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Many objects in the real world have features that vary over time, creating uncertainty in how they will look in the future.
This uncertainty makes statistical knowledge about the likelihood of features critical to attention demanding processes such
as visual search. However, little is known about how the uncertainty of visual features is integrated into predictions about
search targets in the brain. In the current study, we test the idea that regions prefrontal cortex code statistical knowledge
about search targets before the onset of search. Across 20 human participants (13 female; 7 male), we observe target identity
in the multivariate pattern and uncertainty in the overall activation of dorsolateral prefrontal cortex (DLPFC) and inferior
frontal junction (IFJ) in advance of the search display. This indicates that the target identity (mean) and uncertainty (var-
iance) of the target distribution are coded independently within the same regions. Furthermore, once the search display
appears the univariate IFJ signal scaled with the distance of the actual target from the expected mean, but more so when
expected variability was low. These results inform neural theories of attention by showing how the prefrontal cortex repre-
sents both the identity and expected variability of features in service of top-down attentional control.
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Significance Statement

Theories of attention and working memory posit that when we engage in complex cognitive tasks our performance is deter-
mined by how precisely we remember task-relevant information. However, in the real world the properties of objects change
over time, creating uncertainty about many aspects of the task. There is currently a gap in our understanding of how neural
systems represent this uncertainty and combine it with target identity information in anticipation of attention demanding
cognitive tasks. In this study, we show that the prefrontal cortex represents identity and uncertainty as unique codes before
task onset. These results advance theories of attention by showing that the prefrontal cortex codes both target identity and
uncertainty to implement top-down attentional control.

Introduction
Our sensory environment is rich with dynamic objects that change
over time, creating uncertainty in their appearance. For example,
imagine trying to find your friend in the park without knowing
the exact features of her clothes. Will she be the person wearing
red, yellow, or some color in between? To find her, you need to
account for this uncertainty or else risk dramatic delays in search
times, or even failure to locate your friend (Bravo and Farid, 2016;
Geng and Witkowski, 2019; Witkowski and Geng, 2019)
Situations like this are ubiquitous in the real world, but

previous studies of attention have generally focused on under-
standing the neural representations of specific search targets,
and very little on how the brain integrates uncertainty into
predictions about how the target might look. The current
experiments seek to identify the neural mechanisms underly-
ing how uncertainty is combined with the expected identity of
a target to guide attention.

Theories of attention use the concept of the target template to
describe the representation of search targets held in memory
(Duncan and Humphreys, 1989; Wolfe, 2021). These representa-
tions are encoded by regions of prefrontal cortex that provide top-
down signals to modulate sensory processing in visual cortex
(Desimone and Duncan, 1995; Hopfinger et al., 2000; Corbetta et
al., 2008; Reynolds and Heeger, 2009). For example, the inferior
frontal junction (IFJ) maintains target representations that serve as
source signals to direct spatial attention, eye-movements, and cate-
gory selective processing in visual cortex (Baldauf and Desimone,
2014; Bichot et al., 2015; Zhang et al., 2018; Meyyappan et al., 2021).
The causal role of IFJ was confirmed by inactivation in this region,
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which led to impaired feature-based visual search (Bichot et al.,
2019). Similarly, working memory codes in dorsolateral prefrontal
cortex (DLPFC) have been found to serve as sources for controlling
shifts of attention and object selection (Feredoes et al., 2011; Ester et
al., 2015; Panichello and Buschman, 2021). While differences in the
roles of IFJ and DLPFC for supporting target templates remain
unclear, there are strong functional connections between the two,
suggesting they may share information (Gazzaley and Nobre, 2012;
Sundermann and Pfleiderer, 2012; Bedini et al., 2023). Thus, we
predict that IFJ and DLPFC will be key regions for support-
ing representations of the target identity. We additionally
hypothesize that these regions will encode the uncertainty
of target features and use this information to modulate top-
down attentional control.

The idea that IFJ and DLPFC encode target uncertainty is
consistent with existing work in the decision literature that finds
greater univariate activation in these regions when choice out-
comes (Badre et al., 2012; Tomov et al., 2020), or perceptual deci-
sions (Summerfield et al., 2011; Hansen et al., 2012) are uncertain.
For example, Summerfield et al. (2011) asked participants to make
category judgments on oriented Gabor patches in a task where the
mean and variance of the category rule changed over time. The
authors reported greater DLPFC activation when the correct cate-
gory was ambiguous, suggesting that the increase in univariate
activation reflected decision uncertainty. Similarly, lateral prefron-
tal cortex (LPFC) shows uncertainty-weighted error responses fol-
lowing an unexpected stimulus (Iglesias et al., 2013). These
findings are consistent with the idea that uncertainty drives activa-
tion in LPFC, making it a plausible source for predictions about
the expected identity and uncertainty of target features.

