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ORIGINAL RESEARCH

Altered Peripheral Blood Gene Expression 
in Childhood Cancer Survivors With 
Anthracycline- Induced Cardiomyopathy –  A 
COG- ALTE03N1 Report
Purnima Singh , PhD*; Disheet A. Shah , PhD*; Mariam Jouni, PhD; Romina B. Cejas , PhD; 
David K. Crossman , PhD; Tarek Magdy , PhD; Shaowei Qiu, MD; Xuexia Wang, PhD; Liting Zhou , MS; 
Noha Sharafeldin , PhD; Lindsey Hageman , MPH; Donald E. McKenna , MS; Saro H. Armenian , DO; 
Frank M. Balis , MD; Douglas S. Hawkins , MD; Frank G. Keller, MD; Melissa M. Hudson , MD; 
Joseph P. Neglia , MD; A Kim Ritchey , MD; Jill P. Ginsberg , MD; Wendy Landier , PhD; 
Ravi Bhatia , MD; Paul W. Burridge , PhD; Smita Bhatia , MD

BACKGROUND: Anthracycline- induced cardiomyopathy is a leading cause of premature death in childhood cancer survivors, 
presenting a need to understand the underlying pathogenesis. We sought to examine differential blood- based mRNA expres-
sion profiles in anthracycline- exposed childhood cancer survivors with and without cardiomyopathy.

METHODS AND RESULTS: We designed a matched case- control study (Children’s Oncology Group- ALTE03N1) with mRNA 
sequencing on total RNA from peripheral blood in 40 anthracycline- exposed survivors with cardiomyopathy (cases) and 64 
matched survivors without (controls). DESeq2 identified differentially expressed genes. Ingenuity Pathway Analyses (IPA) 
and Gene Set Enrichment Analyses determined the potential roles of altered genes in biological pathways. Functional vali-
dation was performed by gene knockout in human- induced pluripotent stem cell- derived cardiomyocytes using CRISPR/
Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR- associated protein 9) technology. Median age 
at primary cancer diagnosis for cases and controls was 8.2 and 9.7 years, respectively. Thirty- six differentially expressed 
genes with fold change ≥±2 were identified; 35 were upregulated. IPA identified “hepatic fibrosis” and “iron homeostasis” 
pathways to be significantly modulated by differentially expressed genes, including toxicology functions of myocardial 
infarction, cardiac damage, and cardiac dilation. Leading edge analysis from Gene Set Enrichment Analyses identified 
lactate dehydrogenase A (LDHA) and cluster of differentiation 36 (CD36) genes to be significantly upregulated in cases. 
Interleukin 1 receptor type 1, 2 (IL1R1, IL1R2), and matrix metalloproteinase 8, 9 (MMP8, MMP9) appeared in multiple 
canonical pathways. LDHA- knockout human- induced pluripotent stem cell- derived cardiomyocytes showed increased 
sensitivity to doxorubicin.

CONCLUSIONS: We identified differential mRNA expression profiles in peripheral blood of anthracycline- exposed childhood 
cancer survivors with and without cardiomyopathy. Upregulation of LDHA and CD36 genes suggests metabolic perturbations 
in a failing heart. Dysregulation of proinflammatory cytokine receptors IL1R1 and IL1R2 and matrix metalloproteinases, MMP8 
and MMP9 indicates structural remodeling that accompanies the clinical manifestation of symptomatic cardiotoxicity.
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Anthracyclines are a highly effective class of che-
motherapy used in the treatment of childhood 
lymphoma, leukemia, and several solid tumors1,2; 

60% of children with cancer are treated with anthra-
cyclines.3 However, the clinical utility of anthracyclines 
is limited because of cumulative and irreversible car-
diomyopathy, leading to congestive heart failure.4 
The mechanisms underlying anthracycline- induced 
cardiotoxicity are multifactorial and include mito-
chondrial injury, oxidative stress, apoptosis, ferropto-
sis, and dysregulation of autophagy.5 Demographic 
characteristics such as young age at anthracycline 
exposure, female sex, chest radiation, and presence 
of cardiovascular risk factors (CVRFs: diabetes, hy-
pertension, dyslipidemia) modify the anthracycline- 
cardiomyopathy association.6 The 5- year survival rate 
for anthracycline- induced congestive heart failure is 
estimated to be <50%.7 While the cardiomyopathy risk 
is dose- dependent, there is considerable interpatient 
variability at any anthracycline dose, suggesting a need 
to understand the underlying genetic basis.8,9 We and 

others have identified genomic variants associated 
with cardiomyopathy, but these explain only a modest 
proportion of cardiomyopathy risk.10,11

Comparing mRNA transcript levels between 2 
contrasting phenotypes allows for the identification 
of differentially expressed genes (DEGs) that can 
shed mechanistic insights into the disease. RNA se-
quencing allows the quantification of mRNA levels 
using an unbiased approach. Differential constitutive 
gene expression in peripheral blood of anthracycline- 
exposed cancer survivors with and without cardio-
myopathy could enhance our knowledge of biological 
functions impacted by DEGs and the pathogenesis 
of anthracycline- induced cardiomyopathy. While ob-
taining heart biopsies from cancer survivors is logis-
tically difficult, peripheral blood is easily obtained, 
and gene expression levels in blood correlate with 
the cardiac transcriptome.12– 14 We tested the hypoth-
esis that assessment of differential gene expression in 
peripheral blood followed by an examination of mech-
anistically plausible DEGs in human- induced pluripo-
tent stem cell– derived cardiomyocytes (hiPSC- CMs) 
can help elucidate molecular mechanisms underlying 
anthracycline- induced cardiotoxicity.

METHODS
Data Availability
The data discussed in this publication have been 
deposited in the National Center for Biotechnology 
Information’s Gene Expression Omnibus and are ac-
cessible through GEO Series accession number 
GSE218276 (https://www.ncbi.nlm.nih.gov/geo/query/ 
acc.cgi?acc=GSE21 8276).

