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SUMMARY

We developed a detailed model of macaque auditory thalamocortical circuits, including primary 

auditory cortex (A1), medial geniculate body (MGB), and thalamic reticular nucleus, utilizing the 

NEURON simulator and NetPyNE tool. The A1 model simulates a cortical column with over 

12,000 neurons and 25 million synapses, incorporating data on cell-type-specific neuron densities, 

morphology, and connectivity across six cortical layers. It is reciprocally connected to the MGB 

thalamus, which includes interneurons and core and matrix-layer-specific projections to A1. The 

model simulates multiscale measures, including physiological firing rates, local field potentials 

(LFPs), current source densities (CSDs), and electroencephalography (EEG) signals. Laminar 

CSD patterns, during spontaneous activity and in response to broadband noise stimulus trains, 
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mirror experimental findings. Physiological oscillations emerge spontaneously across frequency 

bands comparable to those recorded in vivo. We elucidate population-specific contributions to 

observed oscillation events and relate them to firing and presynaptic input patterns. The model 

offers a quantitative theoretical framework to integrate and interpret experimental data and predict 

its underlying cellular and circuit mechanisms.

In brief

Dura-Bernal, Griffith, et al. developed a realistic computational model of macaque auditory 

thalamocortical circuits constrained by experimental data. Their model generates realistic 

physiological signals across scales, including voltages, spikes, LFP/CSD, and EEG. It reproduces 

in vivo spontaneous LFP/CSD oscillation events across frequencies and predicts their underlying 

cellular and circuit origins.

Graphical abstract

INTRODUCTION

The auditory system is involved in a number of crucial sensory functions, including speech 

processing,1–4 sound localization,5–7 pitch discrimination,8–11 and voice recognition.12,13 

Aberrations along this pathway can result in a wide variety of pathologies. Hearing loss, 

for example, can result from lesions in either the peripheral14,15 or central16–18 parts of this 
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pathway, while other abnormalities can result in increased sensitivity to sound volume19 or 

difficulty processing music.20,21

Achieving a full understanding of this system is complicated by the many interareal 

pathways, the complexity of the inter- and intralaminar circuitry, the heterogeneity of 

neuronal cell types and behaviors, and the diversity of network coding mechanisms. A 

growing body of experimental data, with findings drawn from different methods at different 

biological scales, begets the need for a framework which can integrate these disparate 

findings and be used to investigate the system as a whole. A framework integrating 

the available multiscale data would also enable us to generate predictions about the 

mechanisms governing oscillatory dynamics in auditory cortex, which are known to play 

a prominent role in neural information processing. In auditory cortex, these oscillations may 

be particularly important for speech processing,22–25 with oscillations in different frequency 

bands synchronizing to and tracking the dynamic properties of speech waveforms.24 In 

some cases, oscillatory behavior in the auditory cortex can even be used to predict 

speech intelligibility.22,25 Abnormalities in auditory cortex oscillations have been observed 

in pathologies that include auditory processing deficits, such as schizophrenia26–28 and 

autism spectrum disorder.29,30 Increased oscillatory activity at rest,26 strong cross-frequency 

synchronization,27,28 and impaired phase locking between auditory cortex oscillations and 

incoming speech stimuli29–31 have been observed in these disorders, and may help explain 

some of the auditory-processing-related deficits seen in these disease states.27,29,32–34

To address these questions, we have developed a computational model of the 

auditory system that integrates multiscale information on macaque cortical and thalamic 

circuits comprising a diversity of excitatory and inhibitory cell types with data-driven 

electrophysiology,35 population densities, distribution and connectivity, including the full 

thalamocortical loop,36 and realistic inputs from upstream structures such as cochlea 

and inferior colliculus. Bridging these hierarchical levels allows us to gain insights into 

the biophysical mechanisms underlying in vivo spontaneous activity and stimulus-evoked 

responses observed during experimental recordings that occur at different scales, including 

single-cell recordings, multiunit activity, local field potentials (LFPs), current source 

density (CSD), and electroencephalography (EEG). In this initial study, we simulated these 

multiscale recordings and validated several of them against in vivo macaque experimental 

data. We also illustrate how our model can also be used to investigate the cellular- and 

network-level mechanisms underlying thalamocortical oscillations in auditory cortex. This 

involves first reproducing similar oscillations in silico and then examining the activity 

underlying these oscillations at different scales, from subthreshold currents and dendritic 

effects to circuit activity in different thalamic pathways (e.g., core vs. matrix) or cortical 

subcircuits (e.g., pyramidal neuron-interneuron interactions). To further these types of 

investigations, we have made our model available to the public as a community resource 

for research. This also enables the community to work collaboratively and to update and 

extend our model as new data become available.
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RESULTS

