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Abstract

Introduction: The purpose of the study is to investigate, by T2 relaxation, non-lesional

white matter (WM) in relapsing–remitting (RR) multiple sclerosis (MS).

Methods: Twenty stable RR MS patients underwent 1.5T Magnetic Resonance Imag-

ing (MRI) with 3D Fluid-Attenuated Inversion-Recovery (FLAIR), 3D-T1-weighted, and

T2-relaxation multi-echo sequences. The Lesion Segmentation Tool processed FLAIR

images to identify focal lesions (FLs), whereas T1 images were segmented to identify

WM and FL sub-volumes with T1 hypo-intensity. Non-lesional WM was obtained as

the segmented WM, excluding FL volumes. The multi-echo sequence allowed decom-

position into myelin water, intra-extracellular water, and free water (Fw), which were

evaluated on the segmented non-lesional WM. Correlation analysis was performed

between the non-lesional WM relaxation parameters and Expanded Disability Status

Scale (EDSS), disease duration, patient age, and T1 hypo-intense FL volumes.

Results: The T1 hypo-intense FL volumes correlated with EDSS. On the non-lesional

WM, the median Fw correlated with EDSS, disease duration, age, and T1 hypo-

intense FL volumes. Bivariate EDSS correlation of FL volumes and WM T2-relaxation

parameters did not improve significance.

Conclusion: T2 relaxation allowed identifying subtle WM alterations, which signif-

icantly correlated with EDSS, disease duration, and age but do not seem to be

EDSS-predictors independent from FL sub-volumes in stable RR patients. Particu-

larly, the increase in the Fw component is suggestive of an uninvestigated prodromal

phenomenon in brain degeneration.
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1 INTRODUCTION

The association between common neuroradiological markers of mul-

tiple sclerosis (MS) and clinical disability is weak, a phenomenon
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known as the clinical–radiological paradox. There is a limited correla-

tion between white matter (WM) lesion load and functional cognitive

impairment (Uher et al., 2017). The correlation between T2 lesion load

and the Expanded Disability Status Scale (EDSS) is also moderate, with
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a stronger correlation with T1 lesion load, consistent with the finding

that this subgroup of lesions represents areas of more severe tissue

damage (Ciccarelli et al., 2002).

An explanation for this was that rating scales and MRI measure

fundamentally different manifestations of MS (Hobart et al., 2004).

As this was first raised, there has been considerable progress on sev-

eral fronts, to a degree that the mismatch between clinical and MRI

measures is less an unexplained paradox and more a potentially rec-

oncilable challenge (Chard & Trip, 2017). Attempts to resolve the

clinical–radiological paradox should adopt a more multidimensional

approach to understanding WM lesions with simultaneous considera-

tion of multiple elements of the quantifiable pathology, using optimum

measurement techniques for MRI feature quantification (Mollison

et al., 2017).

Of relevance, changes in both normal-appearing WM and diffusely

abnormal WM have been of interest in recent years, as they are

independent pathological entities in the disease (West et al., 2014).

Non-lesional abnormalities correlatemore stronglywithdisability than

lesion burden and provide new insight into the basis of abnormalities in

normal-appearing WM (Brier et al., 2021). The correlation with EDSS

of abnormalities in normal-appearing WM detected by advanced dif-

fusion techniques (Sowa et al., 2019) indicates that processes outside

lesions are important for disability inMS.QuantitativeMRI techniques

are superior to conventional MRI regarding their sensitivity to sub-

tle alterations within normal-appearing WM (Granziera et al., 2021).

Different techniques andmetrics showed normal-appearingWMdam-

age (Lipp et al., 2019). Among them, myelin water (Mw) imaging (Choi

et al., 2019; Lee et al., 2021) was investigated, demonstrating normal-

appearingWM alteration inMS patients compared to healthy controls

(Rahmanzadeh et al., 2021). In particular, T2 relaxation can detect

tissue damage in the normal-appearing WM that is missed by conven-

tional imaging (Neema et al., 2009). Furthermore, a nonplaque MRI

abnormality that is present in at least 25% of MS patients is diffusely

abnormalWM (Lipp et al., 2019), and T2 relaxation was capable of evi-

dencing such microstructural changes in relapsing–remitting (RR) MS

(Papadaki et al., 2021).