The current study tests the idea that IJF and DLPFC represent
target features in conjunction with the feature uncertainty during
visual search. To preview the results, we found that IFJ, DLPFC,
and visual cortex formed an interconnected network coding tar-
get identity in distributed multivariate patterns before search.
However, signals related to the uncertainty of the predicted tar-
get were only found in the univariate activity within prefrontal
regions. These results point to potentially separable neural mech-
anisms underlying target identity and feature uncertainty. These
results illuminate the neural mechanisms that underlie atten-
tional processing by showing how uncertainty is integrated with
target identity in advance of visual search.

Materials and Methods
Participants
We recruited a sample of 20 participants (self-reported females¼ 13,
males¼ 7; mean age ¼ 20.01) from the University of California, Davis
SONA system. This sample size was calculated to have 90% power to
detect the desired reaction time (RT) effect based on simulations from
pilot data, and to match the typical sample size of similar fMRI studies
(Summerfield et al., 2011). All participants had normal or corrected-to-
normal vision and no impairment in color vision. Participants received a
combination of payment and course credit for participation in the
experiment. All procedures were approved by the University of
California, Davis Internal Review Board (IRB). One block from one
participant was removed because of excessive motion during scan-
ning (head movement. 3 mm) but removing this block did not qual-
itatively change any results.

Experimental design
Participants completed a simplified two-object search task that was
adapted for function imagine from previous studies in our lab using
multiple object search (Witkowski and Geng, 2019). Each trial began
with an auditory tone that cued the target color distribution. A high tone

(750Hz) indicated that the target color would come from a range of col-
ors centered around an orange-pink value Red-green-blue (RGB): 0.92,
0.58, 0.53); a low tone (375 Hz) indicated the target would come from a
range of colors centered around a blue-green value (RGB: 0.18, 0.74,
0.82). The central color of each range (or the mean of the target distribu-
tion) was always the most likely to be the target color. The other colors
within the range were sampled using a Gaussian-like profile that
changed as a function of condition (see below). Tones were presented
bilaterally for 250ms and followed by an 8000-ms interstimulus interval
(ISI) of silence. The ISI was followed by a visual search display during
which participants were instructed to rapidly “report the location of the
object that best matches the central color of cued target distribution.”
We call this the “target,” and the difference between the mean of
the distribution and the target is the target distance. Participants
reported the location of the target by pressing “1” if it was on the
left and “2” if it was on the right. The search display was visible for
250 ms, after which the stimuli disappeared, but participants were
allowed 1000 ms to respond. Each trial ended with feedback about
whether the participant correctly identified the target in time
(green circle or a red “X” otherwise). This was followed by a ran-
domly jittered 4000- to 12,000-ms intertrial interval, which fol-
lowed a g distribution with a mean of 6600 ms. Each participant
completed 160 trials in total during the experiment.

The target color on each trial was drawn from a predetermined distri-
bution of seven possible colors, ranging between �75° and 75° from the
mean target color in 25° steps. Participants were told beforehand that the
mean of each distribution was the most likely target color, and that the dis-
tribution was symmetric. The variance of the target distributions differed
across two variability conditions. In the low-variability condition, the tar-
get was the mean color value on 80% of trials, 625° away from the mean
target color on 5% of trials, 650° away on 10% of trials, and 675° away
on 5% of trials. The number of 50° targets were upsampled to increase the
number of observations near the tails of the distribution while still main-
taining a Gaussian-like profile. In the “high-variability” condition only
25% of target colors were from the mean of the distribution, and each
other possible target color occurred on 12.5% of trials. The outcome of
this manipulation was greater certainty about the upcoming target’s color
in the low-variability condition compared with the high-variability condi-
tion. Participants were instructed that “In the low variability condition, the
target was likely to be an exact match of the central color and a small chance
that it would be different. In the high variability condition, the target was
much more likely to be dissimilar to the central color.” Participants were
given 20 practice trials of each kind to experience the variability of each
distribution.

Finally, distractors on each trial were randomly selected from a uni-
form distribution between �179° and 180° from mean target color on
that trial. The only constraint on selecting the distractor color for a single
trial was that it must be at least 20° farther than the actual target from
the mean value of the target distribution. This meant that distractors
could come from the uncued distribution (i.e., the pink-orange distribu-
tion if the blue-green distribution was cued), and accuracy on these trials
would be lower if participants could not remember the correct target
color.

Participants were explicitly reminded about the mapping between
the tone and the target distribution, as well as the variability of each dis-
tribution before the beginning of each block. All stimuli had colors taken
from a CIE color space color wheel (Bae et al., 2015). Both the target and
distractor had a radius of 2° of visual angle and were displayed at 7.5° of
eccentricity.

