than	65 years,	cystatin	C	was	
regarded	 as	 a	 marker	 of	 unsuccessful	 aging	 (Sarnak	 et	 al.,	 2008).	
However, most studies failed to identify any genetic associations 
between	 cystatin	 C	 and	 aging	 or	 age-	related	 disorders	 (Loew	
et al., 2005;	van	der	Laan	et	al.,	2016).	Therefore,	our	study	provided	
evidence	linking	cystatin	C	with	aging	at	genetic	level.	Previous	stud-
ies have reported the associations of CST3	with	 some	age-	related	
disorders,	 like	 pulmonary	 fibrosis	 (Kim	 et	 al.,	 2018),	 age-	related	
macular	degeneration	(Butler	et	al.,	2015),	and	Alzheimer's	disease	
(Bertram	 et	 al.,	 2007).	 CST3 was involved with arterial remodel-
ing,	neurogenesis,	and	neurotrophic	function	(Levy	et	al.,	2006;	Mi	
et al., 2007;	Sukhova	et	al.,	2005).	CST3	physically	binds	to	the	TGF-	β 
receptor	and	antagonizes	the	TGF-	β pathway, an essential pathway in 
senescent-	associated	secretory	phenotype	(SASP)	(Aging	Biomarker	
Consortium et al., 2023;	 Sokol	 &	 Schiemann,	 2004).	 Consistently,	
our results found that CST3 was highly expressed in astrocytes, the 
essential	supportive	cells	within	brain	(Endo	et	al.,	2022).	In	addition,	
a	cohort	study	demonstrated	that	cystatin	C	was	a	candidate	marker	
for	inflammation	(Koenig	et	al.,	2005).	Our	study	further	supported	
the hypothesis as the CST3	locus,	rs3761280,	was	probably	associ-
ated	with	immune	cell	indices.	Moreover,	rs3761280	was	also	asso-
ciated	with	the	traits	associated	with	metabolism	(IGF-	1	and	blood	
lipids).	Therefore,	our	 analyses	highlighted	 the	putative	 role	of	 in-
flammatory and metabolic pathways in aging pathogenesis.

Our	 study	had	 several	 strengths	and	 implications.	The	 large-	
scale	and	multi-	dimensional	phenotypes	available	 in	the	UK	Bio-
bank	 have	 enabled	 us	 to	 develop	 an	 integrative	 BA	 model	 and	
systematically	 analyze	 the	 modifiable	 and	 unmodifiable	 factors	
for	 biological	 aging.	We	 demonstrated	 that	 biological	 aging	was	
modifiable	by	multiple	factors.	Given	the	associations	between	bi-
ological	aging	and	multiple	health-	related	outcomes,	these	factors	
had	the	potential	to	delay	aging	and	thus	reduce	the	risk	of	age-	
related disorders. However, several limitations in our study should 
be	noticed.	First,	the	development	of	BA	model	was	restricted	to	
the healthy participants from a subpopulation of the large cohort. 
Second,	 the	 analysis	 of	 the	 modifiable	 factors	 for	 age	 gap	 was	
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cross-	sectional,	thus	caution	was	necessary	about	making	causal	
inferences.	Third,	the	participants	in	the	UK	Biobank	were	mostly	
White	British	population	and	tended	to	be	healthier	and	wealthier	
(Keyes	&	Westreich,	2019).	The	generalizability	of	our	BA	model	
needs external validation in different ethnicities or cohorts.

In	conclusion,	our	study	has	developed	an	 integrative	BA	model	
consisting	of	multi-	dimensional	indicators,	and	the	biological	age	gap	
showed	 predictive	 value	 in	 incident	 disease,	 all-	cause,	 and	 cause-	
specific mortality. Our study further systematically revealed the mod-
ifiable and unmodifiable factors for biological aging, which provided 
promising candidates for further experimental and clinical research.

4  |  MATERIAL S AND METHODS

4.1  |  Study participants

The	present	 study	analyzed	 the	data	 from	 the	UK	Biobank,	which	
consisted	of	502,409	participants	aged	37–	73 years	at	the	time	of	the	
first	assessment	(from	2006	to	2010)	(Bycroft	et	al.,	2018).	The	base-
line	data	including	biological	sample	(blood	and	urine)	assays,	physi-
cal measurements, socioeconomic characteristics, and genotyping 
data were collected at baseline from 22 assessment centers across 
the	UK	(Bycroft	et	al.,	2018).	The	UK	Biobank	has	approval	from	the	
North	West	Multi-	center	Research	Ethics	Committee	and	all	partici-
pants	in	the	UK	Biobank	have	provided	written	informed	consent.