The present study aims to investigate, in RR MS, the quantitative

T2-relaxation parameters computed on the non-lesional WM. These

quantitative parameters were tested for correlation with the EDSS,

disease duration, patient age, and lesion load.

2 MATERIALS AND METHODS

2.1 Subjects and MR acquisitions

Twenty patients (17 females/3 males, ages 21–69-year old), affected

by RRMS with stable disease course were recruited in an institutional

review board-approved study (internal protocol number: A697). All

participants signed written informed consent prior to data collection.

Patients’ characteristics are reported in Table 1. All the patients under-

wentEDSSassessment atMRI and1year laterwithout changes (except

patient 8with EDSS from4.0 to 3.5 and #10with EDSS from1.0 to 2.0).

TABLE 1 Patients’ characteristics.

Age (years, median/range) 38 (20–62)

Sex (male/female) 3/17

Disease duration (years,

median/range)

14 (2–30)

Subjects under treatment

(n, %)
20 (100%)

Current therapy (n) Alemtuzumab (1)

Fingolimod (3)

Fumarate (1)

Glatiramer acetate (1)

Interferon 2

Natalizumab (9)

Teriflunomide 3

EDSS score atMRI

(median/range)

2 (1–4)

Abbreviations: EDSS, expanded disability status scale.

All the patients underwentMRI examination at 1.5 T, including high-

resolution 3D T1-weighted and FLAIR sequences andmulticomponent

T2 relaxation by amulti-echo gradient and spin echo (GraSE) sequence.

Detailed scan parameters are reported in Table 2.

Multi-echo images were processed by MATLAB (The MathWorks)

and MERA (https://github.com/markdoes/MERA) to perform multi-

exponential relaxation analysis, fitting the data with a distribution of

decaying exponential functions and fitting the refocusing flip angle to

minimize the impact of stimulated echoes (Prasloski et al., 2012).Multi-

echo datawere processed to identify in each voxel (Meyers et al., 2009)

three compartments from the obtained T2 spectrum (Bontempi, Roz-

zanigo, et al., 2021;Bontempi, Scartoni, et al., 2021). TheT2component

below 40 ms (MacKay & Laule, 2016) was labeled as Mw, between 40

and 250 ms was labeled as intra/extracellular water (IEw), and above

250 ms was considered cerebrospinal fluid/free water (Fw). Addition-

ally, the T2 map of the IEw compartment (T2-IEw) was considered in

the analysis. TheT2 time for theMwand theFwcompartmentswas not

investigated, given that the shortest and longest sampled echo times

were only 10 and 320 ms, respectively, and the estimate would not be

accurate (Alonso-Ortiz et al., 2018; Prasloski et al., 2012).

Information about comprehensive data quality is reported in

Figure 1.

2.2 Image segmentation

In each patient, T1 images were processed by FreeSurfer (Reuter et al.,

2012). FreeSurfer was utilized to extract brain tissue and to auto-

matically segment WM and distinguish it from non-WM regions. In

particular, T1 hypo-intense lesions inWM regions are not labeledWM

by FreeSurfer.

Image registrationwasperformedbyAdvancedNormalizationTools

(Avants et al., 2011). In detail, FLAIR images were aligned to T1-

weighted images, which were aligned with the corresponding WM

mask to GraSE images. All the registrations were performed with an
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TABLE 2 Scan parameters.