Study Design
Participants were drawn from a COG (Children’s 
Oncology Group) study (COG- ALTE03N1, PI: S. Bhatia) 
that uses a matched case– control design to under-
stand the pathogenesis of cardiomyopathy in childhood 
cancer survivors. COG member institutions enrolled 
patients after obtaining approval from local institutional 
review boards. Written informed consent/assent was 
obtained from patients or parents/legal guardians. 
Cases consisted of childhood cancer survivors who 
developed cardiomyopathy after exposure to anthracy-
clines. For each case, up to 3 anthracycline- exposed 
survivors with no signs or symptoms of cardiomyopa-
thy were randomly selected as controls from the same 
COG cohort, matched on primary cancer diagnosis, 
year of diagnosis (±5 years), and race or ethnicity. The 
selected controls also needed a longer duration of 
cardiomyopathy- free follow- up compared with the time 
from cancer diagnosis to cardiomyopathy for the corre-
sponding case. Participants provided peripheral blood 

CLINICAL PERSPECTIVE

What Is New?
• A gene expression profile of peripheral blood 

can distinguish anthracycline- exposed child-
hood cancer survivors with cardiomyopathy 
from those without.

• LDHA, CD36, IL1R1, IL1R2, MMP8 and MMP9 
genes were significantly upregulated in childhood 
cancer survivors with cardiomyopathy when com-
pared with those without, suggesting metabolic 
and structural perturbations in a failing heart.

What Are the Clinical Implications?
• This study suggests that transcriptional dysreg-

ulation is associated with anthracycline- induced 
cardiomyopathy and can be inferred from the 
blood transcriptome.

Nonstandard Abbreviations and Acronyms

CRISPR/Cas9 clustered regularly interspaced 
short palindromic repeats/
CRISPR- associated protein 9

CVRFs cardiovascular risk factors
DEGs differentially expressed genes
GSEA gene set enrichment analysis
hiPSC- CMs human induced pluripotent stem 

cell- derived cardiomyocytes
IPA Ingenuity Pathway Analysis

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE218276
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE218276
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samples in PAXgene blood RNA tubes for germline RNA 
at the time of enrollment to the study (single time point).

Cases fulfilled the American Heart Association cri-
teria for cardiac compromise by presenting with signs 
or symptoms (dyspnea, orthopnea, fatigue, edema, 
hepatomegaly, or rales); or, in the absence of signs or 
symptoms, had echocardiographic features of left ven-
tricular dysfunction (ejection fraction ≤40% or fractional 
shortening ≤28%). Lifetime anthracycline exposure was 
calculated by multiplying the cumulative dose (mg/m2) 
of individual anthracyclines (doxorubicin [n=90], dauno-
rubicin [n=26], mitoxantrone [n=4], and idarubicin [n=3]) 
by a factor that reflects the drug’s cardiotoxic potential15 
and then summing the results. Radiation to the chest 
with the heart in the field was captured as a yes/no vari-
able. CVRFs were captured as a yes/no variable.

RNA Isolation, Library Construction, and 
Sequencing
RNA was isolated from whole blood using the 
PAXgene blood RNA kit (Qiagen Inc., CA). RNA con-
centration was measured using a Nanodrop ND- 1000 
Spectrophotometer (ThermoFisher Scientific Inc., MA). 
RNA quality was checked on Bioanalyzer Nanochip 
(Agilent Technologies, CA), and samples with RNA in-
tegrity number (RIN) >7 were submitted to the Genomic 
Services Laboratory at HudsonAlpha Institute for 
Biotechnology, Huntsville, AL. Poly- adenylated RNAs 
were isolated using NEBNext Magnetic Oligo d(T)25 
beads. Libraries were prepared using the TruSeq RNA 
Sample Preparation Kit (Illumina). Each library was 
pair- end sequenced (100 bp) using the TruSeq SBS 
Kit v4- HS (Illumina), on a NovaSeq 6000 platform. Raw 
reads were de- multiplexed using bcl2fastq Conversion 
Software (Illumina Inc., CA) with default settings.

Differential Gene Expression Analysis
TrimGalore!16 was used to trim off primer adapter se-
quences found in raw FASTQ files. STAR was used to 
align trimmed RNA- Sequencing FASTQ reads to the 
human reference genome from Gencode (GRCh38 
p7 Release 25).17 HTSeq- count was used to count 
the reads mapping to each gene from the STAR align-
ments.18 Normalization and differential expression were 
then applied to the count files using DESeq2.19

Ingenuity Pathway Analysis
DEGs with a fold change of ±1.5 and P value <0.05 
were analyzed by the Ingenuity Pathway Analysis (IPA) 
software (Qiagen Inc., CA) to identify canonical path-
ways and toxicological functions. Canonical signal-
ing pathways enriched by DEGs were identified and 
ranked according to P values. The ratios of significantly 
involved canonical signaling pathways were calculated 

by dividing the numbers of DEGs in the canonical sign-
aling pathway by the number of total genes in the path-
way and indicated as a percentage. IPA- Tox was used 
to examine toxicological functions and identify subsets 
of DEGs predictive of toxicity end points.

Gene Set Enrichment Analysis and 
Leading- Edge Analysis
Gene Set Enrichment Analysis (GSEA) uses prior gene 
sets that have been grouped by their involvement in the 
same biological pathway and searches for sets of genes 
significantly over- represented in a given list of genes. The 
unranked list of DEGs from DESeq2 was exported and 
analyzed with GSEA (v.4.1.0) applying the hallmark (50 
gene set) and cardiomyopathy (19 gene set) collections 
from MSigDB (Tables S1 and S2). False discovery rate 
and nominal P value estimates determined the statistical 
significance of the enrichment score. A gene set with 
a normalized enrichment score of >1.5, false discovery 
rate <0.25, and a nominal P value <0.01 was considered 
significantly enriched. We also examined genes that 
were enriched in the hallmark and cardiomyopathy gene 
sets using the leading edge analysis tool in GSEA.

Functional Analyses
Criteria for prioritizing candidate genes for 
functional analyses

We used the following criteria to prioritize genes for 
functional studies: (1) “protein- coding” genes obtained 
by the “biotype” feature from DESeq2 output (Padj≤0.05 
and fold- change ≥±2); (2) genes with ≥50% of matched 
sets showing differential expression between the case 
and their matched control(s); (3) leading edge genes of 
an enriched gene set; (4) robust expression in the adult 
human heart and hiPSC- CMs20,21; and (5) mechanistic 
plausibility and association with cardiac dysfunction in-
formed by literature review (Table S3).