Statistical analysis of behavior
To estimate the effect of variability on RT, we used a linear regression
model to test how variability condition moderated participant RT over-
and-above that of the target distance. Target distance was calculated as
the circular difference between the mean of the target distribution and
the target color. We hypothesized that the effect of the target distance
would be modulated by expectations about the distribution of target col-
ors. For example, the 50° target should produce a larger RT cost in the
low-variability condition than in the high-variability condition. This is
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because participants should have high certainty that the target will be the
central color value and a 50° target would violate this expectation; in
contrast, RT for the same target color should be shorter in the high-vari-
ability condition because participants will be more likely to expect any of
the possible target colors to appear and a 50° target will be consistent
with these expectations. This outcome would produce an interaction in
RT between the target distance and variability condition and demon-
strate that feature-based attentional selection is modulated by expecta-
tions of target variance.

We tested this hypothesis by fitting RT data from trials with correct
responses to a g -distributed hierarchical regression model (Lo and
Andrews, 2015), using the lme4 package in R. Trials with incorrect
responses or RTs more than three times the interquartile range (IQR)
from the median RT were excluded from the analysis (mean¼ 13 trials
total per participant).

The regression model had one regressor for target distance which
reflects the slope of the RT increase as the target becomes more dissimi-
lar from the mean target color. We also included a binary regressor for
variability condition capturing the overall difference in RT because of
uncertainty about the target color, and an interaction term. One final
regressor was included to capture the target-distractor distance calcu-
lated by the circular difference between target color and the distractor
color during the search display, which is known to influence RT
(Duncan and Humphreys, 1989; Wolfe and Horowitz, 2017). The ran-
dom-effects structure included random intercepts for each participant
and random by-participant slopes for each of the fixed effects.

All significance testing was done using likelihood-ratio tests between
the full model and models with the relevant fixed effect removed, as is
appropriate for hierarchical models (Luke, 2017). For example, the sig-
nificance of the interaction between target distance and variability condi-
tion was tested by fitting a model with and without the fixed effect of the
interaction.

MRI data acquisition
Data were acquired using a Siemens Skyra 3 Tesla scanner. We used a
gradient-echo-planar imaging (EPI) pulse sequence, with a multiband
acceleration factor of 2, and aligned the slice angle to the anterior-posterior
commissure line. We acquired 48 axial slices, 3 mm thick with the following
parameters: repetition time (TR)¼ 1500 ms, echo time (TE)¼ 24.6ms, flip
angle ¼ 75°, field of view (FoV)¼ 210 mm, voxel size¼ 3 � 3 � 3 mm.
Slices were acquired in interleaved order. We also acquired a field map to
correct for potential deformations with dual echo-time images covering the
whole brain, with the following parameters: TR¼ 500 ms, TE1¼ 4.92ms,
TE2¼ 7.38ms, flip angle¼ 40°, FoV¼ 192 mm, voxel size¼ 3 � 3 �
3 mm. For accurate registration of the EPIs to the standard space, we
acquired a T1-weighted structural image using a magnetization-pre-
pared rapid gradient echo sequence (MPRAGE) with the following pa-
rameters: TR¼ 2400 ms, TE¼ 2.98ms, flip angle¼ 7°, FoV¼ 256 mm,
voxel size¼ 1� 1 � 1 mm.

Preprocessing
Preprocessing of the data were done in SPM12 (Wellcome Trust Center
for Human Neuroimaging) in MATLAB (2019a MathWorks). Data
were preprocessed using the default options in SPM. Images were slice-
time corrected and realigned to the first volume of each sequence.
Realignment was done to correct for motion using a six-parameter rigid
body transformation. Inhomogeneities in the field were corrected using
the phase of non-EPI gradient echo images at two echo times, which
were co-registered with structural maps. Images were then spatially nor-
malized by warping participant specific images to the reference brain in
the Montreal Neurologic Institute (MNI) coordinate system with 2-mm
isotropic voxels. Finally, for the univariate analyses, images were spatially
smoothed using a Gaussian kernel with a full width at half maximum of
8 mm.

ROI selection
Based on our a priori prediction about the role of IFJ, DLPFC, and visual
cortex in coding of the attentional template, we defined prefrontal and
visual cortical regions of interest to be used in all analyses of the BOLD

data. The IFJ region of interest (ROI) was created using IFJa and IFJp
(Index 79 and 80, respectively) from the Human Connectome Project
dataset (Glasser et al., 2016). The DLPFC ROI was taken from a proba-
bilistic map of the prefrontal cortex (Sallet et al., 2013). We constructed
visual cortex ROIs by using all voxels from visual cortical areas from a
probabilistic map of retinotopic regions in the brain (Wang et al.,
2015). All voxels generated from the probabilistic maps were included
without thresholding. Independent presupplementary motor area
(pre-SMA) and anterior insula (AI) ROIs were generated by drawing
a 10-mm radius sphere (default size in SPM/Marsbar) around peak acti-
vation voxels for frontal regions which supported coding of perceptual
uncertainty reported by Geurts et al. (2022).