T1-weighted FLAIR Multi-echo

Mode 3D 3D 3D

Pulse sequence gradient-echo SE∖IR GraSEa

Pixel size (mm2) 0.98× 0.98 0.87× 0.87 1.64× 1.64

Matrix size 256× 256 288× 288 128× 126b

Slices thickness (mm) 1.0 1.2 5.0c

Averages 1 2 1

Total acquisition time (s) 222 293 532

TR (ms) 9.4 4800 1000

TE (ms) 4.6 348 10d

TI (ms) – 1600 –

Flip angle (degrees) 8 90 90

Measurements WMsegmentation FL segmentation Mw, IEw, Fw, T2-IEw

Abbreviations: FL, focal lesion; Fw, free water; GraSE, gradient and spin echo; IEw, intra-extracellular water; Mw, myelin water;WM, white matter.
aEpi factor= 5.
bReconstructed at 256× 256.
cEighteen slices reconstructed to 36 slices 2.5mm thickness.
dThirty-two equally spaced echoes ranging from 10 to 320ms.

affine transformation, setting 12 degrees of freedom (i.e., rotations,

translations, scale, and shear are allowed).

To better estimate WM T2-relaxation parameters, the focal lesion

(FL), segmented as below described, and the peripheral voxels, poten-

tially affected by the partial volume effect, were excluded. To exclude

peripheral voxels, the obtained non-lesional WM mask, registered on

GraSE images, was eroded by 1 pixel using functionality available in

MATLAB.

FLAIR images were processed by the lesion prediction algorithm

of the toolbox (Schmidt et al., 2019) Lesion Segmentation Tool (LST),

where a probability threshold equal to 0.5 was used to identify FL.

These volumes were further subdivided into sub-volumes according

to the T1 classifications, that is, WM and non-WM, where non-WM

regions identify T1 hypo-intensities.

2.3 Correlation analysis

Correlation analysis with clinical status assessed by EDSS was per-

formed by measures of the volumes and sub-volumes of the FL and

quantitative T2-relaxation parameters of the non-lesionalWM.

Quantitative T2 relaxation on the non-lesional WM was assessed

by computing the mean and median of Mw, IEw, Fw, and T2-IEw,

respectively.

For each WM T2-relaxation parameter, the corresponding r-

coefficients and p-values were computed for Spearman’s correlation

coefficient with EDSS, and for Pearson’s correlation coefficient with

disease duration, and patient age.

The mutual correlation between FL volumes and T2-relaxation

WM parameters was also assessed by Pearson’s correlation coeffi-

cient. Finally, the combination of FL volumes and T2-relaxation WM

parameterswas assessed as a predictor of EDSS by a bivariate analysis.

3 RESULTS

The sub-volume segmentation process is exemplarily described in

Figure 2. The results of the correlation analysis between the seg-

mented FL volumes and sub-volumes and the EDSS are reported

in Table 3, with the corresponding average percentage of the sub-

volumes. The FL volumes positively correlated (close to significance)

with EDSS and the additional T1 segmentation, which allows the iden-

tification of FL sub-volumes characterized by hypo-intense gray value

(which covered around 50% of the whole lesion volumes) showed

a significant correlation (p < .05) with the EDSS. LST segmentation

was computed both on source high-resolution FLAIR images and after

alignment to GraSE images with a consequent decrease in spatial

resolution. However, the obtained results were comparable (Table 3).

The results of the correlation analysis of the quantitative

T2-relaxation parameters computed on the non-lesional WM (r-

coefficients are reported in Table 4) showed that the median of Fw

positively and significantly correlated (p < .05) with EDSS, and both

the mean and the median Fw positively and significantly correlated

with disease duration, age, and T1 lesion load. Exemplary Fw images

of patients with different EDSS are shown in Figure 3. Exemplary

plots are reported in Figure 4, showing the correlations observed

between median Fw and EDSS, disease duration, age, and T1 FL load.