We used existing hiPSC line 19c322 previously gen-
erated from peripheral blood mononuclear cells from a 
healthy individual using the CytoTune- iPS 2.0 Sendai 
Reprogramming Kit (Invitrogen, A16518) (Data S1). To 
generate gene knockout gRNA expression vectors, 1 
to 2 gRNAs targeting all splicing variants of the tar-
geted genes were designed using an online CRISPR 
design tool (Integrated DNA Technologies) with a high 
predicted on- target score and minimal predicted off- 
target effect. Table S4 includes primers for sgRNA ex-
pression vector generation and sequencing primers.

CRISPR/Cas9- mediated knockout of 
candidate genes

Details of the CRISPR/Cas9- mediated knockout 
of candidate genes are summarized in Data  S1. We 
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used quantitative reverse transcription- polymerase 
chain reaction to examine the success of the can-
didate gene knockout. All polymerase chain reac-
tions were performed in triplicates in a 384- well plate 
format using TaqMan Fast Advanced Master Mix 
(Applied Biosystems, 4444557) in a QuantStudio 5 
Real- Time polymerase chain reaction System (Applied 
Biosystems, A28140). Table  S5 summarizes the 
TaqMan probes. Differentiation into cardiomyocytes 
was completed following our previously described 
protocol23 using a hiPSC line expressing an exoge-
nous TNNT2 promoter- driven Zeocin antibiotic selec-
tion resistance cassette for cardiomyocyte purification 
(Data S1). hiPSC- CMs at day 30 after initiation of dif-
ferentiation were treated for 72 hours with doxorubicin 
(0.01– 100 μM) diluted in RPMI 1640 medium (Corning) 
supplemented with 500 μg/mL fatty acid- free bovine 
serum albumin (GenDEPOT, A0100). Cell viability was 
assessed after the 72- hour period using a resazurin 
assay. Fluorescence was measured using a VarioSkan 
Lux Multi- Mode Reader (Thermo Scientific) using top 
read, an excitation wavelength of 560 nm, and emis-
sion wavelength of 590 nm. Data were presented as 
mean±SEM. Comparisons used 1- way ANOVA test, 
an unpaired 2- tailed Student t- test, or F- test. Data 
were analyzed using Excel and graphed using Prism 
7.0 software (GraphPad), depicting standard dose– 
response guidelines.

RESULTS
Patient Characteristics
The median age at primary cancer diagnosis for the 40 
cases and 64 matched controls was 8.2 and 9.7 years, 
respectively (Table 1). Cases received a higher cumula-
tive anthracycline exposure than the controls (≥250 mg/
m2: 62.5% versus 35.9%, P=0.008). Cases were more 
likely to have received chest radiation (47.5% versus 
20.3%; P=0.003) and more likely to have had a CVRF 
(35% versus 3.1%; P<0.0001). The median time be-
tween cancer diagnosis and cardiomyopathy for cases 
was 5.3 years; controls were followed for a significantly 
longer period (median, 10.1 years; P=0.0006).

Gene Expression and Anthracycline- 
Induced Cardiomyopathy
Of the 43198 genes expressed in the peripheral 
blood of the study participants, we filtered 28026 
low- expressing genes (RNA counts <10 in ≥70% of 
samples). The remaining 15172 genes comprised 
protein- coding genes (82%) and lncRNA/pseudo-
genes/immunoglobulin genes (18%). Using DESeq2, 
we identified 36 DEGs with an adjusted P value cut-
off of <0.05 and a fold- change cutoff of ±2, when 
comparing all cases to all controls (DESeq2 does not 

allow matched case– control comparisons) (Table  2). 
Thirty- five of the 36 DEGs were upregulated among 
the cases (IFI27, RAP1GAP, HBG2, HBD, ARG1, CD177, 
GYPB, ORM1, AHSP, MCEMP1, FAM20A, IFIT1B, 

Table 1. Characteristics of Anthracycline- Exposed 
Childhood Cancer Survivors

Variables Cases (n=40)
Controls 
(n=64) P value*

Age at primary cancer diagnosis, y

Median (IQR) 8.2 (3.6– 13.9) 9.7 (3.3– 14.4) 0.9

Sex, n (%)

Female 24 (60.0) 34 (53.1) 0.5

Male 16 (40.0) 30 (46.9)

Cumulative anthracycline exposure, n (%)

<250 mg/m2 15 (37.5) 41 (64.1) 0.008†

≥250 mg/m2 25 (62.5) 23 (35.9)

Chest radiation

Yes (n, %) 19 (47.5) 13 (20.3) 0.003†

Dose in cGy 
(Mean±SD)

1417.3 ± 284.1 674.1 ± 226.4 0.003†

Race or ethnicity (n, %)

Non- Hispanic White 23 (57.5) 37 (57.8) Matched

Hispanic 9 (22.5) 16 (25.0)

Black 5 (12.5) 7 (10.9)

Asian 3 (7.5) 3 (4.7)

Mixed race ethnicity 0 (0.0) 1 (1.6)

Primary diagnosis, n (%)

Acute 
lymphoblastic 
leukemia

9 (22.5) 16 (25.0) Matched

Acute myeloid 
leukemia

2 (5.0) 3 (4.7)

Ewing sarcoma 4 (10.0) 8 (12.5)

Hodgkin lymphoma 7 (17.5) 10 (15.6)

Kidney tumors 2 (5.0) 2 (3.1)

Neuroblastoma 5 (12.5) 8 (12.5)

Non- Hodgkin 
lymphoma

5 (12.5) 8 (12.5)

Osteosarcoma 4 (10.0) 7 (10.9)

Soft tissue sarcoma 2 (5.0) 2 (3.1)

CVRF, n (%)

No 24 (60.0) 62 (96.9) <0.0001†

Yes 14 (35.0) 2 (3.1)

Missing 2 (5.0) 0 (0.0)

Time from cancer diagnosis to study enrollment, y

Median (IQR) 11.1 (4.3– 18.8) 10.1 (7.1– 14.5) 0.8

Time from cancer diagnosis to cardiac event for cases, y

Median (IQR) 5.3 (0.8– 12.8) - 

cGy indicates centiGray; CVRF, cardiovascular risk factors; and IQR, 
interquartile range.