Univariate fMRI analyses
To model BOLD activity in each voxel we used a GLM with three differ-
ent regressors; the “cue period” (a boxcar, stimulus presentation time of
250ms plus 750ms after the tone ended), the delay period (a boxcar
over 7 s of the delay) and the search period (a 1-s boxcar beginning at
the onset of the search stimuli). We also included two parametric modu-
lators for the search period: The first was the target distance and the second
was the target-distractor distance. Six motion regressors were included as
regressors of no interest in the model to account for translation and rota-
tion in head position during the experiment. All temporal regressors were
convolved with a standard HRF before computing model coefficients.

From the first-level analysis, we calculated contrast images of the pa-
rameter estimates from all regressors (except the motion regressors) and
parametric modulators. We then submitted the contrast for each partici-
pant into one sample t tests in the group-level analyses.

Multivariate fMRI analyses
Multivariate pattern analyses were used to test whether we could decode
information about the expected target on each trial. This method of anal-
ysis is often used to decode identity information in local neuronal net-
works (Haynes and Rees, 2005; Kamitani and Tong, 2005; Kriegeskorte
et al., 2008). To do this, we estimated the trial-by-trial BOLD activity
pattern during the delay period using unsmoothed preprocessed images
and a GLMwith regressors for each trial’s delay period. The delay period
was modeled as a boxcar that had a constant duration lasting 7 s from
the end of the cue period. No parametric modulators were added.
Pattern-based classifiers [linear support vector machines (SVMs)] were
trained using LIBSVM (Chang and Lin, 2011) to distinguish between tri-
als where the predicted target color was pink-orange and trials where the
predicted target color was blue-green.

We used a searchlight procedure to identify voxels in each ROI that
differentiated the two target identities. Each searchlight consisted of a
5 � 5 � 5 voxel cube and was required to contain at least 10 nonempty
voxels to be considered for further processing. The searchlight was then
standardized by z-scoring the b values across voxels. We tested voxel ac-
curacy using an iterative leave-one-out procedure. Trials from all but
one block were used to train the SVM, then tested on the left-out block.
Accuracy was averaged across iterations and compared with chance per-
formance (50%). The resulting maps were then spatially smoothed using
a Gaussian kernel with full width half maximum of 8 mm. Group-level
analyses were performed using a one-sample t test on accuracy maps
across participant.

To calculate trial-by-trial decoding strength of representations, we
calculated the distance of each trial to the hyperplane separating the two
categories using the equation specified on the LIBSVMwebpage (https://
www.csie.ntu.edu.tw/?cjlin/libsvm/faq.html). Patterns that are more dis-
tant from the hyperplane can be thought of as having more information
about a category, and those that are closer to the hyperplane as having
less information (Schuck and Niv, 2019; Witkowski et al., 2022). We
then signed the distance of each point according to whether the pre-
dicted category label was correct (1 for correct,� for incorrect).

Group-level statistical inference
Group-level testing was done using a one-sample t test (df¼ 19) on the
cumulative functional maps generated by the first level analysis. All first
level maps were smoothed before being combined and tested at the
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group level. To correct for multiple comparisons, we used threshold-free
cluster enhancement (TFCE) which uses permutation testing and
accounts for both the height and extent of the cluster (Smith and
Nichols, 2009). All parameters were set to the default (H¼ 2, E¼ 0.5)
and we used 5000 permutations. In all ROI-based analyses and whole
brain analyses we report effects below a pTFCE, 0.05 threshold. We
first performed group-level inference on independent anatomic ROIs,
then performed exploratory whole brain analyses. For ROI analyses, we
first extracted voxels from each ROI in each participant’s first-level acti-
vation map, averaged the maps together, then applied small volume
TFCE correction. All other analyses were corrected for multiple compar-
isons at the whole brain level.

Code availability
Raw data are available on the NIMH DataArchive (collection #2922;
experiment ID 2367), and all original code is publicly available on Open
Science Framework (https://osf.io/cndzx/?view_only¼f704c0b26632420
2b983472bf2dd1039).

