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Abstract
Identifying the clinical implications and modifiable and unmodifiable factors of aging 
requires the measurement of biological age (BA) and age gap. Leveraging the bio-
medical traits involved with physical measures, biochemical assays, genomic data, and 
cognitive functions from the healthy participants in the UK Biobank, we establish an 
integrative BA model consisting of multi-dimensional indicators. Accelerated aging 
(age gap >3.2 years) at baseline is associated incident circulatory diseases, related 
chronic disorders, all-cause, and cause-specific mortality. We identify 35 modifiable 
factors for age gap (p < 4.81 × 10−4), where pulmonary functions, body mass, hand grip 
strength, basal metabolic rate, estimated glomerular filtration rate, and C-reactive 
protein show the most significant associations. Genetic analyses replicate the pos-
sible associations between age gap and health-related outcomes and further identify 
CST3 as an essential gene for biological aging, which is highly expressed in the brain 
and is associated with immune and metabolic traits. Our study profiles the landscape 
of biological aging and provides insights into the preventive strategies and therapeu-
tic targets for aging.
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1  |  INTRODUC TION

Aging is characterized by the progressive loss of physiological func-
tions and regeneration potential in multiple tissues and organs (Khan 
et al., 2017; López-Otín, Blasco, et al., 2023). An unappreciated but 
important association between aging and multiple chronic disorders 
has been proposed for several decades, and aging is a shared mecha-
nism and the major risk factor of various common diseases, including 
malignant neoplasms, atherosclerotic cardiovascular diseases, neuro-
degenerative disorders, and metabolic syndromes (Aunan et al., 2017; 
Hou et al.,  2019; Liberale et al., 2022). Fortunately, recent studies 
suggested that aging was modifiable (Partridge et al., 2020) and have 
revealed some candidate behaviors or lifestyles that showed anti-
aging properties in animal models, like caloric restriction (Fontana & 
Partridge, 2015), physical activity (Neufer et al., 2015), and amino acid 
restriction (Levine et al., 2014). However, the modifiable factors for 
biological aging have not been systematically studied, and some other 
factors that may delay aging await discovery. In addition, genetics is 
also an essential approach for identifying the underlying mechanisms 
and pathways of biological aging, thus providing novel therapeutic 
targets and prevention opportunities for aging research (Melzer 
et al., 2020). As global aging population is still growing and the bur-
den of age-related diseases is increasing rapidly and has gradually be-
come the most important causes of mortality and morbidity in elderly 
individuals (GBD 2017 Disease and Injury Incidence and Prevalence 
Collaborators, 2018; Guo et al., 2022), revealing the clinical implica-
tions and modifiable factors of aging and the underlying mechanisms 
is of great importance for reducing the socioeconomic and healthcare 
burden of age-related diseases, thus promoting healthy aging.

As individuals age at different rates (Hamczyk et al., 2020), bi-
ological age (BA) was proposed as a term to estimate the rate and 
extent of biological aging and reflect the biological and physiologi-
cal functions of individuals (Khan et al., 2017). Till now, multiple BA 
models have been proposed, including frailty index, Phenotypic Age, 
Klemera-Doubal method Biological Age (KDM-BA), and epigenetic 
PhenoAge (Cesari et al.,  2014; Chen et al.,  2022; Klemera & Dou-
bal, 2006; Levine et al., 2018), and their associations with some com-
mon diseases were also reported. However, most BA measurements 
were generated with solely clinical indicators (i.e., Phenotypic Age or 
frailty index) or domain-specific data (i.e., epigenomics, transcriptom-
ics, or metabolomics aging clocks). In addition, aging is characterized 
by functional deterioration of multiple organs (Hernandez-Segura 
et al.,  2018). Therefore, a comprehensive BA measurement based 
on physical measures, biochemical assays, and omics data will thor-
oughly reflect the nature of biological aging and provide deeper in-
sights into the association of biological aging with health outcomes, 
and its underlying determinants and therapeutic targets.

In addition, previous BA measurements were mainly generated 
by linear regression statistical modeling methods, which were lim-
ited by the curse of dimensionality and the complex correlation 
structure of the indicators (Rutledge et al., 2022). Machine learning 
(ML) can learn the patterns from multi-dimensional data to build the 
model with the relevant features and make predictions on the new 

data (Baecker et al., 2021; Rutledge et al., 2022). Compared with the 
traditional linear regression models, ML makes inferences at individ-
ual levels, thus having great potential for clinical application (Baecker 
et al., 2021). Therefore, ML-based algorithms are widely used to re-
duce the number of features in the development of predictive mod-
els (You et al., 2022, 2023), which may better capture the complexity 
of aging (Rutledge et al., 2022).

In the present study, we used the Light Gradient Boosting Ma-
chine (LightGBM) algorithm to develop an integrative BA model using 
multi-dimensional data in the UK Biobank, a large longitudinal cohort 
of middle-aged and older adults with a median follow-up period of 
more than 10 years (Figure 1). We screened 59,316 healthy individu-
als throughout baseline and follow-up, developed the BA model with 
physical measures, biochemical assays, cognitive functions, and ge-
nomics data, and then calculated the age gap, the deviation of BA 
from chronological age (CA). Next, we tested the longitudinal disease 
and mortality risk of age gap in unhealthy individuals. We further 
evaluated the genetic associations between age gap and the common 
health-related outcomes. Then, we identified the modifiable factors 
for age gap and evaluated to what extent these factors delayed bio-
logical aging. Finally, we identified the genetic determinants of age 
gap and their underlying phenotypic mechanisms. Our work sheds 
light on the complexity of biological aging and its relevance to health-
related outcomes, modifiable traits, and genetic architecture, thus 
providing insights into the potential interventions for aging.