*P values were estimated using either chi- square or Fisher exact test for 
categorical variables and the Wilcoxon/Kruskal– Wallis test for continuous 
variables.

†Indicates statistical significance at P < 0.05.
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CA1, TSPO2, SLC6A9, ALAS2, KLF1, MMP8, OLFM4, 
ENSG00000274173, FCGR1CP, HP, VSIG4, S100A12, 
SPTA1, HLA- DRB6, ANKRD9, ITLN1, KLHDC8A, KRT1, 
ZDHHC19, DAAM2, KLC3, CEACAM8 and IGKV1- 27); 
1 gene (NKX3.1) was downregulated. We plotted the 
normalized RNA counts of each case with their cor-
responding matched control(s) for the 36 genes 
(Figure S1).

IPA for Biological Interpretation of 
Differentially Expressed Genes
IPA was used to identify canonical pathways and toxi-
cological processes of biological importance among 
the DEGs. After sorting the canonical signaling path-
ways from large to small by −log (P value), the top 25 
canonical signaling pathways with P<0.05 (−log=1.3) 
were identified and are listed in Table 3. The ratios of 

Table 2. List of Differentially Expressed Genes in Cases Versus Controls

Ensembl ID Gene name Gene biotype Fold change P value Padj

ENSG00000165949 IFI27 protein_coding 5.93 1.32E- 09 6.55E- 06

ENSG00000076864 RAP1GAP protein_coding 4.09 1.48E- 06 6.89E- 04

ENSG00000196565 HBG2 protein_coding 4.00 4.36E- 06 1.20E- 03

ENSG00000223609 HBD protein_coding 3.43 2.06E- 07 2.36E- 04

ENSG00000118520 ARG1 protein_coding 3.23 3.82E- 09 1.42E- 05

ENSG00000204936 CD177 protein_coding 2.70 1.43E- 04 7.67E- 03

ENSG00000250361 GYPB protein_coding 2.69 1.56E- 04 7.92E- 03

ENSG00000229314 ORM1 protein_coding 2.61 1.64E- 06 7.17E- 04

ENSG00000169877 AHSP protein_coding 2.56 1.57E- 05 2.19E- 03

ENSG00000183019 MCEMP1 protein_coding 2.50 8.53E- 10 6.35E- 06

ENSG00000108950 FAM20A protein_coding 2.48 3.46E- 10 5.15E- 06

ENSG00000204010 IFIT1B protein_coding 2.36 5.24E- 05 4.40E- 03

ENSG00000133742 CA1 protein_coding 2.34 1.57E- 03 2.78E- 02

ENSG00000112212 TSPO2 protein_coding 2.31 4.06E- 05 3.78E- 03

ENSG00000196517 SLC6A9 protein_coding 2.30 4.03E- 05 3.78E- 03

ENSG00000158578 ALAS2 protein_coding 2.29 1.31E- 04 7.42E- 03

ENSG00000105610 KLF1 protein_coding 2.29 3.41E- 05 3.41E- 03

ENSG00000118113 MMP8 protein_coding 2.24 6.60E- 04 1.75E- 02

ENSG00000102837 OLFM4 protein_coding 2.19 3.49E- 03 4.32E- 02

ENSG00000274173 - lncRNA 2.19 7.01E- 05 5.02E- 03

ENSG00000265531 FCGR1CP Unprocessed 
pseudogene

2.17 4.07E- 07 3.57E- 04

ENSG00000257017 HP protein_coding 2.17 8.99E- 06 1.67E- 03

ENSG00000155659 VSIG4 protein_coding 2.16 8.09E- 07 5.24E- 04

ENSG00000163221 S100A12 protein_coding 2.14 7.26E- 07 4.91E- 04

ENSG00000163554 SPTA1 protein_coding 2.14 5.33E- 05 4.40E- 03

ENSG00000229391 HLA- DRB6 Transcribed unprocessed 
pseudogene

2.14 2.40E- 03 3.57E- 02

ENSG00000156381 ANKRD9 protein_coding 2.11 9.11E- 06 1.68E- 03

ENSG00000179914 ITLN1 protein_coding 2.09 1.41E- 04 7.61E- 03

ENSG00000162873 KLHDC8A protein_coding 2.06 2.76E- 05 3.09E- 03

ENSG00000167768 KRT1 protein_coding 2.04 1.35E- 03 2.60E- 02

ENSG00000163958 ZDHHC19 protein_coding 2.04 4.41E- 06 1.20E- 03

ENSG00000146122 DAAM2 protein_coding 2.03 1.72E- 03 2.93E- 02

ENSG00000104892 KLC3 protein_coding 2.01 3.25E- 04 1.25E- 02

ENSG00000124469 CEACAM8 protein_coding 2.01 4.69E- 03 5.12E- 02

ENSG00000244575 IGKV1- 27 IG_V_gene 2.01 9.16E- 05 6.04E- 03

ENSG00000167034 NKX3.1 protein_coding −2.04 0.00204 3.25E- 02

Padj ≤0.05 and fold change ≥±1.5 were considered significant, and the list with fold change ≥±2 is shown. A positive fold change means that the affected gene 
is overexpressed in CASES. A negative fold change means that the affected gene is overexpressed in CONTROLS. Padj indicates adjusted P value corrected for 
multiple testing using the Benjamini and Hochberg method in DESeq2.
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DEGs to total genes in these signaling pathways are 
also listed. The top enriched canonical signaling path-
ways included: Hepatic fibrosis/Hepatic stellate cell 
activation, Iron homeostasis signaling pathway, LXR/
RXR activation pathway, Osteoarthritis pathway and 
Heme biosynthesis II pathway. Two cytokine receptor 
genes (IL1R1 and IL1R2) and 2 matrix metalloprotein-
ases (MMP8 and MMP9) overlapped in several canoni-
cal pathways as shown in Table 3. Using IPA- Tox, the 
toxicological effects were classified as cardiotoxicity, 
hepatotoxicity, and nephrotoxicity, along with various 
subcategories. The analysis revealed that the prob-
ability of myocardial infarction, cardiac enlargement, 

cardiac damage, cardiac arrhythmia, cardiac inflamma-
tion, cardiac degeneration, and heart failure was above 
the significance threshold, which is consistent with the 
clinical manifestation of cardiomyopathy (Table 4).