Results
Search performance is determined by the expected variability
of search targets
We first assessed the extent to which the variability of each target
distribution affected participant search performance. Specifically,
we hypothesized that RT would increase as the target distance
increased, but that the slope of this effect would be less steep in
the high-variability condition compared with the low-variability
condition. This hypothesis was confirmed by the significant
interaction between target distance and variability condition
(b ¼ 0.79ms/°/condition, model comparison x2(1) ¼ 12.94,
p, 0.001; Fig. 1). This means that the same target (e.g., the
50° target distance) elicited longer RTs in the low-variability con-
dition than the high-variability condition because participants
were less likely to expect it in the low-variability condition. The

same analysis in accuracy resulted in no interaction between target
distance and variability condition (x2(1) ¼ 0.12, p¼ 0.73), nor
overall effects of target distance (x2(1)¼ 0.329, p¼ 0.57) and var-
iability condition (x2(1) ¼ 3.56, p¼ 0.059. Mean accuracy was
high in both the low-variability (mean¼ 0.929, SD¼ 0.052) and
high-variability (mean¼ 0.900, SD¼ 0.064) conditions. Together,
these results show that participants could accurately identify all
target colors in the target distribution, but knowledge about the
variability of this distribution modulated the time it took to locate
and identify the target.

In contrast to the target distance, while there was a significant
main effect of target-to-distractor difference on RT (b ¼
�0.26ms/° difference, x 2(1) ¼ 13.55, p, 0.001), there was no
interaction with variability condition (x 2(1) ¼ 0.001, p¼ 0.98).
This pattern was also present in the accuracy data: the main
effect was significant (x 2(1) ¼ 13.86, p, 0.001), but there was
no interaction with variability condition (x2(1) ¼ 2.50,
p¼ 0.11). These results show that similarity between the target
and distractor affected performance but equally so across the
expected variability of the targets.

Multivariate representations of target identity are coded in a
prefrontal and visual network during the delay period
independent of expected uncertainty
The behavioral data showed that there was a relationship
between expected variability and target distance. However, the
main goal of this study was to test whether the neural representa-
tions of the target identity and its expected variability were
encoded together or separately, and whether the two types of in-
formation were represented in the prefrontal cortex in anticipa-
tion of visual search. To better understand how the target
identity is coded we first performed a multivariate decoding
analysis of activation from the delay period using a search-light

Figure 1. Search task schematic and behavioral results. a, Each trial began with the presentation of a cue-tone which informed participants of the relevant target color. High tones (750
Hz) indicated a pink-orange central color (RGB 0.92, 0.58, 0.53) while low tones (350 Hz) indicated a blue-green color (RGB 0.18, 0.74, 0.82). After the interstimulus interval (8000 ms) two col-
ored circles, one target and one distractor, were displayed on the screen for 250 ms. The circle with “T” illustrates the target on this trial. The “T” was not visible to participants during the
task. Responses indicating the target location (left/right) were allowed for up to 1 s. Participants then received visual feedback about the correctness of their response: an “O” if correct and an
“X” if incorrect. b, Blocks were divided into two conditions based on the variability of the target distribution. In the low-variability condition, the target distributions had a low standard devia-
tion (24°) centered around the mean target color. In high-variability blocks, the target distribution had a high standard deviation (47°). c, Response time (RT) during the search period followed
the expected distribution of target stimuli.
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procedure over each ROI. This method of analysis has been used
in previous work to decode identity information in local neuro-
nal networks (Witkowski et al., 2022). A linear pattern classifier
was trained to distinguish trials in which the target came from
the pink-orange distribution or blue-green distribution inde-
pendently for the low-variability and high-variability conditions.

This analysis identified a significant cluster of voxels in IFJ
([x,y,z] ¼ [�50,12,30], t(19)¼ 3.48, pTFCE ¼ 0.041 ROI cor-
rected; Fig. 2b), and in left DLPFC ([x,y,z] ¼ [�32,28,38],
t(19)¼ 4.20, pTFCE¼ 0.047 ROI corrected). We also found a sig-
nificant effect correcting over all voxels in visual cortex ([x,y,z]¼
[36,�94,20], t(19)¼ 5.70, pTFCE¼ 0.003 ROI corrected). In an
additional analysis, we tested specific subregions of visual cortex
by using all voxels in each bilateral region consistent with other
approaches in vision science (Haynes and Rees, 2005; Kamitani
and Tong, 2005; Kriegeskorte et al., 2008). The results showed
significant decoding in V1, V2, and V3 (V1 t(19) ¼ 3.49,
p¼ 0.001; V2 t(19) ¼ 2.67, p¼ 0.008; and V3 t(19) ¼ 2.80,
p¼ 0.006), in line with work showing that these regions maintain
task-relevant information in working memory (Ester et al., 2016;
Li et al., 2021). These results replicate previous findings showing
that DLPFC, IFJ, and visual cortex encode target features in
working memory in anticipation of an upcoming visual search.
However, none of these regions showed significant differences
between variability conditions (all pTFCEs . 0.19), suggesting
that identity information was consistently coded in the multivar-
iate pattern across conditions. Additional exploratory whole-
brain corrected analyses using the same multivariate approach
also did not find any regions sensitive to target identity, variabili-
ty condition, or a difference in the strength target identity decod-
ing between conditions (minimum pTFCE¼ 0.25). Similarly, we
observed no significant decoding of the expected target identity
after the onset of search (minimum pTFCE¼ 0.38). This indi-
cates that the cue-induced representations of the target identity
held during the delay period were not affected by the predictive
uncertainty of exact target values manipulated across variability
conditions.