The bivariate correlations, including both FL volumetric and WM

T2-relaxation measures, significantly correlated with EDSS (data not

shown), but they never improved the significance obtained by individ-
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F IGURE 1 Data quality: (a) Example of the SNRmap, calculated voxel-wise as the sum of the spectra divided by the standard deviation of the
residual of the fit (this is a standard output ofMERA), overlayed on the sixth echo of the gradient and spin echo (GraSE) sequence of patient 6; (b)
SNR distribution, calculated voxel-wise as in panel (a) of all the white matter (WM) voxels of all the patients included in the study; (c) T2
distribution of all theWMvoxels of all the patients included in the study.

TABLE 3 Correlation between focal lesion (FL) sub-volumes and expanded disability status scale (EDSS).

Resolution FL sub-volumes r-Coefficient p-Value %Volume

High LST .44 .06 100

T1-iso .39 .09 47.8

T1-hypo .47 .04 52.2

Low LST .41 .07 100

T1-iso .42 .06 48.5

T1-hypo .47 .04 51.5

Note: High-resolution= original FLAIR images; low-resolution= FLAIR after alignment to GraSE images.

Abbreviations: GraSE, gradient and spin echo; LST, Lesion Segmentation Tool.
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TABLE 4 Correlation betweenwhite matter (WM) T2-relaxation and clinical/radiological parameters.

Metric WMparameter EDSS (Spearman) Disease duration (Pearson) Age (Pearson) T1 FL load (Pearson)

Median Mw −0.01 0.08 0.18 −0.01

IEw −0.15 −0.27 −0.36 −0.15

Fw 0.46* 0.54* 0.61* 0.46*

IEw T2 −0.01 −0.26 −0.41 0.20

Mean Mw −0.02 0.09 0.20 −0.01

IEw −0.06 −0.28 −0.39 −0.15

Fw 0.33 0.58* 0.54* 0.50*

IEw T2 −0.03 −0.26 −0.40 0.18

Note: Significant correlation (*p< .05) are reported in bold.

Abbreviations: EDSS, expanded disability status scale; FL, focal lesions; Fw, free water; IEw, intra-extracellular water; Mw, myelin water.

F IGURE 2 Lesion segmentation process on FLAIR and T1 images.
Lesions identified with Lesion Segmentation Tool (LST) on FLAIR
images (orange box) are represented with a probability map (top of the
zoomed view); according to LST recommended usage, only the area
characterized by a lesion probability>0.5 has been kept (yellow area,
bottom of zoomed view). The cyan box showswhite matter (WM)
segmentation, where the lesion is not included in the non-lesionalWM
mask (top of the zoomed view); at the bottom of the zoomed view, it is
shown the lesionmask overlaid onto theWMmask: Hypo- and
iso-intense areas are visible as two shades of green.

F IGURE 3 Whitematter T2 relaxation. Representative FLAIR
(left) and free water (Fw) maps (right, FLAIRwith the overlay of Fw
maps) of two patients (#17 up, and #4 bottom) with expanded
disability status scale (EDSS) of 1.0 and 4.0, respectively. Fw is shown
as relative abundance (the sum ofmyelin water [Mw],
intra-extracellular water [IEw], and Fwwere normalized to 1
voxel-by-voxel). Themaps have beenmasked according to the eroded
non-lesional white matter (WM)mask and to the lesion areas
identified with Lesion Segmentation Tool (LST). It is possible to
appreciate that the patient with the higher EDSS shows amore
populated Fwmap.

ual volumetric measures. Accordingly, the mutual correlation analysis

between T2-relaxation parameters computed on the non-lesionalWM
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F IGURE 4 Exemplary plots, showing the correlations betweenmedian free water (Fw) and expanded disability status scale (EDSS), disease
duration, age, and T1 lesion load.

and the T1 hypo-intense FL volumes (Table 4) showed that the Fw

parameter that correlated with EDSS also correlated with FL volumes.

4 DISCUSSION

The present study aims to investigate the quantitative T2-relaxation

parameters computed on the non-lesional WM, and their correlation

with clinical disability, assessed by EDSS, disease duration, patient age,

and lesion load.