4.2  |  Development of biological age and age gap

To	develop	BA,	we	first	screened	the	healthy	participants	in	the	UK	
Biobank.	 Those	who	 had	 any	 health-	related	 outcomes	 at	 baseline	
or	would	develop	any	health-	related	outcomes	during	the	follow-	up	
were excluded. In addition, the participants who withdrew from the 
UK	Biobank	were	also	excluded,	leaving	59,316	healthy	participants.	
The	health-	related	outcomes	were	defined	as	the	first	occurrences	
(Category	 1712)	 in	 the	 UK	 Biobank,	 which	 included	 1165	 health-	
related	outcomes	categorized	into	16	categories.

The	study	took	all	phenotypes	(n = 8276)	available	in	the	UK	Bio-
bank	into	consideration	at	first	and	then	took	several	steps	to	filter	
the phenotypes to develop a biological age model. In the first step, the 
phenotypes	with	high	missing	values	(> 30%	in	all	participants	from	
the	UK	Biobank,	n = 7482)	were	excluded.	Then	in	the	second	step,	we	
further	excluded	the	categorical	phenotypes	 (n = 448)	and	nonclini-
cally	relevant	phenotypes	(n = 303).	In	addition,	the	variables	were	av-
eraged	if	tested	for	both	the	right	and	left	sides	of	the	body,	like	hand	
grip	strength,	the	fat	mass	of	the	legs	or	arms.	The	variables	were	also	
averaged	if	tested	more	than	once	at	baseline,	like	diastolic	and	sys-
tolic	blood	pressure,	pulse	rate,	FVC,	and	FEV1.	We	also	included	four	
derived	variables,	 including	pulse	pressure	 (the	deviation	of	systolic	
and	diastolic	blood	pressure;	PP),	mean	arterial	pressure	(the	sum	of	
diastolic	pressure	and	one-	third	of	pulse	pressure;	MAP),	waist–	hip	
ratio	(the	ratio	of	waist	and	hip	circumference;	WHR),	and	FEV1/FVC.	

Overall,	 there	were	118	phenotypes	 considered	 for	 developing	BA	
(see	 Supplements	 for	 further	 details).	 Then	 the	 data	 was	 imputed	
using	the	multiple	imputations	by	chained	equations	approach,	with	
five	imputed	data	sets	and	10	iterations	(White	et	al.,	2011).

Then	 in	 the	 third	 step,	 we	 used	 LightGBM	 algorithm	 to	 filter	
the	 candidate	 phenotypic	 features.	Briefly,	 the	118	 features	were	
ranked	 based	 on	 their	 information	 gains,	 an	 inherent	 approach	
within	 tree-	based	machine	 learning	algorithms,	which	can	be	con-
sidered as the predictive contributions to estimating chronological 
age.	We	 selected	 the	 top	 50	 phenotypes	 and	 then	 performed	 hi-
erarchical	 clustering	 on	 the	 Spearman	 rank-	order	 correlations	 to	
alleviate the multicollinearity issue, in such highly correlated fea-
tures	were	clustered	 together	and	we	kept	only	a	 single	predictor	
within	clusters	under	an	arbitrary	adopted	threshold	of	0.7.	After	the	
removal	of	 correlated	predictors,	 all	 phenotypic	 features	were	 re-	
ranked	based	on	a	newly	developed	LightGBM	classifier.	Next,	in	the	
fourth	 step,	 consecutive	 classifiers	 were	 developed	 with	 sequen-
tially added predictors based on the updated predictor importance 
ranking	orders.	The	stopping	point	was	reached	when	the	difference	
between the previous and the present predictor was less than 0.02 
(Table S3).	In	addition,	it	was	noted	that	no	significant	improvement	
in model performance could be observed when additional pre-
dictors come into the model. Overall, the top 20 predictors were 
identified	for	 the	development	of	BA	via	the	LightGBM	algorithm.	
The	employed	LightGBM	algorithm	works	by	starting	from	a	weak	
base	learner,	usually	a	decision	tree	model,	and	sequentially	training	
each new learner to correct the errors from the previously trained 
ones. In such a manner, the predictions can be added up to produce 
a	strong	overall	final	predictive	model.	The	hyperparameter	tuning	
was performed by an exhaustive selection from 500 candidate sets 
of parameters and finally the optimal set based on the performance 
measurement	 of	 MAE.	 The	 hyperparameters	 to	 develop	 the	 BA	
model were as follows: learning_rate = 0.05;	max_depth = 5;	n_estima-
tors = 800;	num_leaves = 31;	 subsample = 0.8;	colsample_bytree = 0.8.	
The	supporting	information	about	the	parameters	can	be	found	on	
the	 website	 of	 LightGBM	 documentation	 (https://light gbm.readt 
hedocs.io/en/lates	t/Param	eters	-	Tuning.html).	 The	 LightGBM	 algo-
rithm	was	 implemented	 by	 the	 R	 package	 lightgbm	 version	 3.3.3.	
under	the	R	software	version	4.2.0.	The	model	was	developed	and	
validated	using	a	five-	fold	cross-	validation	strategy	that	the	valida-
tion	set	(one-	fold	of	data)	was	kept	untouched	and	merely	used	for	
evaluation	 purposes,	 while	 the	 hyperparameters	 tuning	 and	 post-	
calibration	 were	 performed	 within	 inner-	looped	 cross-	validation	
within	the	training	sets	(four-	fold	of	data).	For	comparison	purposes,	
we	employed	standard	regression,	lasso	regression,	to	calculate	BA	
with	the	same	phenotypes.	Lasso	regression	was	conducted	by	the	R	
package	glmnet	and	performed	10-	fold	cross-	validation.