To test whether significant decoding of target identity in IFJ,
DLPFC, and visual cortex was because of shared information
between regions during the delay, we used information connectiv-
ity, a multivariate version of functional connectivity (Coutanche
and Thompson-Schill, 2013). We applied a threshold to the
searchlights in each region, such that only searchlights that

coded target identity were included (threshold t(19) ¼ 2.54,
p, 0.01, uncorrected). We then extracted the distance of
the multivariate pattern on each trial to the hyperplane which sep-
arates trials with different targets (see Materials and Methods).
These distances can be taken as a measure of the “decoding
strength” of target identities on each trial (Schuck and Niv,
2019). Trial-by-trial decoding strength was significantly corre-
lated between IFJ and DLPFC (t(19) ¼ 2.07, p¼ 0.026), and
between DLPFC and in visual cortex (t(19) ¼ 3.19, p¼ 0.002).
IFJ and visual cortex showed a marginally significant correla-
tion of decoding strength (t(19) ¼ 1.67, p¼ 0.055). However,
none of these connections were found to be modulated by the
variability condition (all t(19)s, 1.47, all ps. 0.15). This sug-
gests that the strength of information connectivity within the
network of regions that code target identity is not affected by
uncertainty. IFJ, DLPFC, and visual cortex comprised a network
of regions that code the target identity during the delay period
but the multivariate information in these regions was independ-
ent of the uncertainty in the prediction of target color.

Coding of predictive uncertainty in response to target
variability is supported by univariate signals in prefrontal
cortex
Although the behavioral data indicated that both target identity
and expected variability impacted visual search performance, the
multivariate analyses did not find any regions in the brain that
jointly encoded target identity and expected variability.
However, previous work indicated that uncertainty may be
coded via an increase in univariate activity in DLPFC and IFJ
(Summerfield et al., 2011; Badre et al., 2012; Tomov et al., 2020).
As such, we tested the idea that target variability is encoded by
overall activations (univariate signal) in these regions. We began
by constructing a GLM (see Materials and Methods) and then
compared differences in the univariate activation during the
delay period between the high-variability and low-variability
conditions. We hypothesized that we would observe higher uni-
variate activation before high-variability search trials compared
with low-variability search trials in the same prefrontal areas in
which we decoded target identity, namely IFJ and DLPFC. Our
results confirmed this prediction, showing higher activity in the
left IFJ ([x,y,z] ¼ [�44,2,22], t(19)¼ 3.38, pTFCE ¼ 0.014 ROI
corrected) and left DLPFC [x,y,z] ¼ [�48,30,32], t(19)¼ 4.76,
pTFCE¼ 0.006 ROI corrected; Fig. 3a) during the delay period

Figure 2. Multivariate coding of target-identity in network spanning prefrontal and visual cortices. a, Analysis scheme for data shown in b. We calculated the trial-by-trial strength of infor-
mation about target identities in each of the regions of interest. The strength of information about a target identity was taken as the distance between a voxel pattern in multidimensional
space and the hyperplane separating categories. We then correlated these distance measures together as a measure of information connectivity. b, Network of regions involved in coding multi-
variate representations of the target identity across conditions. Lines connecting each area represent the results of information connectivity between regions (ppp , 0.01, pp , 0.05). For
illustration, we display the voxels in each region that survive at a threshold of t(19) ¼ 2.54, p, 0.01, uncorrected. c, Results of analysis using bilateral visual ROIs to decode target identity.
Dotted horizontal line indicated chance decoding. Error bars represent 95% CI.
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in the high-variability condition compared with low-variability
condition. This pattern held true even after limiting the voxels
included in the analysis to only those for which the multivariate
pattern of target identity was also significant (both pTFCEs,
0.05, ROI corrected). However, we found no effect of variability,
positive or negative, in the visual cortex ROI (all pTFCEs. 0.3).
We also conducted an exploratory analysis to see whether any
ROI continued to code uncertainty into the search period,
and found a significant effect in IFJ ([x,y,z] ¼ [�52,14,28],
t(19)¼ 3.43, pTFCE ¼ 0.023 ROI corrected). Together, these
results suggest that prefrontal areas specifically encoded the pre-
dictive uncertainty of the target features before visual search.

IFJ and DLPFC code target distance at the time of search
Because IFJ and DLPFC held information about the target’s
expected identity and feature variability during the delay period,
we also expected processing in these regions to reflect how well
the current search target matches those prior expectations.
Specifically, we expected activation in these regions to mirror
the behavioral data and scale with the variability-weighted
target distance. If found, this result would suggest that these
frontal regions resolve the uncertainty of target features dur-
ing active attentional guidance and target decisions.