In agreementwith the current literature, the correlationbetweenFL

volumes and EDSSwas weak, and the T1 hypo-intense regions allowed

for identifying FL sub-volumes with a significant correlation. Interest

in lesions that appear hypo-intense on T1-weighted images has grown

because that provides more specificity for axonal loss and a closer

link to neurologic disability (Valcarcel et al., 2018). Accordingly, the T1

lesion load showed themost significantMRI correlation with cognitive

impairment in MS patients (Kimiskidis et al., 2016), and meta-analysis

revealed a correlation between T1 hypo-intense lesions’ mean volume

and EDSS score, with a high certainty of the evidence (Valizadeh et al.,

2021).

Differently from other published studies, we did not observe a sig-

nificant Mw correlation with EDSS in the non-lesional WM. It has

been reported that in MS subjects, Mw decreased over 5 years in

normal-appearing WM (Vavasour et al., 2018), and that deficient Mw

volume fraction in normal-appearingWM correlated significantly with

the EDSS score (Kitzler et al., 2012). Moreover, a strong association

between a pattern of Mw values in the normal-appearing WM and

cognitive performance was found, separate from the influence of FL

(Baumeister et al., 2019).

Indeed, our data evidenced that in the non-lesionalWM, themedian

Fw significantly correlated with EDSS, and both the median and the

mean Fw significantly correlated with disease duration, age, and FL

volumes. That was somehow in agreement with another study, where

multicomponent T2 mapping showed that the mixed water pools with

a T2 above 110 ms were not related to age but strongly increased

with EDSS (Baranovicova et al., 2016). As a potential source of the

long-T2 signal is an increase in extracellular water, extending the data
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acquisition window of the multi-echo T2 relaxation sequence could

be useful to better characterize the T2 decay in MS (Laule, Vavasour,

Mädler, et al., 2007; Laule, Vavasour, Kolind, et al., 2007). Particularly,

such an increase in the Fw component is suggestive of a prodromal

phenomenon in brain degeneration. A recent study (Zhou et al., 2023)

demonstrated that parenchymal Fw, a measure of sub-voxel cere-

brospinal fluidlike water in the brain tissue, is linearly associated with

age in the WM. That study applied multi-compartment T2 relaxom-

etry in cognitively normal subjects. However, the main limitation of

our study is the small number of patients investigated, which deter-

mines its exploratory nature rather than confirmatory, and further data

are required to clarify differences between normal individuals andMS

patients.

The median Fw was the only T2-relaxation parameter that corre-

lates with EDSS, which also correlated with FL volumes. The bivariate

correlations, including both FL volumes andWMT2-relaxation param-

eters, did not improve the significance of individual volumetric mea-

sures. Composite scores, including relaxation times of different tissues

and/or volumetric measures, could generally correlate more strongly

with EDSS than individual measures (Poonawalla et al., 2010). How-

ever, in another study, combining different WM metrics did not yield

ameasuremore sensitive to damage than any single measure, suggest-

ing that themetrics are at least partially correlatedwith each other but

sensitive to different aspects of the pathology (Lipp et al., 2019).

Finally, it is worth noting that the presented analysis was fully

automated, as it is advisable to monitor MS patients by quantita-

tive MRI in repeated follow-up examinations and longitudinal studies,

providing automated clinical decision support integrated into the

radiological-routine flow (Todea et al., 2023).

5 CONCLUSION

In summary, in this study, stable RR MS patients were investigated

by conventional imaging, WM T2 relaxation, and a fully automated

post-processing. The correlation between FL volumes and EDSS was

moderate and became stronger considering T1 hypo-intense sub-

volumes, consistent with more severe tissue damage. T2 relaxation

allowed identifying subtle alterations in the non-lesional WM, par-

ticularly an increase of the Fw component, which correlates with

EDSS, disease duration, and patient age, but in these stable patients

do not seem to be independent EDSS-predictors from FL volumes.

However, such an increase in the Fw component of the non-lesional

WM is suggestive of an uninvestigated prodromal phenomenon in

brain degeneration, which deserves to be further investigated in future

studies.
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