2  |  RESULTS

2.1  |  Predictors selection for biological age

After screening, 59,316 healthy participants without any health-
related outcomes at baseline or during the follow-up were included 
(Figure S1 and Table S1). The participants had a median age of 57 years 
and were predominantly women (31,530 [53.2%]) and of white eth-
nicity (55,609 [93.8%]). We divided all healthy participants into train-
ing sets (60%), testing sets (20%), and validation sets (20%). Of the 
118 candidate predictors (Table S2), we first selected the top 50 pre-
dictors based on their importance to chronological age (CA). Some 
highly correlated predictors were identified, like forced vital capac-
ity (FVC) and forced expiratory volume in 1-second (FEV1), systolic 
blood pressure (SBP), diastolic blood pressure (DBP), and pulse pres-
sure (PP). Therefore, hierarchical clustering was further conducted 
to eliminate multicollinearity (Figure S2). A total of 37 predictors re-
mained and were ranked based on their importance to CA (Figure 2a). 
To determine the predictors for constructing the BA model, a sequen-
tial forward selection scheme was implemented. The performance of 
the BA model, which was determined by mean absolute error (MAE) 
shown on the right axis, was profiled by the line chart in Figure 2a 
(the full data can be found in Table S3). Finally, the top 20 phenotypes 
were selected as predictors for constructing the BA model. We pro-
filed the BA model performance in the validation set (n = 11,862; Fig-
ure 2b). In all individuals, the MAE was 4.49. The model performance 
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was relatively better among females, with an MAE of 4.33 than that of 
males (MAE = 4.68). In addition, lasso regression selected 48 features 
(Table S4), yielding an MAE of 4.90 in all individuals (Figure S3).

2.2  |  Longitudinal associations of age gap 
with diseases

To test the associations of age gap with the risk of common health-
related outcomes, we predicted BA in unhealthy participants 

with complete data (n = 257,336; Table  S5) and calculated the 
age gap (BA minus CA). The participants were divided into four 
groups based on the age gap quartiles (Q1: age gap < −3.9; Q2: 
−3.9 ≤ age gap < −0.5; Q3: −0.5 ≤ age gap <3.2; Q4: age gap 
≥3.2). Among the 70 common health-related outcomes included 
in the analysis (see Table S6 for further details), during a median 
of 12.88 (Q1, 12.24; Q3, 13.53) years of follow-up, the lowest 
and highest age gap quartiles were nominally associated with 
43 outcomes (p < 0.05; Figure  2c and Table  S7). After Bonfer-
roni corrections (adjusted p = 0.05/70 = 7.14 × 10−4), we found 

F I G U R E  1 Graphical abstract of the study. Top part, the study participants and development of biological age model. The study included 
59,316 healthy participants in the UK Biobank and considered 8276 phenotypes for developing biological age model. All healthy participants 
were further divided into training set (60%), validation set (20%), and testing set (20%). LightGBM algorithm was conducted to identify the 
most important predictors for biological age and build the model and the top 20 predictors were selected. Then the age gap, the difference 
between the estimated biological age and chronological age, was calculated within the participants. Middle part, the associations of age 
gap with diseases and mortality. We tested the longitudinal associations of age gap with 70 common health-related outcomes, all-cause 
mortality and cause-specific mortality, and the genetic correlations of age gap with common health-related outcomes. Bottom part, the 
modifiable and unmodifiable factors for age gap. We identified 34 modifiable factors and 9 genomic risk loci for age gap and profiled the 
pleiotropy of rs3761280 in the UK Biobank. ALP, alkaline phosphatase; ApoA, apolipoprotein A; CI, confidence interval; COPD, chronic 
obstructive pulmonary disease; CRP, C-reactive protein; eGFR, estimated glomerular filtration rate; HR, hazard ratio; IGF-1, insulin growth 
factor 1; LightGBM, Light Gradient Boosting Machine; LTL, leukocyte telomere length; PP, pulse pressure; RDW, red blood cell distribution 
width; TC, total cholesterol.
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F I G U R E  2 Predictor selection, performance, and implications of biological age. (a) The barplot showed the importance of phenotypes, 
which was the square root of the gain value generated from the LightGBM algorithm. The line chart showed the MAE when adding the 
phenotypes into the biological age model. (b) The scatter plot shows the distributions of biological age and chronological age of the 
participants. Each scatter indicated a single participant. The MAE and correlation coefficient of the model are shown in the left top part of 
the plot. (c) Associations of age gap with common health-related outcomes. The forest plot shows the results of Cox proportional hazards 
regression analyses. Only the outcomes with nominally statistical significance (p < 0.05) are shown in the figure with the corresponding 
ICD-10 codes. The Cox proportional model was adjusted for age at the recruitment, gender, ethnicity, education score, smoking status, 
alcohol drinking status, Townsend deprivation index, overall health rating, and number of medications/treatments taken. The second and the 
third quartiles of age gap (Q2 and Q3) are set as the reference, and other quartiles are marked with different colors. CI, confidence interval; 
HR, hazard ratio; ICD, international classification of diseases; IGF-1, insulin growth factor; MAE, mean absolute error; SHBG, sex hormone 
binding globulin.
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that the highest age gap quartile was mainly associated with 
diseases of the circulatory system, including hypertension (HR 
[95% CI]: 1.42 [1.36–1.47], p = 2.00 × 10−69), ischemic heart dis-
eases (1.26 [1.20–1.33], p = 1.46 × 10−17), myocardial infarction 
(1.26 [1.15–1.38], p = 7.41 × 10−7), arrhythmias (1.11 [1.05–1.17], 
p = 3.23 × 10−4), heart failure (1.50 [1.36–1.65], p = 4.37 × 10−17), 
atherosclerosis (1.77 [1.44–2.16], p = 4.12 × 10−8), stroke (1.29 
[1.17–1.43], p = 1.04 × 10−6), and cerebral infarction (1.27 [1.12–
1.43], p = 2.16 × 10−4). In addition to diseases of circulatory system, 
a higher age gap was also associated with some relevant chronic 
conditions, like anemia (1.10 [1.05–1.16], p = 2.68 × 10−4), diabetes 
(1.50 [1.41–1.60], p = 1.47 × 10−34), chronic obstructive bronchitis 
(1.51 [1.40–1.62], p = 8.39 × 10−27), and renal failure (1.52 [1.43–
1.61], p = 6.02 × 10−45). Some associations between the highest 
age gap quartile and brain disorders were also observed, including 
dementia (1.34 [1.14–1.57], p = 3.95 × 10−4), disorders due to sub-
stance abuse (1.23 [1.17–1.30], p = 5.26 × 10−15), and epilepsy (1.35 
[1.14–1.60], p = 4.70 × 10−4). However, we found that the lowest 
age gap quartile was associated with incident cancer, including 
any cancers (1.05 [1.02–1.08], p = 1.49 × 10−4) and prostate cancer 
(1.18 [1.12–1.26], p = 1.20 × 10−8).