We first tested for regions with greater modulation of activity
by target distance in the low-variability condition compared with
the high-variability condition. We found that only IFJ encoded
this interaction pattern ([x,y,z] ¼ [42,12,26], t(19)¼ 3.13
pTFCEs, 0.047 ROI corrected; Fig. 4). Neither DLPFC nor vis-
ual cortex voxels reached significance (both pTFCE .0.1 ROI
corrected) and no other regions were significant at the whole
brain level (all pTFCE. 0.2). IFJ coded the variability-weighted
target distance at the time of search, reflecting the pattern of be-
havioral RT. This suggests that IFJ may play a unique role in
deciding whether a target stimulus matches the target template
in memory.

Prefrontal cortex codes target-to-distractor relationship at
the time of search
In a complimentary analysis to our target distance analysis, we
looked for regions that coded the target-to-distractor distance at
the time of search. Regions sensitive to this are involved in the
resolution of competition between targets and distractors, and
therefore should show greater activity when the target-to-distrac-
tor difference is smaller (i.e., harder to resolve). We observed
the predicted effect in IFJ ([x,y,z] ¼ [�40,8,28], t(19)¼ 4.30,
pTFCE, 0.05 ROI corrected) and DLPFC ([x,y,z] ¼ [�30,8,34],
t(19)¼ 4.20, pTFCE, 0.05 ROI corrected; Fig. 5b). As a post hoc

analysis, we defined ROIs for pre-SMA and AI (see Materials
and Methods, ROI selection) based on previous work showing
that these regions code perceptual decision uncertainty when
viewing stimuli (Michael et al., 2015; Geurts et al., 2022). The
ROIs were used to define a small volume for a searchlight analy-
sis. We found significant coding of target-to-distractor distance
in both regions (pre-SMA ([x,y,z] ¼ [0,20,52], t(19)¼ 3.89; left
AI [x,y,z] ¼ [�34,20,�2], t(19)¼ 4.44; right AI [x,y,z] ¼
[36,22,�2], t(19)¼ 4.18, all pTFCE, 0.05 ROI corrected). We
found no other associations between brain activity and target-to-
distractor distance at the whole brain level in the positive (all
pTFCEs. 0.15) or negative directions (all pTFCEs. 0.35). The
fact that IFJ codes both target-distractor distance as well as
uncertainty-weighted target distance further suggests a special
role for IFJ in integrating the target in memory with the percep-
tual display in service of discriminating the target.

Discussion
Understanding how uncertainty is integrated into target tem-
plates is essential to understanding how attention operates in the
real world. As we search for objects in dynamic environments,
attention systems must consider the natural variability of objects
and make predictions based on this uncertainty. The current
experiments add to a literature on how attentional systems use
statistical knowledge by looking at the neural mechanisms that
underlie the representation of uncertainty and its integration
with the target template. We find that frontal regions coded both
multivariate representations of predicted targets and a univariate
representation tracking the uncertainty of the target’s actual fea-
tures. These results add to theories of attention by showing that
IFJ and DLPFC are critical for integrating the known variability
of dynamic search targets with predictions of the target identity.

Our multivariate analysis showed that a network of regions
spanning IFJ, DLPFC, and visual cortex coded the predicted tar-
get identity during the delay period before search. This result is
consistent with previous reports of these regions being involved
in generating sensory predictions (Iglesias et al., 2013; Kok et al.,
2013, 2017) and top-down signals during attentionally demand-
ing tasks (Giesbrecht et al., 2003; Baldauf and Desimone, 2014;
Jackson et al., 2021). Similarly, the decoding of target identity in
visual cortex is consistent with previous work showing that visual
cortex supports the reactivation of remembered visual informa-
tion from long-term or working memory or when imagining
previously seen stimuli (Harrison and Tong, 2009; Naselaris et
al., 2015; Vo et al., 2022). The reinstatement in our study
involved information connectivity with frontal regions, implicat-
ing a network in the recall of visual information in preparation
for visual search. The current experiments expand on these find-
ings by showing that the strength of target representations fluctu-
ated in tandem within this network. This suggests that these
regions are not only coactive during attentionally demanding
tasks but share information about the identity of the target before
the onset of search.