4.3  |  Health- related outcomes characterization

The	diagnoses	and	medical	conditions	of	the	participants	were	ob-
tained through hospital inpatient record data, primary care data, 

https://lightgbm.readthedocs.io/en/latest/Parameters-Tuning.html
https://lightgbm.readthedocs.io/en/latest/Parameters-Tuning.html
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death	 register	 data,	 and	 self-	reported	 data	 from	 the	 UK	National	
Health	 Services.	 The	 diseases	 were	 recorded	 by	 the	 distinct	 In-
ternational	 Classification	 of	 Disease	 (ICD)-	10	 system.	 A	 total	 of	
78	common	health-	related	outcomes	 reported	 in	a	previous	study	
were	investigated	in	our	study	(Kivimäki	et	al.,	2021, 2022),	and	the	
unhealthy	 participants	with	 full	 data	 to	 predict	 BA	were	 included	
(n = 257,336).	We	 excluded	 the	 diseases	with	 less	 than	 200	 cases	
among the unhealthy participants and the miscellaneous outcomes 
(i.e.,	 self-	harm	 and	 road	 accidents),	 leaving	 70	 common	 health-	
related	 outcomes.	 Regarding	 cause-	specific	 mortality,	 those	 with	
less	than	50	cases	were	excluded	from	the	analysis.	The	details	of	
the	 health-	related	 outcomes	 can	 be	 found	 in	 Table S4. Regarding 
mortality,	 the	 UK	 Biobank	 receives	 death	 notifications,	 including	
age	 at	 death	 and	 primary	 causes	 of	 death	 determined	 by	 ICD-	10,	
by	linkage	to	national	death	registries.	The	cause-	specific	mortality	
(including	both	primary	and	contributory	 causes	of	mortality)	was	
defined	using	the	following	codes	based	on	the	ICD-	10	system.	For	
incident	 disease,	 the	 end	of	 follow-	up	was	defined	 as	 the	date	 of	
first diagnosis of the disease, death, loss to follow up, or end of hos-
pital	inpatient	data	collection	on	December	31,	2021.	For	all-	cause	
and	 cause-	specific	mortality,	 the	 end	of	 follow-	up	was	defined	 as	
the date of death, loss to follow up, or end of hospital inpatient data 
collection on December 31, 2021.