2.3  |  Longitudinal associations of age gap 
with mortality

We further tested the longitudinal associations of age gap with 
all-cause and cause-specific mortality among the unhealthy par-
ticipants and found that the highest age gap quartile was associated 

with a 27% higher hazard for all-cause mortality (HR [95% CI]: 1.27 
[1.19–1.34], p = 4.29 × 10−15; Figure 3 and Table S8). Consistent with 
the results of incident diseases, the highest age gap quartile was 
significantly associated with the mortality due to diseases of the 
circulatory system (1.54 [1.38–1.71], p = 3.55 × 10−15), hypertension 
(1.70 [1.36–2.13], p = 3.30 × 10−6), and ischemic heart disease (1.58 
[1.35–1.85], p = 1.07 × 10−8) after Bonferroni corrections (adjusted 
p = 0.05/70 = 7.14 × 10−4). In addition, we also observed positive as-
sociations between the highest age gap quartile and some chronic 
disorders (including diabetes, chronic obstructive bronchitis, dis-
ease of the liver, and renal failure). Overall, the longitudinal survival 
analysis of the age gap among the unhealthy participants suggested 
that the highest age gap was positively associated with the risk of 
incident diseases of the circulatory system, but negatively associ-
ated with the risk of incident cancers. While age gap was positively 
associated with all-cause and cause-specific mortality.

2.4  |  Modifiable factors for age gap

Then we investigated the modifiable factors for biological age gap. We 
first screened 118 modifiable factors with low missing values in the UK 
Biobank. The factors included in the BA model were excluded, leaving 
104 modifiable factors categorized into 11 clusters (Table S9). After 
Bonferroni correction, we identified 35 modifiable factors for age gap 
(p < 4.81 × 10−4, Figure 4a and Table S10). The most significant factors 
were pulmonary functions (FVC: p = 1.7 × 10−210; PEF: p = 8.01 × 10−127). 
Some modifiable factors associated with anthropometry were in-
versely associated with higher age gap, including body fat-free mass 

F I G U R E  3 Associations of age gap with all-cause and cause-specific mortality. The forest plot shows the results of Cox proportional 
hazards regression analyses. Only the outcomes with nominally statistical significance (p < 0.05) were shown in the figure with the 
corresponding ICD-10 codes. The Cox proportional model was adjusted for age at the recruitment, gender, ethnicity, education score, 
smoking status, alcohol drinking status, Townsend deprivation index, overall health rating, and number of medications/treatments taken. 
The lowest quantile of age gap (Q1) is set as the reference, and other quantiles are marked with different colors. CI, confidence interval; HR, 
hazard ratio; ICD, international classification of diseases.
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(p = 7.23 × 10−53), body water mass (p = 6.18 × 10−52), hand grip strength 
(p = 7.45 × 10−45), and basal metabolic rate (p = 1.20 × 10−40). While 
higher body fat percentage was positively associated with a higher age 
gap (p = 7.90 × 10−17). In addition, several biochemical assays were also 
candidate modifiable factors for age gap, like eGFR (p = 1.02 × 10−35) 
and CRP (p = 6.88 × 10−33).

The effects of the significant modifiable factors on age gap 
were further profiled in Figure 4b. We found that the current alco-
hol drinkers had a 0.82-year lower age gap. However, the current 
smokers had a 1.30-year higher age gap. A higher body fat-free 
mass per one-standard deviation (1-SD) was associated with a 1.06-
year decrease age gap, and the effect of body water mass on age 
gap was similar (β = −1.04 per 1-SD increase). Regarding pulmonary 
functions, FVC and PEF were associated with a lower age gap, with 
1.67 and 1.12 years per 1-SD increase in FVC and PEF, respectively. 
Compared with the participants reporting fair or poor health ratings, 
those with good or excellent health status had a 0.85-year lower age 
gap. The participants with a history of dentures had a 0.50 increase 
in age gap compared with those without a history of tooth diseases. 
In addition, the participants with nervous feelings had a 0.47-year 
higher age gap than those without nervous feelings. We also found 
that compared with participants who sometimes or rarely did man-
ual or physical jobs, those who usually or always did manual or phys-
ical jobs had a 0.58-year higher age gap.

We also characterized the modifiable factors for age gap in men 
and women, respectively (Figures S4 and S5; Tables S11 and S12). 
After multiple comparisons, we identified 24 and 29 modifiable 
factors for men and women, respectively. Therefore, a total of 19 
modifiable factors were shared by the entire and gender-specific 
populations (Figure S6).

2.5  |  Genetic determinants for age gap

To provide a comprehensive picture of age gap and to better un-
derstand the etiology of age-related diseases, we next sought to 
identify the genetic determinants of biological age gap. To this end, 
we performed a genomewide association study (GWAS) analysis and 
exomewide association study (ExWAS) analysis of biological age gap 
in White British healthy participants in the UK Biobank (n = 9008; 
Figure  5a,b). The quantile-quantile plot of GWAS and ExWAS is 
shown in Figures S7 and S8. In GWAS analysis, nine genomic risk loci 
significantly associated with age gap were identified after False Dis-
covery Rate corrections (FDR <0.05, Figure 5a). The loci tagged by 
rs3761280 showed the most significant association (p = 3.17 × 10−17). 
See Table S13 for complete details of the loci. The single nucleo-
tide polymorphism (SNP)-based heritability for age gap was 20.9%. 
In ExWAS common variant analysis, only variants in CST3 were sig-
nificantly associated with age gap after False Discovery Rate correc-
tions (FDR <0.05, Figure 5b). See Table S14 for complete details. In 
ExWAS gene-based rare variant analysis, we failed to identify any 
genes significantly associated with age gap after multiple compari-
sons (Figure S9).

Next, we performed a linkage disequilibrium score correla-
tion (LDSC) analysis of age gap with the common health-related 
outcomes (see Table S15 for the details about the summary-level 
GWAS data sets) identified in survival analyses (Figure 5c). The full 
information about LDSC analysis is shown in Table S16. Our analy-
ses further supported the possible associations between biological 
age gap and diseases of circulatory system (hypertension: Rg = 0.21, 
p = 0.01; myocardial infarction: Rg = 0.20, p = 0.04; pulmonary em-
bolism: Rg = 0.36, p = 0.04; atherosclerosis: Rg = 0.25, p = 0.04) and 
chronic diseases (obesity: Rg = 0.16, p = 0.04; chronic obstructive 
bronchitis: Rg = 0.28; p < 0.01; renal failure: Rg = 0.43, p = 0.02), 
though the genetic correlations did not survive correction for mul-
tiple comparisons.