Gene Set Enrichment Analysis
The unranked expressed gene list obtained from 
DESeq2 analysis was uploaded to GSEA. The heat 
map with the top- 50 upregulated and top- 50 down-
regulated DEGs in all cases compared with all controls 
is displayed in Figure 1 and listed in Table S6. GSEA 
results using the “hallmark” collection showed that 
“adipogenesis” and “oxidative phosphorylation” gene 

Table 3. Canonical Pathways Generated by IPA Analysis

Ingenuity canonical pathways - log (P value) Ratio Gene Symbol

Hepatic fibrosis/Hepatic stellate cell 
activation

6.05 0.1 COL13A1, COL4A3, COL5A3, COL9A2, 
IL18RAP, IL1R1*, IL1R2*, LY96, MMP9*, 
MYL4, MYL9

Iron homeostasis signaling pathway 4.85 0.1 ALAS2, CD163, FECH, GDF15, HBB, HBD, 
HBG2, HBQ1, HP, TFR2

LXR/RXR activation 4.18 0.1 IL18RAP, IL1R1*, IL1R2*, LY96, MMP9*, 
ORM1, S100A8

Osteoarthritis pathway 3.41 0.1 ALPL, FZD5, IL18RAP, IL1R1*, IL1R2*, ITLN1, 
MMP9*, S100A8, S100A9

Heme biosynthesis II 3.36 0.3 ALAS2, FECH, HMBS

Airway pathology in chronic obstructive 
pulmonary disease

3.26 0.1 ELANE, LCN2, MMP8*, MMP9*, ORM1

Granulocyte adhesion and diapedesis 2.68 0.1 IL18RAP, IL1R1*, IL1R2*, MMP8*, MMP9*, 
SELP

IL- 10 signaling 2.64 0.1 BLVRB, IL18RAP, IL1R1*, IL1R2*, SOCS3

Agranulocyte adhesion and diapedesis 2.54 0.1 IL1R1*, MMP8*, MMP9*, MYL4, MYL9, SELP

Tetrapyrrole biosynthesis II 2.51 0.4 ALAS2, HMBS

Atherosclerosis signaling 2.39 0.1 COL5A3, MMP9*, ORM1, S100A8, SELP

GP6 signaling pathway 2.13 0.1 COL13A1, COL4A3, COL5A3, COL9A2, 
ITGA2B

Role of IL- 17A in psoriasis 2.08 0.3 S100A8, S100A9

Role of osteoblasts, osteoclasts, and 
chondrocytes in rheumatoid arthritis

1.92 0.1 ALPL, FZD5, IL18RAP, IL1R1*, IL1R2*, 
MMP8*, NAIP

Role of macrophages, fibroblasts, and 
endothelial cells in rheumatoid arthritis

1.79 0.0 FCGR1A, FZD5, IGHG1, IL18RAP, IL1R1*, 
IL1R2*, IRAK3, SOCS3, TLR5

Glucocorticoid receptor signaling 1.6 0.0 BCL2L1, CD163, FCGR1A, FKBP5, IL1R2*, 
KRT1, KRT73, POLR2I, SLPI

Phagosome formation 1.59 0.1 FCGR1A, FCGR1B, IGHG1, MARCO, TLR5

Creatine- phosphate biosynthesis 1.45 0.5 CKB

Urea cycle 1.45 0.5 ARG1

GDP- L- fucose biosynthesis I (from 
GDP- D- mannose)

1.45 0.5 TSTA3

L- serine degradation 1.45 0.5 SDSL

Pyrimidine deoxyribonucleotides de novo 
biosynthesis I

1.44 0.1 NME2, RRM2

Vitamin- C transport 1.44 0.1 SLC2A1, TXN

Hepatic cholestasis 1.42 0.0 IL18RAP, IL1R1*, IL1R2*, IRAK3, LY96

Inhibition of matrix metalloproteases 1.39 0.1 MMP8*, MMP9*

IPA indicates Ingenuity Pathway Analysis. The P value for each pathway is expressed as - log (P value). The ratio represents the number of differentially 
expressed genes from our data set in a given pathway that meets the cutoff criteria, divided by the total number of genes that comprise that canonical pathway.

*Indicates overlapping genes.
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Table 4. Toxicity List Generated by the IPA Analysis

Categories Diseases or functions P value No.of genes Gene symbols

Myocardial infarction* Infarction of heart 1.54E- 07 16 BCL2L1, CA1, CA4, CD163, CREG1, 
FCGR1A, FCGR1B, GDF15, IL1R1, 
ITGA2B, KCNE1, LGALS2, MMP9, 
SELP, TGM2, TUBB2A

Myocardial infarction 6.11E- 07 15 CA1, CA4, CD163, CREG1, FCGR1A, 
FCGR1B, GDF15, IL1R1, ITGA2B, 
KCNE1, LGALS2, MMP9, SELP, TGM2, 
TUBB2A

Acute myocardial infarction 3.22E- 04 7 FCGR1A, FCGR1B, IL1R1, ITGA2B, 
KCNE1, SELP, TUBB2A

ST- segment– elevation myocardial 
infarction

2.43E- 03 4 IL1R1, ITGA2B, KCNE1, TUBB2A

Reperfusion injury of myocardium 1.79E- 02 1 SERPING1

Cardiac dilation, cardiac 
enlargement*

Dilated cardiomyopathy 1.59E- 03 11 BCL2L1, GLRX5, GPER1, IL1R1, KAZN, 
KCNE1, MMP8, MMP9, SLC4A1, 
SLC6A8, STAB1