4.4  |  Modifiable factors

We	collected	118	potentially	modifiable	factors	in	the	UK	Biobank	
data.	And	we	have	confirmed	that	the	118	modifiable	factors	had	
a	 low	 proportion	 (<30%)	 of	 missing	 values.	 After	 excluding	 the	
factors	included	in	the	BA	model,	the	modifiable	factors	could	be	
subclassified	 into	 11	 categories:	 (1)	 alcohol	 (e.g.,	 alcohol	 intake	
frequency),	 (2)	 anthropometry	 (e.g.,	 body	mass	 index),	 (3)	 blood	
chemistry	(e.g.,	glucose,	hemoglobin),	(4)	chronobiology	(e.g.,	sleep	
duration),	(5)	diet	(e.g.,	tea	intake),	(6)	early	life	and	sexual	health	
(e.g.,	age	 first	sexual	 intercourse),	 (7)	general	health	 (e.g.,	FEV1),	
(8)	 physical	 activity	 (e.g.,	 walking	 pace),	 (9)	 psychological	 (e.g.,	
nervous	 feelings),	 (10)	 smoking	 (smoking	 status),	 and	 (11)	 socio-
economic	(e.g.,	education).	The	information	about	the	field	ID	and	
processing of the phenotypes is presented in Table S7. Data of the 
modifiable factors was imputed using the multiple imputation by 
chained	equations	approach,	with	 five	 imputed	data	sets	and	10	
iterations.

4.5  |  Genomewide association analysis

PLINK	software	(version	2.0)	was	used	to	perform	GWAS	analy-
sis	 (Purcell	et	al.,	2007).	The	quality	control	of	the	genotype	se-
quencing	 data	 was	 conducted	 as	 follows:	 the	 individuals	 with	
missing	 genotype	 rate >0.05,	 mismatch	 between	 self-	reported	
and	genetic	sex,	putative	sex	chromosome	aneuploidy,	heterozy-
gosity	 rate	 outliers,	 putative	 third-	degree	 relatives	 >10 were 

excluded.	 The	 variants	 with	 call	 rate <0.95, minor allele fre-
quency	(MAF) < 0.005,	Hardy–	Weinberg	p-	value	<10−6, or impu-
tation	quality	 score <0.5 were excluded. Only the individuals of 
White	British	ancestry	were	included	in	the	GWAS	analysis.	Age	
at recruitment, gender, genotype array, and the top 10 principal 
components	 (PCs)	were	used	as	the	covariates.	The	healthy	par-
ticipants	GWAS	was	used	as	the	main	analysis,	with	about	9008	
participants.	 To	 test	 the	 robustness	 of	 the	 results,	we	 also	 per-
formed	GWAS	of	both	healthy	and	unhealthy	participants	and	the	
final	sample	size	of	it	was	210,801.

4.6  |  Exomewide association analysis

Regarding	common	variants	(at	least	10	total	carriers	with	age	gap	
characteristics	of	White	British	ancestry),	the	associations	with	age	
gap	were	analyzed	using	a	linear	regression	model	using	PLINK	2.0	
(Purcell	et	al.,	2007).	Age	at	recruitment,	gender,	and	the	top	10	PCs	
were	covariates.	Regarding	rare	variants,	the	SKAT-	0	test	by	SAIGE-	
GENE+	strategy	was	conducted	to	analyze	the	rare-	variant	gene	as-
sociations	(Zhou	et	al.,	2022).

SAIGE-	GENE+	 method	 is	 used	 for	 region-	based	 association	
analysis	that	is	capable	of	processing	large-	scale	samples	and	can	
collapse	the	ultra-	rare	variants	(which	are	defined	as	minor	allele	
carrier	[MAC] ≤ 10)	to	a	single	marker	and	then	test	the	collapsed	
variant	together	with	all	other	variants	with	MAC > 10,	which	re-
duces	 the	data	 sparsity	 due	 to	 the	 effects	 of	 ultra-	rare	 variants	
(Zhou	et	 al.,	2020, 2022).	 Three	different	maximum	minor	 allele	
frequency	 (MAF)	 cutoffs	 (1%,	 0.1%,	 and	 0.05%)	 and	 three	 dif-
ferent	 variant	 annotations	 (loss-	of-	function,	 missense,	 and	 loss-	
of-	function	 and/or	 missense),	 followed	 by	 aggregating	 multiple	
SKAT-	O	tests	using	the	Cauchy	combination	or	minimum	p-	value	
for	each	gene	or	 region	 (Li	et	al.,	2020;	Liu	&	Xie,	2020).	SnpEff	
Version	5.1	was	used	to	annotate	and	classify	 the	variants	of	all	
samples	(Cingolani	et	al.,	2012).	The	LOF	variants	include	the	vari-
ants annotated as frameshift, splicing donor, splicing acceptor, and 
stop	 gain.	 The	 missense	 variants	 include	 the	 variants	 predicted	
as	 deleteriousness	 in	 Sorting	 Intolerant	 From	 Tolerant	 (SIFT)	
(Vaser	 et	 al.,	 2016),	 Polymorphism	 Phenotyping	 v2	 (PolyPhen2)	
HDIV	 (Adzhubei	 et	 al.,	 2013)	 and	 PolyPhen2	 HVAR	 (Adzhubei	
et al., 2013);	 likelihood	 ratio	 test	 (LRT)	 (Chun	&	Fay,	2009);	 and	
MutationTaster	 (Schwarz	 et	 al.,	2010),	 and	 are	 further	 collapsed	
for	each	gene.	The	ExWAS	model	was	adjusted	by	age	at	the	re-
cruitment,	gender,	and	first	10	PCs.