FUnctional Mapping and Annotation (FUMA) was used to anno-
tate the candidate single nucleotide polymorphisms (SNPs) in linkage 
disequilibrium with one of the independent significant SNPs via po-
sitional mapping (Table S17). Gene Ontology (GO) analysis suggested 
that the genes were mainly associated with the biological processes 
associated with translation (translational initiation and protein lo-
calization to plasma membrane; Figure S10). Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analysis indicated that the genes were 
associated with the pathways associated with metabolism (cAMP 
signaling pathway and glycosphingolipid biosynthesis; Figure S10). 
See Table S18 for complete results of GO and KEGG analysis of the 
mapped genes.

2.6  |  Expression-based and pleiotropy analysis  
of CST3

In GWAS analysis of age gap, rs3761280 located within gene CST3 
showed the most significant association (Figure  6a). We also con-
ducted GWAS analysis of age gap in 9008 healthy and 201,795 
unhealthy White British participants and also found a significant as-
sociation of rs3761280 with age gap (Figure S11).

Leveraging Genotype Tissue Expression (GTEx) database, we 
found that CST3 was highly expressed in the brain, particularly basal 
ganglia and cortex (Figure  6b). Then we analyzed single-nucleus 
RNA sequencing (snRNA-seq) data of the human brain, suggesting 
astrocytes and mural cells expressed relatively higher levels of CST3 
(Figure  6c). Colocalization analysis indicated that CST3 expression 
levels in 10 tissues and age gap shared a causal variant with strong 
or suggestive evidence (Table S19).

Then we further investigated the pleiotropy of rs3761280 in 
the UK Biobank (Tables S20 and S21). We found that rs3761280 
was nominally associated with 14 biomedical traits (Figure  6d). 
As expected, rs3761280 was significantly associated with cys-
tatin C level (Z-score = −121.157, p < 0.001; Table S21). Of note, 
rs3761280 showed an association with another biomarker of 
aging, leukocyte telomere length (Z-score = −2.391, p = 0.017). 
Some associations with predictors in the BA model were also ob-
served, like mean time to identify matches, alkaline phosphatase, 
PP, total cholesterol, and IGF-1. In addition, some associations 
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with inflammatory traits were observed, like the count of baso-
phil, monocyte, and lymphocyte.

3  |  DISCUSSION

Our study has used large-scale biobank data to develop an integra-
tive BA model. Compared with the previous BA model generated 
with solely physical measures or biochemical assays, our BA model 
was a comprehensive model composed of multi-dimensional in-
dicators, including cognition, anthropometry, physical measures, 
biochemical markers, and genomic data. Next, we showed that the 
highest age gap was associated with the risk of multiple health-
related outcomes, especially circulatory diseases and related chronic 

disorders. Meanwhile, age gap was positively associated with all-
cause and cause-specific mortality. We further identified 35 modifi-
able factors for age gap, highlighting body fat-free mass and water 
mass, basal metabolic rate, pulmonary functions, and smoking status 
as candidate factors for delaying aging. Finally, genetic analyses in-
cluding GWAS and ExWAS identified CST3 as a novel gene associ-
ated with biological aging.

Machine learning, a data-driven strategy, has been widely used 
to discover the essential indicators of BA, build BA models, and 
identify accelerated aging individuals (Gialluisi et al.,  2022; Tian 
et al.,  2023; Zhong et al., 2020). A recent study has trained brain 
age models in amyloid-negative cognitively normal subjects (Millar 
et al., 2023), which supported our feature selection and model de-
velopment in healthy participants. Consistent with most previous 

F I G U R E  4 The associations of the modifiable factors and biological age gap in healthy participants. (a) The circular barplot shows the 
associations of the modifiable factors with biological age gap. The association with a p-value of <1 × 10−50 was rounded to 1 × 10−50. The 
red dashed line indicates the threshold of adjusted p-value (4.81 × 10−4). The modifiable factors were filled with different colors based on 
the categories. The red text indicates positive associations with age gap (β > 0), and the light blue text indicated negative association with 
age gap (β < 0). (b) The forest plot showed the estimated effects of the factors significantly associated with biological age gap. The x-axis 
indicates the β coefficient of the traits. The bar indicated the 95% CI. Continuous traits were estimated for 1-SD increase in the trait. Binary 
traits were estimated as yes versus no. Good health status was compared with fair or poor. A brisk walking pace was compared with a steady 
or slow pace. Usually standing and manual jobs were compared with sometimes, rarely, or never. ALT, alanine aminotransferase; ApoA, 
apolipoprotein A; ApoB, apolipoprotein B; CRP, C-reactive protein; eGFR, estimated glomerular filtration rate; FVC, forced vital capacity; 
GGT, gamma glutamyltransferase; Hb, hemoglobin concentration; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein 
cholesterol; Lp(a), lipoprotein A; MET, metabolic equivalent task; PEF, peak expiratory flow; PM10, particulate matter with diameter less than 
or equal to 10 micrometers; TG, triglycerides.
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studies, our study revealed that blood pressure, pulmonary function, 
and glycated hemoglobin were essential indicators for BA (Chen 
et al., 2023; Gao et al., 2023). Pulse pressure, the difference between 
systolic and diastolic blood pressure, was identified as an essential 
predictor for aging in our feature selection, while most previous 
studies used systolic blood pressure to build BA (Chen et al., 2023; 
Gao et al., 2023; Tian et al., 2023). Pulse pressure is a marker reflect-
ing arterial stiffness (Safar, 2018) and a recent cross-sectional study 
has shown that PP was associated with accelerated epigenetic aging 
(Xiao et al., 2022). A cohort study with 32,833 participants reported 
that PP gradually increased as early as in the fourth decade and con-
tinued throughout the life course (Ji et al., 2020). In addition to PP, 
our study also identified some novel predictors for BA. For instance, 
we found that cognitive functions were candidate predictors for 
aging, which were usually included in calculating brain or cognitive 
age (Anatürk et al., 2021; Tian et al., 2023; Yu et al., 2022). The great 
importance of cognitive functions in BA further suggests the close 
correlation between the aging body and the brain. In addition, cysta-
tin C, an index of renal function and a potential predictor of cardio-
vascular risk (Chen et al., 2023; Shlipak et al., 2005) was the second 

most essential predictor for BA. Likely, another renal function index, 
sodium in the urine, was also a predictor of BA, thus highlighting that 
renal dysfunction was closely associated with aging.