Enlargement of heart 3.56E- 03 18 BCL2L1, BIRC5, BMX, COL9A2, 
FKBP1B, GDF15, GLRX5, GPER1, 
IL1R1, KAZN, KCNE1, MMP8, MMP9, 
MYL9, SLC4A1, SLC6A8, STAB1, TXN

Enlargement of heart ventricle 9.25E- 03 7 BIRC5, BMX, FKBP1B, MMP9, MYL9, 
SLC4A1, TXN

Cardiac damage* Rupture of heart 1.87E- 03 2 GDF15, MMP9

Damage of cardiac muscle 2.68E- 03 3 GDF15, SERPING1, TXN

Damage of myocardium 6.33E- 03 2 GDF15, SERPING1

Damage of heart 7.78E- 03 4 GDF15, MMP9, SERPING1, TXN

Liver inflammation/hepatitis Inflammation of liver 1.45E- 03 14 ABCG2, ACKR1, ALPL, BCL2L1, 
FCGR1A, FCGR1B, HP, IL1R1, KAZN, 
LGALS3, MMP9, SOCS3, STAB1, TK1

Acute hepatitis 1.47E- 02 3 ALPL, IL1R1, MMP9

Acute alcoholic hepatitis 1.87E- 02 2 ALPL, IL1R1

Pulmonary hypertension Pulmonary hypertension 3.49E- 03 6 ARG1, BCL2L1, BIRC5, CA1, CA4, 
SLC2A1

Renal atrophy Atrophy of kidney 5.17E- 03 3 COL4A3, MXI1, SLC4A1

Glomerular injury, renal fibrosis Fibrosis of renal glomerulus 8.34E- 03 2 COL4A3, STAB1

Hepatocellular carcinoma, liver 
hyperplasia/hyperproliferation

Hepatocellular carcinoma 4.37E- 03 25 ARG1, ASPH, BCL2L1, CD163, FLT3, 
GPER1, HBB, HLA- G, HP, KAZN, 
LGALS3, MARCO, MMP9, MT1E, 
RRM2, SERPING1, SLC4A1, SOCS3, 
STAB1, TNNT1, TP53I3, TPX2, 
TUBB2A, TXN, VSIG4

Growth of hepatocellular carcinoma 8.34E- 03 2 RRM2, TPX2

Cardiac arrhythmia* Cardiac fibrillation 1.20E- 02 6 FKBP1B, KCNE1, MMP9, MYL4, 
TGM2, TUBB2A

Arrhythmia of heart ventricle 1.58E- 02 4 ASPH, FKBP1B, KCNE1, TGM2

Familial atrial fibrillation type 18 1.79E- 02 1 MYL4

Arrhythmia 1.84E- 02 8 ASPH, FKBP1B, KCNE1, MMP9, 
MYL4, TGM2, TUBB2A, TXN

Liver hyperplasia/
hyperproliferation

Growth of liver tumor 1.34E- 02 3 RRM2, SOCS3, TPX2

Cardiac inflammation* Acute myocarditis 1.79E- 02 1 IL1R1

Experimental autoimmune 
myocarditis

1.87E- 02 2 IL1R1, MMP9

Cardiac degeneration* Myocytolysis of heart 1.79E- 02 1 MMP9

 (Continued)
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sets were enriched (false discovery rate <0.1, normal-
ized enrichment score >1.5). GSEA results using the 
“cardiomyopathy” gene set showed that “KAAB failed 
heart atrium dn” and “KAAB failed heart ventricle dn” 
were also enriched (false discovery rate <0.1, normal-
ized enrichment score >1.5) (Tables S7 through S10). 
Leading edge analysis identified lactate dehydroge-
nase A (LDHA) to be the top- ranking gene that con-
tributed most to the enrichment signal in the “oxidative 
phosphorylation,” “KAAB failed heart atrium dn” and 
“KAAB failed heart ventricle dn” gene sets, and CD36 
in the “adipogenesis” gene set (Figure 2).

Genes for Functional Analyses
Using our predetermined prioritization strategies 
(Table S3) and supported by the leading edge GSEA 
findings, LDHA was shortlisted for functional analysis. 
We examined whether the loss of function of LDHA 
altered the viability of cardiomyocytes derived from 
an isogenic hiPSC line (ISO) upon exposure to doxo-
rubicin. LDHA knockout (ISO- KO) line was generated 
via a CRISPR/Cas9– mediated approach. 7- bp (Exon 2) 
deletion in LDHA was confirmed by Sanger sequenc-
ing (Figure  S2), and decreased gene expression in 
the cell line was confirmed by reverse transcription- 
polymerase chain react (Figure  3A; Table  S5). The 
cell viability assay showed that the ISO- LDHA hiPSC- 
CMs (LD50=0.67μM) was 6.7- fold more sensitive to 
doxorubicin (72 hours) as compared with ISO control 
(LD50=4.49 μM, P<0.0001) (Figure 3B).

Given the previous observations that LDHA plays a 
role in the adaptive response to hemodynamic stress24 
and is significantly upregulated by pressure overload in 
the heart,24,25 we examined the LDHA expression lev-
els in patients with cardiomyopathy who did or did not 

have CVRFs. We found that the case– control differ-
ence in the LDHA expression was larger among those 
with cardiomyopathy/congestive heart failure and 
CVRFs (3177 versus 2440, P=0.0004) compared with 
those without CVRFs (2697 versus 2320, P=0.005).