4.7  |  Heritability estimation

The	heritability	of	the	SNP	was	estimated	by	the	genome-	based	re-
stricted	maximum	 likelihood	 (GREML)	method	 implemented	 in	 the	
genomewide	complex	trait	analysis	(GCTA)	software	v1.93.2	(Yang	
et al., 2011).	Age	at	recruitment,	gender,	genotype	array,	and	the	top	
10	principal	components	(PCs)	were	used	as	the	covariates.
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4.8  |  Genomic risk loci characterization and 
gene mapping

FUMA	was	used	to	identify	the	genomic	risk	loci	and	map	the	genes	
(Watanabe	et	al.,	2017).	The	SNPs	with	FDR <0.05	and	linkage	dis-
equilibrium	(LD)	r2 < 0.6	with	any	other	SNPs	were	considered	inde-
pendent	significant	SNPs.	The	SNPs	with	LD	r2 < 0.1	with	any	other	
SNPs	were	considered	genomic	risk	loci.	The	1000G	Phase	3	Euro-
pean	project	was	used	as	the	reference.	Positional	mapping	(based	
on	the	physical	distance	within	10 kb	of	the	SNP)	method	was	used	
to	conduct	gene	mapping	analysis	of	the	genomic	risk	loci.

4.9  |  Functional enrichment of genes

The	functional	enrichment	of	the	genes	was	conducted	using	the	R	
package	clusterProfiler	 (Wu	et	al.,	2021).	The	mapped	genes	were	
analyzed	for	the	enrichment	of	biological	processes,	molecular	func-
tion,	and	cellular	component	from	Gene	Ontology	(GO)	(Gene	On-
tology Consortium, 2015)	and	pathway	from	Kyoto	Encyclopedia	of	
Genes	and	Genomes	(KEGG)	(Kanehisa	&	Goto,	2000).	The	default	
parameters of a minimum of 5 and a maximum of 2000 genes per 
category	were	used.	The	terms	or	the	pathways	with	FDR	less	than	
0.05 were considered as enrichment.

4.10  |  Genetic correlation analysis

Genetic	 correlation	 analysis	 of	 biological	 age	 gap	 with	 diseases	
was	 conducted	by	 LDSC	v.1.0.1	 (Bulik-	Sullivan	et	 al.,	2015).	 The	
summary-	level	 GWAS	 data	 of	 the	 diseases	 were	 obtained	 from	
FinnGen	 (Kurki	 et	 al.,	 2023).	 The	 precomputed	 European	 LD	
scores	from	the	1000	Genomes	Project	phase	3	in	the	LDSC	pack-
age	were	used	and	the	LDSC	analysis	was	restricted	to	Hapmap3	
SNPs.

4.11  |  Expression- based analysis

Regarding the expression level of the genes in different tissues or 
organs,	bulk	RNA	sequencing	data	from	GTEx	were	obtained	(GTEx	
Consortium, 2015).

To	 further	 test	 the	 cell	 type	 expression	 levels,	 a	 large	 human	
brain	single-	nucleus	RNA	sequencing	data	set	by	Garcia	et	al.	(2022)	
was	 obtained,	 including	 61,862	 individual	 cells	 including	 neurons,	
glia,	and	cerebrovascular	cells.	The	R	package	Seurat	was	used	for	
the	main	analysis	and	visualization	(Butler	et	al.,	2018).	The	annota-
tion of the cell type was conducted using the metadata file provided 
by	the	authors	(Garcia	et	al.,	2022).