Accelerated aging was associated with various categories of 
diseases. Recent studies have shown that aging acceleration was 
associated with cardiovascular diseases, depression and anxiety, 
diabetes, and cognitive impairment (Chen et al.,  2023; Forrester 
et al., 2021; Gao et al., 2023; Gialluisi et al., 2022). Our study iden-
tified some novel associations of biological age gap, thus expanding 
the clinical significance of biological aging. We first reported the 
positive association between age gap and some chronic disorders 
(anemia and gout) and infections (any or bacterial infections). Nota-
bly, some inverse associations of age gap were also observed, espe-
cially with cancers. This unexpected association could be explained 
by issues in methodology, like unmeasured or residual confounding 
factors. Moreover, some biological mechanisms may explain the 
negative association. Several aging hallmarks (telomere attrition 
and stem cell exhaustion) were antineoplastic (López-Otín, Pietro-
cola, et al., 2023). Moreover, the malignant cells were hyperactive 
with a rapid cell cycle and increased energy consumption, while the 

F I G U R E  5 The genetic determinants and correlations of biological age gap. (a)The Manhattan plot shows the results of GWAS analysis 
of biological age gap in healthy participants. The y-axis indicated the associations of the association of the locus with biological age gap. 
The loci with FDR < 0.05 were marked. (b) The Manhattan plot shows the results of ExWAS common variant analysis of biological age gap 
in healthy participants. The y-axis indicated the associations of the association of the locus with biological age gap. The loci with FDR < 0.05 
were marked. (c) The forest plot shows the results of LDSC analysis of biological age gap with the common health-related outcomes that 
age gap was associated with the longitudinal survival analysis. The health-related outcomes were filled with different colors based on the 
category. The outcomes that biological age gap nominally associated were marked with an asterisk. ExWAS, exomewide association study; 
GWAS, genome-wide association study; LDSC, linkage disequilibrium score correlation.
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F I G U R E  6 Expression analysis and pleiotropy of CST3. (a) Regional association plot of CST3 in healthy White British participants. The 
region covering CST3 ± 0.4 Mb was shown in the locus zoom plot. The SNP rs3761280 was highlighted and filed with purple color. The 
colors within the dots indicated the levels of linkage disequilibrium. (b) Tissue expression levels of CST3. The barplot shows the top 10 most 
CST3-expressed tissues in GTEx v7. The x-axis indicates the relative expression levels [log2(TPM + 1)]. (c) Cell type expression of CST3. 
The top section shows the UMAP of brain single-nucleus transcriptomic data. Each dot represented an individual cell and was filled with 
different colors based on the result of clustering and annotation. The bottom section shows the expression level of CST3 in the brain. (d) The 
pleiotropy of rs3761280 in the UK Biobank. The x-axis indicated the z-score of the association between rs3761280 and the characteristics. 
GTEx, genotype tissue expression; HDL, high-density lipoprotein; OPC, oligodendrocyte progenitor cell; RDW, red blood cell distribution 
width; Rel.Exp, relative expression; snRNA-seq, single-nucleus RNA sequencing; TPM, transcripts per million; UMAP, uniform manifold 
approximation and projection; WHR, waist–hip ratio. *p < 0.05, **p < 0.01.
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senescent cells were hypoactive with an arrested cell cycle (Aunan 
et al.,  2017). To further investigate the implications of biological 
aging, we tested its associations with mortality, suggesting that age 
gap was a promising predictor of all-cause mortality. Intriguingly, 
we found that age gap was positively associated with cause-specific 
mortality, including cancers and diseases of multiple systems. In ad-
dition to the putative association between age gap and cancer and 
cardiovascular diseases (Tian et al., 2023), our study also identified 
novel associations of age gap with mortality due to diseases of other 
systems, including hemopoietic, endocrine, digestive, and musculo-
skeletal systems. Overall, our BA model showed predictive value in 
all-cause and cause-specific mortality.

Anti-aging strategies have been the focus in aging research. 
Previous studies have proved multiple modifiable factors for aging-
related disorders (Schloss et al., 2020; Yu et al., 2020). Therefore, 
revealing the modifiable factors for aging will not only help delay 
aging, but also help prevent the occurrence of age-related disorders. 
However, the modifiable factors of biological aging have not been 
systematically characterized. A recent large-scale study in the UK 
Biobank has revealed 71 traits associated with leukocyte telomere 
length, a potential biomarker of aging (Bountziouka et al., 2022). Our 
study found 35 candidate modifiable factors of age gap. Some fac-
tors, including smoking and pulmonary function, have been shown to 
be associated with epigenetic aging acceleration (Oblak et al., 2021). 
Pulmonary function starts to decline at age 25, with FEV1 and 
FVC decreasing by about 23–30 mL per year (Roman et al., 2016). 
Therefore, respiratory muscle training and respiratory rehabilitation 
serve as promising strategies for delaying biological aging (Roman 
et al., 2016; Skloot, 2017). Previous studies have shown that body 
fat-free mass decreased significantly in the elderly population (Kyle 
et al.,  2001), which showed predictive value in mortality (Genton 
et al.,  2013). However, the association between body water mass 
and biological aging was rarely reported. The impaired renal func-
tion, physical, and cognitive disabilities in older adults would reduce 
body water mass and increase the risk of dehydration, which in turn 
leads to higher mortality and morbidity (Hooper et al., 2014). Never-
theless, higher fat percentage was associated with accelerated aging 
in our results. These analyses highlighted the importance of body 
composition in the aged population and indicated that caloric restric-
tion, aerobic, and resistance exercises were promising interventions 
for biological aging (Batsis & Villareal, 2018). Factors reflecting renal 
functions were also significantly associated with aging, like eGFR, 
urea, and potassium in the urine, thus supporting the importance 
of the kidney in aging (O'Sullivan et al., 2017). Our study also found 
that nervous feelings were associated with biological aging. An ob-
servational study has suggested that mood disorders were associ-
ated with accelerated aging (Simon et al., 2006). However, the causal 
associations need to be clarified as accelerated aging also contrib-
uted to anxiety (Gao et al.,  2023). In addition, some associations 
should be interpreted with caution in our study. For instance, our 
study showed that current alcohol drinking was negatively associ-
ated with biological aging. The unexpected association could be ex-
plained by the unadjusted effect measures or residual confounding 

(Kojima et al., 2018, 2019). In addition, most previous studies sug-
gested that tea had protective effects on aging (Feng et al., 2021; 
Zhang et al., 2021). However, some studies have found that excess 
tea intake has an adverse impact on cognition and is associated with 
Alzheimer's disease (Hu et al., 2022; Sun et al., 2023).