DISCUSSION
We found distinct differential gene expression in the 
peripheral blood mRNA from childhood cancer survi-
vors with and without anthracycline- induced cardio-
myopathy. Thirty- five genes were upregulated, and 1 
gene was downregulated in cases versus controls with 
an absolute fold- change of >2. IPA of genes with ab-
solute fold- change >1.5 implicated “hepatic fibrosis/
hepatic stellate cell activation” and the “iron homeosta-
sis signaling” canonical pathways. Identification of the 
hepatic fibrosis/hepatic stellate cell activation pathway 
may be supported by the fact that doxorubicin is me-
tabolized in the liver via microsomal enzymes; alteration 
of doxorubicin metabolism may allow accumulation of 
toxic anthracycline metabolites.26 The “iron homeosta-
sis signaling pathway” is supported by prior evidence 
showing that iron overload exacerbates the cardio-
toxic effects of anthracyclines.27,28 In addition, “myo-
cardial infarction,” “cardiac damage,” “cardiac dilation,” 
“cardiac inflammation,” “cardiac enlargement,” and 
“heart failure” were identified as significantly activated 
toxicological pathways. The GSEA analysis showed 
significant enrichment of LDHA and CD36 genes in 
cardiomyopathy cases. The heart predominantly uses 
2 fuel sources concomitantly: fatty acids and glucose, 
while use of a single energy source elicits heart dis-
ease.29 LDHA and CD36 are key genes in the glycolytic 
and fatty acid uptake pathways in the heart.30

Categories Diseases or functions P value No.of genes Gene symbols

Cardiac arrhythmia, congenital 
heart anomaly*

Jervell and Lange- Nielsen syndrome 
type 2

1.79E- 02 1 KCNE1

Susceptibility to acquired long QT 
syndrome type 5

1.79E- 02 1 KCNE1

Heart failure* Progressive heart failure 1.79E- 02 1 BIRC5

Cardiorenal syndrome 2.19E- 02 2 CA1, CA4

Glomerular injury, renal 
inflammation, renal nephritis

Severe glomerulonephritis 1.79E- 02 1 COL4A3

Kidney failure Septic acute kidney injury 1.79E- 02 1 LCN2

Renal dilation Vasodilation of renal artery 1.79E- 02 1 MMP9

Glomerular injury Glomerulosclerosis 1.60E- 02 6 AQP1, COL4A3, IRAK3, STAB1, TK1, 
TNS1

Renal necrosis/cell death Apoptosis of tubular cells 1.61E- 02 3 BIRC5, CA4, LCN2

Nephrosis Steroid dependent nephrotic 
syndrome

1.87E- 02 2 FCGR1A, FCGR1B

IPA indicates Ingenuity Pathway Analysis.
*Indicates cardiac- related categories.

Table 4. Continued
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Lactate dehydrogenase (LDH) is a key enzyme 
in the regulation of glycolysis. It has 2 isoforms, 
LDHA and LDHB. LDHA has a higher affinity for py-
ruvate, preferentially converting pyruvate to lactate. 
Administration of anthracyclines is associated with 
reduction in LDHA expression.31 In our hiPSC- CM 
model, knockout of LDHA showed that loss of this 
gene results in increased sensitivity to doxorubicin 
and fits the observation that anthracyclines have an 
inhibitory impact on LDHA expression.31 This down-
regulation of LDHA likely does not persist after anth-
racycline exposure. Anthracycline exposure triggers 
cardiac injury metabolic reprogramming and myocar-
dial remodeling, progressing to overt cardiotoxicity 
over time.4 Hypoxia is a prominent feature of cardiac 
hypertrophy, and metabolic remodeling precedes and 

plays a role in cardiac hypertrophic growth. Hypoxia 
also induces hypoxia- inducible factor 1- alpha, which 
triggers LDHA in the hypertrophic heart and results 
in a second metabolic switch from oxidative phos-
phorylation to glycolysis in the myocardium, result-
ing in overt anthracycline- related cardiomyopathy 
in cancer survivors.32– 34 This is further exacerbated 
because of CVRF- induced pressure overload and hy-
poxia,35– 37 resulting in a metabolic transition from ox-
idative phosphorylation to glycolysis and induction of 
LDHA. Hypertrophied hearts show increased produc-
tion and efflux of lactate from the myocardium,38– 40 
supporting the well observed clinical finding that the 
abnormal extracellular appearance of LDH signifies 
tissue damage. Indeed, LDH was first proposed as 
a diagnostic aid for myocardial infarction in the year 

Figure 1. Gene Set Enrichment Analysis generated heat map of the top- 100 differentially 
expressed genes in cases vs controls (50 upregulated genes and 50 downregulated genes).
Rows: genes; Columns: samples; Colors range from dark red to dark blue representing respectively the 
highest and lowest expression of a gene. LDHA indicates lactate dehydrogenase A.
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195741; elevated serum LDH is associated with car-
diovascular disease risk and heart failure.25,42 These 
findings suggest the role of the upregulation of LDHA 
in anthracycline- induced cardiomyopathy.

We also observed a significant upregulation of 
CD36 gene in cases with anthracycline- induced car-
diomyopathy. CD36/FAT (cluster of differentiation 36/
fatty acid translocase) is a transmembrane protein 
that regulates cellular lipid metabolism. It is estimated 
that 70% of heart muscle fatty acid uptake is regu-
lated by CD36. In an enlarged heart, the main fuel 
source switches from fatty acids to glucose. This fuel 
shift is also associated with contractile dysfunction. 
Fatty acid or lipid metabolism dysfunction triggered 

by CD36 dysregulation plays a key role in the devel-
opment of obesity- induced cardiac dysfunction and 
diabetic cardiomyopathy.43 Myocardial CD36 ex-
pression is upregulated in aging mice, and there is 
a concomitant increase in intramyocardial lipid con-
tent associated with energy compromise.44 Further, 
cardiomyocyte- specific deletion of Cd36 in mice 
accelerates the progression of pressure overload- 
induced cardiac hypertrophy to cardiac dysfunction.45 
These findings suggest the role of the upregulation of 
CD36 in anthracycline- induced cardiomyopathy ob-
served in our study.