Our key aim in the study was to test which regions of the
brain coded both the identity of the predicted target and the
uncertainty of those predictions. We hypothesized that DLPFC
and IFJ would represent the uncertainty of visual features analo-
gous to the way in which these regions encode decision uncer-
tainty (Summerfield et al., 2011; Badre et al., 2012; Michael et al.,
2015; Tomov et al., 2020). Our results confirmed these predic-
tions by showing that uncertainty was found as a univariate sig-
nal that increased when the distribution of possible targets

Figure 3. Univariate uncertainty codes overlay multivariate target-identity codes in pre-
frontal cortex. a, Results from univariate contrast between conditions showing higher activity
in high-variability blocks compared to low-variability blocks. b, Hypothetical effect of how a
univariate representation of uncertainty might be overlaid on multivariate sensitivity to tar-
get identity within the same region. Note that uncertainty does not change efficiency of
decoding but scales only with voxel activity.
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became more variable. Interestingly, we did not observe any sig-
nificant modulation of the multivariate identity code by uncer-
tainty, standing in contrast to recent reports of joint coding of
working memory contents and uncertainty in this region (Van
Bergen and Jehee, 2019; Li et al., 2021). One important difference
between their studies and ours is that our participants were cued
to the target with a tone whereas their participants directly
viewed the target stimulus. Thus, uncertainty about the target in
our study concerned predictions about an upcoming target while
theirs involved uncertainty about the category of a remembered
stimulus. In our study, this signal may reflect uncertainty itself or
the anticipated difficulty of resolving the target identity in the
upcoming search because of uncertainty. Because the expected
identity of the target remained the same in our study regardless
of the variability condition, coding expected uncertainty sepa-
rately from target identity might offer a flexible way to represent
the demands of the upcoming search task. Future work will need
to specify when and how univariate and multivariate coding
schemes are used to represent task variables, and their role in
overall task performance. Despite these open questions, our
results add to theories of attention by showing how abstract,
real-world attributes such as predictive uncertainty are integrated
into target representations.

One interesting caveat to the symmetry of our finding for IFJ
and DLPFC concerns the role of these two regions during active
search. While both DLPFC and IFJ coded the target identity and
uncertainty before search, only IFJ continued to code uncertainty
through the search period. Additionally, IFJ coded the variance-
weighted target distance once the search display appeared.
Together, this suggests that IFJ maintained information about
how variable the target was likely to be, and increased activation
when those expectations were violated in the low-variability con-
dition once the target appeared. DLPFC, however, did not show
significant coding of variance-weighted target distance. This
divergence suggests that IFJ may be more closely tied to global
feature-based attentional guidance and target identification deci-
sions during search (Zhang et al., 2018; Meyyappan et al., 2021).
This is supported by the observation that the pattern in IFJ
reflected the same pattern of results as the behavioral responses
to the search display. DLFPC’s role in search may be more spe-
cific to maintaining information over long delays before search.

Our behavioral results showed that both variability weighted cue-
to-target difference and target-to-distractor difference moderated

search times. While the main purpose of this paper was to deter-
mine the neural mechanism of predictive uncertainty, captured
by the variability condition, the target-to-distractor difference
captures decision uncertainty. That is, uncertainty about which
one of the two current options is the true target because of per-
ceptual similarity. Our analysis of the neural activation moder-
ated by target-to-distracter difference illuminated a network of
regions including DLPFC, pre-SMA, and AI, which replicates
previous work showing that these regions are sensitive to percep-
tual uncertainty during ongoing decision-making (Michael et al.,
2015; Geurts et al., 2022). However, we also identified the IFJ as
the only region that coded both the uncertainty of the target dis-
tribution and the target-to-distractor difference at search, sug-
gesting a link between IFJ and search behavior (Bedini et al.,
2023). Together, these results highlight the IFJ as a region that
integrates remembered and perceived sources of uncertainty to
support feature-based attention.

Overall, this study adds knowledge to theories of attention by
showing how uncertainty is integrated with target information in
anticipation of, and during, visual search. We report that IFJ and
DLPFC encode predictions of target information and expected
variability during the delay period through multivariate and uni-
variate representations, respectively. Furthermore, the activity
of IFJ during search was also moderated by target distance.

Figure 4. Univariate BOLD Response (arbitrary units; AU) to variability-weighted target distance. Coronal slice of IFJ showing voxels with magnitude differences in response to target distance
each trial. Right side shows the BOLD response in this region binned by target distance. Error bars show 95% confidence interval. BOLD responses for target distance in the low-variability condi-
tion shown in orange (top panel), and in the high-variability condition shown in red (bottom panel). For illustration, we display the voxels in each region that survive at a threshold
of t(19) ¼ 2.54, p, 0.01, uncorrected.

Figure 5. Univariate BOLD activity associated with target-to-distractor difference. a, Example
trials showing low target-to-distractor difference (top) and high target-to-distractor differences
(bottom). The circle with “T” is the hypothetical target. b, regions showing significant increases
in neural activation in response to low target-distractor difference. For illustration, we display
the voxels in each region that survive at a threshold of t(19)¼ 2.54, p, 0.01, uncorrected.
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Together, this work highlights the distinct roles of IFJ and
DLPFC in supporting predictive representations of dynamic tar-
gets based on their identity and uncertainty.
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