In addition to the modifiable factors for aging, genetic factors 
were reported to contribute to approximately 50% of the total vari-
ance of aging (Gialluisi et al., 2022). In an Eastern Asian cohort, Lin 
revealed that loci in GCKR, APOE, and FGF5 were associated with BA 
acceleration (Lin, 2022). Our study has leveraged both genotyping 
and exome sequencing data to reveal CST3 as a candidate risk gene 
for biological aging. CST3 encodes cystatin C, a marker of glomerular 
filtration rate and an essential inhibitor of cysteine proteases (Suk-
hova et al., 2005). Notably, cystatin C is also the second most essen-
tial predictor of BA, so the results of our genetic association analyses 
further strengthen the evidence that cystatin C may play a role in 
biological age from the genetic perspective. In a community-based 
cohort study of older adults aged more than 65 years, cystatin C was 
regarded as a marker of unsuccessful aging (Sarnak et al.,  2008). 
However, most studies failed to identify any genetic associations 
between cystatin C and aging or age-related disorders (Loew 
et al., 2005; van der Laan et al., 2016). Therefore, our study provided 
evidence linking cystatin C with aging at genetic level. Previous stud-
ies have reported the associations of CST3 with some age-related 
disorders, like pulmonary fibrosis (Kim et al.,  2018), age-related 
macular degeneration (Butler et al., 2015), and Alzheimer's disease 
(Bertram et al.,  2007). CST3 was involved with arterial remodel-
ing, neurogenesis, and neurotrophic function (Levy et al., 2006; Mi 
et al., 2007; Sukhova et al., 2005). CST3 physically binds to the TGF-β 
receptor and antagonizes the TGF-β pathway, an essential pathway in 
senescent-associated secretory phenotype (SASP) (Aging Biomarker 
Consortium et al.,  2023; Sokol & Schiemann,  2004). Consistently, 
our results found that CST3 was highly expressed in astrocytes, the 
essential supportive cells within brain (Endo et al., 2022). In addition, 
a cohort study demonstrated that cystatin C was a candidate marker 
for inflammation (Koenig et al., 2005). Our study further supported 
the hypothesis as the CST3 locus, rs3761280, was probably associ-
ated with immune cell indices. Moreover, rs3761280 was also asso-
ciated with the traits associated with metabolism (IGF-1 and blood 
lipids). Therefore, our analyses highlighted the putative role of in-
flammatory and metabolic pathways in aging pathogenesis.

Our study had several strengths and implications. The large-
scale and multi-dimensional phenotypes available in the UK Bio-
bank have enabled us to develop an integrative BA model and 
systematically analyze the modifiable and unmodifiable factors 
for biological aging. We demonstrated that biological aging was 
modifiable by multiple factors. Given the associations between bi-
ological aging and multiple health-related outcomes, these factors 
had the potential to delay aging and thus reduce the risk of age-
related disorders. However, several limitations in our study should 
be noticed. First, the development of BA model was restricted to 
the healthy participants from a subpopulation of the large cohort. 
Second, the analysis of the modifiable factors for age gap was 
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cross-sectional, thus caution was necessary about making causal 
inferences. Third, the participants in the UK Biobank were mostly 
White British population and tended to be healthier and wealthier 
(Keyes & Westreich, 2019). The generalizability of our BA model 
needs external validation in different ethnicities or cohorts.

In conclusion, our study has developed an integrative BA model 
consisting of multi-dimensional indicators, and the biological age gap 
showed predictive value in incident disease, all-cause, and cause-
specific mortality. Our study further systematically revealed the mod-
ifiable and unmodifiable factors for biological aging, which provided 
promising candidates for further experimental and clinical research.

4  |  MATERIAL S AND METHODS

4.1  |  Study participants

The present study analyzed the data from the UK Biobank, which 
consisted of 502,409 participants aged 37–73 years at the time of the 
first assessment (from 2006 to 2010) (Bycroft et al., 2018). The base-
line data including biological sample (blood and urine) assays, physi-
cal measurements, socioeconomic characteristics, and genotyping 
data were collected at baseline from 22 assessment centers across 
the UK (Bycroft et al., 2018). The UK Biobank has approval from the 
North West Multi-center Research Ethics Committee and all partici-
pants in the UK Biobank have provided written informed consent.

4.2  |  Development of biological age and age gap

To develop BA, we first screened the healthy participants in the UK 
Biobank. Those who had any health-related outcomes at baseline 
or would develop any health-related outcomes during the follow-up 
were excluded. In addition, the participants who withdrew from the 
UK Biobank were also excluded, leaving 59,316 healthy participants. 
The health-related outcomes were defined as the first occurrences 
(Category 1712) in the UK Biobank, which included 1165 health-
related outcomes categorized into 16 categories.

The study took all phenotypes (n = 8276) available in the UK Bio-
bank into consideration at first and then took several steps to filter 
the phenotypes to develop a biological age model. In the first step, the 
phenotypes with high missing values (> 30% in all participants from 
the UK Biobank, n = 7482) were excluded. Then in the second step, we 
further excluded the categorical phenotypes (n = 448) and nonclini-
cally relevant phenotypes (n = 303). In addition, the variables were av-
eraged if tested for both the right and left sides of the body, like hand 
grip strength, the fat mass of the legs or arms. The variables were also 
averaged if tested more than once at baseline, like diastolic and sys-
tolic blood pressure, pulse rate, FVC, and FEV1. We also included four 
derived variables, including pulse pressure (the deviation of systolic 
and diastolic blood pressure; PP), mean arterial pressure (the sum of 
diastolic pressure and one-third of pulse pressure; MAP), waist–hip 
ratio (the ratio of waist and hip circumference; WHR), and FEV1/FVC. 

Overall, there were 118 phenotypes considered for developing BA 
(see Supplements for further details). Then the data was imputed 
using the multiple imputations by chained equations approach, with 
five imputed data sets and 10 iterations (White et al., 2011).