Interleukin receptors (IL1R1 and IL1R2) and ma-
trix metalloproteinase- 8 and - 9 genes (MMP8 and 

Figure 2. Enrichment plots of top 4 gene sets generated by Gene Set Enrichment Analysis 
(normalized enrichment score >1.5; P <0.01 and false discovery rate q value <0.25).
Green line shows the running enrichment scores for the gene set as the analysis walks along the 
ranked list, and the bottom portion shows the ranked genes as vertical black bars. Y- axis: ranking 
metric, X- axis: individual ranks for all genes. Upregulated (red); down- regulated (blue). Normalized 
Enrichment score, Nominal P value and false discovery rate q- values are shown for each gene set. 
Top hit genes are shown for each gene set. A, Enrichment plot of KAAB_FAILED_HEART_ATRIUM_
DN and KAAB_FAILED_HEART_VENTRICLE_DN for Cardiomyopathy gene sets from MSigDB; B, 
Enrichment plot of HALLMARK_ADIPOGENSIS and HALLMARK_OXIDATIVE_PHOSPHORYLATION 
for Hallmark gene sets from MSigDB. CD36 indicates cluster of differentiation 36; and LDHA, lactate 
dehydrogenase A.
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MMP9) appeared in 9 out of 25 canonical path-
ways. Inflammatory process is a key component in 
the mechanism of different cardiac pathologies. The 

interleukin- 1 (IL1) family of ligands and receptors is 
the main cytokine family associated with acute and 
chronic inflammation. IL1 mediates inflammation by 

Figure 3. Assessment of in vitro doxorubicin- induced cardiotoxicity in patient– specific human- 
induced pluripotent stem cell– derived cardiomyocytes.
A, Validation of KO by reverse transcription- polymerase chain reaction for LDHA; B, Effect of Doxorubicin 
(72 hours) on human- induced pluripotent stem cell– derived cardiomyocytes viability in ISO (Control) 
(n=36) and LDHA– KO (n=21). ISO indicates isotype; LDHA, lactate dehydrogenase A; and KO, knock out.

Figure 4. Schematic figure and timeline proposing the role of altered gene expression in anthracycline- induced 
cardiomyopathy.
Progression of anthracycline- induced cardiotoxicity involves a spectrum of remodeling at various levels, including structural, electrophysiological, 
metabolic, and functional events in the heart. Anthracycline exposure significantly reduces the expression of LDHA. Inhibition of LDHA 
obstructs aerobic glycolysis and activates fatty acid oxidation, which exacerbates cardiomyopathy under pressure overload. Hypoxia is a key 
regulator of cardiac hypertrophy and hypoxia- inducible factor 1- alpha activates transcription of LDHA, resulting in a second metabolic shift to 
aerobic glycolysis. Increase in CD36 facilitates the uptake of fatty acids and accumulation of lipids in cardiac muscle. Cardiac tissue remodeling 
involves activation of proinflammatory cytokines IL1R1 and IL1R2 that accelerate the progression of heart failure. MMP8 and MMP9 directly 
degrade extracellular matrix proteins, resulting in cardiomyocyte death and fibrosis. CD36 indicates cluster of differentiation 36; IL1R (1 and 2) 
interleukin 1 receptor type 1 and 2; LDHA, lactate dehydrogenase A; and MMP (8 and 9) matrix metalloproteinase 8 and 9.
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binding its receptor, termed type 1 (IL1R1), whereas 
IL1R2 preferentially binds IL1β and, in doing so, se-
questers IL1β from binding to IL1R1.46 The cytokine 
hypothesis of heart failure suggests that a precipi-
tating event triggers activation of pro- inflammatory 
cytokines, which leads to detrimental effects on left 
ventricular function and accelerates the progression 
of heart failure.47,48 A study in mice showed that IL1 
mediates doxorubicin cardiotoxicity, and a sequen-
tial study showed that blocking IL1 with Anakinra in 
such mice diminished doxorubicin- induced micro-
structural damages of cardiac tissue and rescued 
doxorubicin- caused reduction of cardiac functions 
exemplified by left ventricle ejection fraction and 
fractional shortening.49 IL1 was also found to play 
a role in radiation- induced cardiomyopathy in IL1R1 
knock- out mice exposed to thoracic X- ray therapy.50 
Patients with coronary artery disease have higher 
levels of IL1RI compared with normal people.51 
Genetic loss of IL1R1 in mice decreases dilation of 
the infarcted heart, reducing collagen deposition 
and attenuating matrix metalloproteinases expres-
sion.52,53 MMP9 regulates pathological remodeling 
processes that involve inflammation and fibrosis in 
cardiovascular disease. MMP9 directly degrades 
extracellular matrix proteins and activates cytokines 
and chemokines to regulate tissue remodeling.54 
MMP9 can cleave collagen and is found to increase 
during several cardiovascular diseases.54 MMP9 
deletion or inhibition is beneficial in several animal 
models of cardiovascular disease.55

The study approach of using differential single 
gene expression analysis with GSEA and leading- 
edge analyses has several advantages over single- 
gene methods. We identified pathways, processes, 
and gene sets to elucidate key players in relevant bi-
ological processes. Nonetheless, this study needs to 
be considered in the context of its limitations. Ideally, 
gene expression should be measured in the affected 
tissue (ie, cardiac tissue). Obtaining heart biopsies 
from cancer survivors is logistically challenging and 
not without risk. On the other hand, peripheral blood 
is easily obtained, and gene expression levels in 
peripheral whole blood samples correlate with the 
cardiac transcriptome.12– 14,56 Furthermore, the molec-
ular fingerprints of whole blood and peripheral blood 
mononuclear cells have a good overlap and concor-
dance in their gene expression with common path-
ways and mechanisms represented by these genes, 
providing the rationale for using whole blood rather 
than cellular subtypes, given the logistic issues with 
obtaining the latter.57 Though the hiPSC- CM model 
offers considerable advantages over animal models, 
the immaturity of hiPSC- CMs compared with adult 
human cardiomyocytes and having a heterogeneous 
cardiac cell population in the culture must be taken 

into account before extrapolating results to adult 
human cardiac physiology.

Limitations notwithstanding, to our knowledge, 
this is the first study to show DEGs and pathways in 
anthracycline- exposed childhood cancer survivors 
with cardiomyopathy when compared with those with-
out. These findings shed light on the molecular mecha-
nism underlying anthracycline- related cardiomyopathy 
and should be explored further to identify potential 
therapeutic targets for the treatment of anthracycline- 
related cardiomyopathy.

CONCLUSIONS
The present study demonstrates that dysregulated 
expression of LDHA, CD36, IL1R1, IL1R2, MMP8, 
and MMP9 in blood is associated with anthracycline- 
related cardiomyopathy in childhood cancer survivors. 
These findings provide evidence of a possible expla-
nation for the role of metabolic and structural remod-
eling in the heart following anthracycline exposure 
(Figure 4).
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