Regarding	 colocalization	 analysis,	 we	 obtained	 eQTL	 data	
from	 46	 different	 organs	 or	 tissues	 from	 GTEx	 v7	 (GTEx	 Con-
sortium, 2015).	 The	 R	 package	 coloc	was	 used	 for	 colocalization	

analysis	 (Giambartolomei	et	al.,	2014).	Colocalization	analysis	uti-
lized	 approximate	 the	 Bayes	 factor	 to	 generate	 posterior	 proba-
bilities	 (PP).	 Default	 parameters	 (p1 = 10−4, p2 = 10−4, p12 = 10−5)	
were	 used.	 Strong	 evidence	 of	 colocalization	 was	 defined	 as	
PPH3 + PPH4 ≥ 0.99	 and	 PPH4/PPH3 ≥ 5.	 Suggestive	 evidence	
of	 colocalization	 was	 defined	 as	 PPH3 + PPH4 ≥ 0.90	 and	 PPH4/
PPH3 ≥ 3	(Codd	et	al.,	2021; Jin et al., 2016).

4.12  |  Statistical analysis

The	Cox	proportional	hazard	regression	model	was	used	to	test	the	
longitudinal	associations	of	biological	age	gap	with	the	risks	of	com-
mon	health-	related	outcomes,	all-	cause,	and	cause-	specific	mortal-
ity. Regarding the association with incident diseases, the participants 
with the specific diagnosis before or at the time of recruitment were 
excluded	 from	 the	 models.	 Age	 at	 recruitment,	 gender,	 ethnicity,	
education	score,	smoking	status,	alcohol	drinking	status,	TDI,	over-
all	health	rating,	and	number	of	medications/treatments	taken	were	
used	 as	 covariates.	 Proportional	 hazards	 of	 the	 associations	were	
tested	using	Schoenfeld's	 residuals.	The	second	and	 the	 third	bio-
logical	age	gap	quartiles	(Q2	and	Q3)	were	set	as	the	reference.	Bon-
ferroni correction was performed for multiple comparisons.

A	multivariable	linear	regression	model	was	used	to	test	the	mod-
ifiable factors for biological age gap, which was set as the response 
variable. For continuous traits, the data was z-	normalized	 before	
analysis.	Age	at	recruitment	and	gender	were	used	as	the	covariates.	
In the analyses of continuous traits with age gap, the outlier values 
(defined	as	the	values	1.5	times	interquantile	range	(IQR)	lower	than	
the	lower	quartile	or	1.5	times	IQR	higher	than	the	upper	quartile)	
were	winsorized	 at	 the	5%	and	95%	percentile	 values.	Bonferroni	
correction was used for multiple comparisons.

Regarding	the	pleiotropic	analysis	of	rs3761280,	a	multivariable	
linear	regression	model	was	used.	A	total	of	94	biological	traits	were	
considered	and	analyzed	with	an	analysis	of	variance	(ANOVA)	test.	
Only	 the	 traits	 with	 statistical	 significance	 (p < 0.05)	 among	 the	
rs3761280	 genotypes	 were	 further	 analyzed.	 Age	 at	 recruitment	
and gender were adjusted in the model.

R	 software	 version	 4.2.0	 was	 used	 to	 conduct	 data	 cleaning,	
analyses,	and	visualization.	A	two-	sided	p-	value	of	<0.05 was con-
sidered statistically significant.

CODE AVAIL ABILIT Y
This	 study	 used	 open	 source	 software	 and	 codes,	 specifically	 R	
(https://www.r-	proje	ct.org/),	 lightgbm	 (https://github.com/Micro	
soft/LightGBM),	 PLINK	 (https://www.cog-	genom	ics.org/plink/),	
GCTA	 (http://cnsge nomics.com/softw are/gcta/),	 FUMA	 (https://
fuma.ctglab.n/l),	 MAGMA	 (https://ctg.cncr.nl/softw are/magma),	
SAIGE-	GENE+	 (https://saige	git.github.io/SAIGE	-	doc/),	 LDSC	
(https://	github.com/bulik/	ldsc/),	 clusterProfiler	 (https://github.
com/YuLab	-	SMU/clust	erPro	filer),	Seurat	(https://satij alab.org/seura 
t/index.html),	and	coloc	(https://github.com/chr1s walla ce/coloc).
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