Then in the third step, we used LightGBM algorithm to filter 
the candidate phenotypic features. Briefly, the 118 features were 
ranked based on their information gains, an inherent approach 
within tree-based machine learning algorithms, which can be con-
sidered as the predictive contributions to estimating chronological 
age. We selected the top 50 phenotypes and then performed hi-
erarchical clustering on the Spearman rank-order correlations to 
alleviate the multicollinearity issue, in such highly correlated fea-
tures were clustered together and we kept only a single predictor 
within clusters under an arbitrary adopted threshold of 0.7. After the 
removal of correlated predictors, all phenotypic features were re-
ranked based on a newly developed LightGBM classifier. Next, in the 
fourth step, consecutive classifiers were developed with sequen-
tially added predictors based on the updated predictor importance 
ranking orders. The stopping point was reached when the difference 
between the previous and the present predictor was less than 0.02 
(Table S3). In addition, it was noted that no significant improvement 
in model performance could be observed when additional pre-
dictors come into the model. Overall, the top 20 predictors were 
identified for the development of BA via the LightGBM algorithm. 
The employed LightGBM algorithm works by starting from a weak 
base learner, usually a decision tree model, and sequentially training 
each new learner to correct the errors from the previously trained 
ones. In such a manner, the predictions can be added up to produce 
a strong overall final predictive model. The hyperparameter tuning 
was performed by an exhaustive selection from 500 candidate sets 
of parameters and finally the optimal set based on the performance 
measurement of MAE. The hyperparameters to develop the BA 
model were as follows: learning_rate = 0.05; max_depth = 5; n_estima-
tors = 800; num_leaves = 31; subsample = 0.8; colsample_bytree = 0.8. 
The supporting information about the parameters can be found on 
the website of LightGBM documentation (https://light​gbm.readt​
hedocs.io/en/lates​t/Param​eters​-Tuning.html). The LightGBM algo-
rithm was implemented by the R package lightgbm version 3.3.3. 
under the R software version 4.2.0. The model was developed and 
validated using a five-fold cross-validation strategy that the valida-
tion set (one-fold of data) was kept untouched and merely used for 
evaluation purposes, while the hyperparameters tuning and post-
calibration were performed within inner-looped cross-validation 
within the training sets (four-fold of data). For comparison purposes, 
we employed standard regression, lasso regression, to calculate BA 
with the same phenotypes. Lasso regression was conducted by the R 
package glmnet and performed 10-fold cross-validation.

4.3  |  Health-related outcomes characterization

The diagnoses and medical conditions of the participants were ob-
tained through hospital inpatient record data, primary care data, 

https://lightgbm.readthedocs.io/en/latest/Parameters-Tuning.html
https://lightgbm.readthedocs.io/en/latest/Parameters-Tuning.html
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death register data, and self-reported data from the UK National 
Health Services. The diseases were recorded by the distinct In-
ternational Classification of Disease (ICD)-10 system. A total of 
78 common health-related outcomes reported in a previous study 
were investigated in our study (Kivimäki et al., 2021, 2022), and the 
unhealthy participants with full data to predict BA were included 
(n = 257,336). We excluded the diseases with less than 200 cases 
among the unhealthy participants and the miscellaneous outcomes 
(i.e., self-harm and road accidents), leaving 70 common health-
related outcomes. Regarding cause-specific mortality, those with 
less than 50 cases were excluded from the analysis. The details of 
the health-related outcomes can be found in Table S4. Regarding 
mortality, the UK Biobank receives death notifications, including 
age at death and primary causes of death determined by ICD-10, 
by linkage to national death registries. The cause-specific mortality 
(including both primary and contributory causes of mortality) was 
defined using the following codes based on the ICD-10 system. For 
incident disease, the end of follow-up was defined as the date of 
first diagnosis of the disease, death, loss to follow up, or end of hos-
pital inpatient data collection on December 31, 2021. For all-cause 
and cause-specific mortality, the end of follow-up was defined as 
the date of death, loss to follow up, or end of hospital inpatient data 
collection on December 31, 2021.

4.4  |  Modifiable factors

We collected 118 potentially modifiable factors in the UK Biobank 
data. And we have confirmed that the 118 modifiable factors had 
a low proportion (<30%) of missing values. After excluding the 
factors included in the BA model, the modifiable factors could be 
subclassified into 11 categories: (1) alcohol (e.g., alcohol intake 
frequency), (2) anthropometry (e.g., body mass index), (3) blood 
chemistry (e.g., glucose, hemoglobin), (4) chronobiology (e.g., sleep 
duration), (5) diet (e.g., tea intake), (6) early life and sexual health 
(e.g., age first sexual intercourse), (7) general health (e.g., FEV1), 
(8) physical activity (e.g., walking pace), (9) psychological (e.g., 
nervous feelings), (10) smoking (smoking status), and (11) socio-
economic (e.g., education). The information about the field ID and 
processing of the phenotypes is presented in Table S7. Data of the 
modifiable factors was imputed using the multiple imputation by 
chained equations approach, with five imputed data sets and 10 
iterations.

4.5  |  Genomewide association analysis

PLINK software (version 2.0) was used to perform GWAS analy-
sis (Purcell et al., 2007). The quality control of the genotype se-
quencing data was conducted as follows: the individuals with 
missing genotype rate >0.05, mismatch between self-reported 
and genetic sex, putative sex chromosome aneuploidy, heterozy-
gosity rate outliers, putative third-degree relatives >10 were 

excluded. The variants with call rate <0.95, minor allele fre-
quency (MAF) < 0.005, Hardy–Weinberg p-value <10−6, or impu-
tation quality score <0.5 were excluded. Only the individuals of 
White British ancestry were included in the GWAS analysis. Age 
at recruitment, gender, genotype array, and the top 10 principal 
components (PCs) were used as the covariates. The healthy par-
ticipants GWAS was used as the main analysis, with about 9008 
participants. To test the robustness of the results, we also per-
formed GWAS of both healthy and unhealthy participants and the 
final sample size of it was 210,801.

4.6  |  Exomewide association analysis

Regarding common variants (at least 10 total carriers with age gap 
characteristics of White British ancestry), the associations with age 
gap were analyzed using a linear regression model using PLINK 2.0 
(Purcell et al., 2007). Age at recruitment, gender, and the top 10 PCs 
were covariates. Regarding rare variants, the SKAT-0 test by SAIGE-
GENE+ strategy was conducted to analyze the rare-variant gene as-
sociations (Zhou et al., 2022).

SAIGE-GENE+ method is used for region-based association 
analysis that is capable of processing large-scale samples and can 
collapse the ultra-rare variants (which are defined as minor allele 
carrier [MAC] ≤ 10) to a single marker and then test the collapsed 
variant together with all other variants with MAC > 10, which re-
duces the data sparsity due to the effects of ultra-rare variants 
(Zhou et al., 2020, 2022). Three different maximum minor allele 
frequency (MAF) cutoffs (1%, 0.1%, and 0.05%) and three dif-
ferent variant annotations (loss-of-function, missense, and loss-
of-function and/or missense), followed by aggregating multiple 
SKAT-O tests using the Cauchy combination or minimum p-value 
for each gene or region (Li et al., 2020; Liu & Xie, 2020). SnpEff 
Version 5.1 was used to annotate and classify the variants of all 
samples (Cingolani et al., 2012). The LOF variants include the vari-
ants annotated as frameshift, splicing donor, splicing acceptor, and 
stop gain. The missense variants include the variants predicted 
as deleteriousness in Sorting Intolerant From Tolerant (SIFT) 
(Vaser et al.,  2016), Polymorphism Phenotyping v2 (PolyPhen2) 
HDIV (Adzhubei et al.,  2013) and PolyPhen2 HVAR (Adzhubei 
et al.,  2013); likelihood ratio test (LRT) (Chun & Fay, 2009); and 
MutationTaster (Schwarz et al., 2010), and are further collapsed 
for each gene. The ExWAS model was adjusted by age at the re-
cruitment, gender, and first 10 PCs.

4.7  |  Heritability estimation

The heritability of the SNP was estimated by the genome-based re-
stricted maximum likelihood (GREML) method implemented in the 
genomewide complex trait analysis (GCTA) software v1.93.2 (Yang 
et al., 2011). Age at recruitment, gender, genotype array, and the top 
10 principal components (PCs) were used as the covariates.
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4.8  |  Genomic risk loci characterization and 
gene mapping

FUMA was used to identify the genomic risk loci and map the genes 
(Watanabe et al., 2017). The SNPs with FDR <0.05 and linkage dis-
equilibrium (LD) r2 < 0.6 with any other SNPs were considered inde-
pendent significant SNPs. The SNPs with LD r2 < 0.1 with any other 
SNPs were considered genomic risk loci. The 1000G Phase 3 Euro-
pean project was used as the reference. Positional mapping (based 
on the physical distance within 10 kb of the SNP) method was used 
to conduct gene mapping analysis of the genomic risk loci.

4.9  |  Functional enrichment of genes

The functional enrichment of the genes was conducted using the R 
package clusterProfiler (Wu et al., 2021). The mapped genes were 
analyzed for the enrichment of biological processes, molecular func-
tion, and cellular component from Gene Ontology (GO) (Gene On-
tology Consortium, 2015) and pathway from Kyoto Encyclopedia of 
Genes and Genomes (KEGG) (Kanehisa & Goto, 2000). The default 
parameters of a minimum of 5 and a maximum of 2000 genes per 
category were used. The terms or the pathways with FDR less than 
0.05 were considered as enrichment.

4.10  |  Genetic correlation analysis

Genetic correlation analysis of biological age gap with diseases 
was conducted by LDSC v.1.0.1 (Bulik-Sullivan et al., 2015). The 
summary-level GWAS data of the diseases were obtained from 
FinnGen (Kurki et al.,  2023). The precomputed European LD 
scores from the 1000 Genomes Project phase 3 in the LDSC pack-
age were used and the LDSC analysis was restricted to Hapmap3 
SNPs.

4.11  |  Expression-based analysis

Regarding the expression level of the genes in different tissues or 
organs, bulk RNA sequencing data from GTEx were obtained (GTEx 
Consortium, 2015).

To further test the cell type expression levels, a large human 
brain single-nucleus RNA sequencing data set by Garcia et al. (2022) 
was obtained, including 61,862 individual cells including neurons, 
glia, and cerebrovascular cells. The R package Seurat was used for 
the main analysis and visualization (Butler et al., 2018). The annota-
tion of the cell type was conducted using the metadata file provided 
by the authors (Garcia et al., 2022).

Regarding colocalization analysis, we obtained eQTL data 
from 46 different organs or tissues from GTEx v7 (GTEx Con-
sortium,  2015). The R package coloc was used for colocalization 

analysis (Giambartolomei et al., 2014). Colocalization analysis uti-
lized approximate the Bayes factor to generate posterior proba-
bilities (PP). Default parameters (p1 = 10−4, p2 = 10−4, p12 = 10−5) 
were used. Strong evidence of colocalization was defined as 
PPH3 + PPH4 ≥ 0.99 and PPH4/PPH3 ≥ 5. Suggestive evidence 
of colocalization was defined as PPH3 + PPH4 ≥ 0.90 and PPH4/
PPH3 ≥ 3 (Codd et al., 2021; Jin et al., 2016).

4.12  |  Statistical analysis

The Cox proportional hazard regression model was used to test the 
longitudinal associations of biological age gap with the risks of com-
mon health-related outcomes, all-cause, and cause-specific mortal-
ity. Regarding the association with incident diseases, the participants 
with the specific diagnosis before or at the time of recruitment were 
excluded from the models. Age at recruitment, gender, ethnicity, 
education score, smoking status, alcohol drinking status, TDI, over-
all health rating, and number of medications/treatments taken were 
used as covariates. Proportional hazards of the associations were 
tested using Schoenfeld's residuals. The second and the third bio-
logical age gap quartiles (Q2 and Q3) were set as the reference. Bon-
ferroni correction was performed for multiple comparisons.

A multivariable linear regression model was used to test the mod-
ifiable factors for biological age gap, which was set as the response 
variable. For continuous traits, the data was z-normalized before 
analysis. Age at recruitment and gender were used as the covariates. 
In the analyses of continuous traits with age gap, the outlier values 
(defined as the values 1.5 times interquantile range (IQR) lower than 
the lower quartile or 1.5 times IQR higher than the upper quartile) 
were winsorized at the 5% and 95% percentile values. Bonferroni 
correction was used for multiple comparisons.

Regarding the pleiotropic analysis of rs3761280, a multivariable 
linear regression model was used. A total of 94 biological traits were 
considered and analyzed with an analysis of variance (ANOVA) test. 
Only the traits with statistical significance (p < 0.05) among the 
rs3761280 genotypes were further analyzed. Age at recruitment 
and gender were adjusted in the model.

R software version 4.2.0 was used to conduct data cleaning, 
analyses, and visualization. A two-sided p-value of <0.05 was con-
sidered statistically significant.

CODE AVAIL ABILIT Y
This study used open source software and codes, specifically R 
(https://www.r-proje​ct.org/), lightgbm (https://github.com/Micro​
soft/LightGBM), PLINK (https://www.cog-genom​ics.org/plink/), 
GCTA (http://cnsge​nomics.com/softw​are/gcta/), FUMA (https://
fuma.ctglab.n/l), MAGMA (https://ctg.cncr.nl/softw​are/magma), 
SAIGE-GENE+ (https://saige​git.github.io/SAIGE​-doc/), LDSC 
(https://​github.com/bulik/​ldsc/), clusterProfiler (https://github.
com/YuLab​-SMU/clust​erPro​filer), Seurat (https://satij​alab.org/seura​
t/index.html), and coloc (https://github.com/chr1s​walla​ce/coloc).
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