Development of a data-driven model of macaque auditory thalamocortical circuits

We developed a biophysically detailed model of macaque auditory thalamocortical circuits, 

including medial geniculate body (MGB), thalamic reticular nucleus (TRN), and primary 

auditory cortex (A1). To provide input to the thalamic populations, we connected a 

phenomenological model of the cochlear nucleus, auditory nerve, and inferior colliculus 

(IC). This resulted in a realistic model capable of processing arbitrary input sounds along the 

main stages of the macaque auditory pathway (Figure 1A). While details of each stage can 

be found in STAR Methods, the current section includes an overall description of the main 

features of the model.

We reconstructed a cylindrical volume of 200-μm radius and 2,000-μm depth A1 

tissue (Figure 1B). The model included 12,187 neurons and over 25 million synapses, 

corresponding to the full neuronal density of the volume modeled. The model was divided 

into seven layers—L1, L2, L3, L4, L5A, L5B, and L6—each with boundaries, neuronal 

densities, and distribution of cell types derived from experimental data.37–46 We included 

the four main classes of excitatory neurons: intratelencephalic (IT), present in all layers 

except L1; spiny stellate (ITS) in L4, pyramidal tract (PT) in L5B, and corticothalamic 

(CT) in L5A, L5B, and L6. The dendritic length of cell types in different layers was 

adapted according to experimental data. While many previous cortical models only include 

one or two interneuron types, we incorporated a greater diversity of cell type by including 

four classes of interneurons: somatostatin (SOM), parvalbumin (PV), vasoactive intestinal 

peptide (VIP), and neurogliaform (NGF). All four classes were present in all layers except 

L1, which only included NGF. The MGB included two types of thalamocortical neurons 

and thalamic interneurons. The TRN included a population of inhibitory cells. Thalamic 

populations were in turn divided into core and matrix subpopulations, each with distinct 

wiring. The total number of thalamic neurons was 721, with cell densities and ratios of the 

different cell types derived from published studies.

Connectivity in the model was established for each pair of the 42 cortical and thalamic 

populations, resulting in layer- and cell-type-specific projections (Figure 2). Each projection 

between populations was characterized by a probability of connection and unitary 

connection strength (in mV), defined as the postsynaptic potential (PSP) amplitude in 

a postsynaptic neuron in response to a single presynaptic spike. The probability of 

connection from cortical inhibitory populations decayed exponentially with cell-to-cell 

distance. Synapses were distributed along specific regions of the somatodendritic tree for 

each projection. Excitatory synapses included colocalized AMPA and NMDA receptors, 

and inhibitory synapses included different combinations of slow GABAA, fast GABAA, and 

GABAB receptors, depending on cell types. The values for all the connectivity parameters 

were derived from over 30 published experimental studies (see STAR Methods). Where 

available, we used data from the non-human primate auditory system, but otherwise resorted 

to data from other species, including rodent, cat, and human.

Afferent projections from other brain regions were modeled by providing background 

independent Poisson spiking inputs to apical excitatory and basal inhibitory synapses, 
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adjusted for each cell type to result in low spontaneous firing rates (~1 Hz). We employed 

automated parameter optimization methods to fine-tune the connectivity strengths to obtain 

physiologically constrained firing rates across all populations. It is not surprising that 

the initial model required some fine-tuning, given that parameters do not come from 

a unique individual but instead result from averaging data across animals. Additionally, 

some parameters were derived from data from different cortical regions and animal 

species. The rationale for parameter optimization was therefore to adapt synaptic strengths 

within biological ranges to obtain a network configuration that exhibits physiological 

spontaneous responses. The parameters being optimized included high-level connectivity 

hyperparameters, such as scaling factors for different subsets of synaptic weights grouped 

by synaptic type and postsynaptic layer/cell type (e.g., all inhibitory connections targeting 

L5 excitatory cells). As in biological systems,47 parameter degeneracy was a feature of 

our model, meaning different parameter combinations could produce very similar network 

output. The optimization algorithm attempted to minimize an objective function, which, 

in short, measured the difference between the simulated and target spontaneous average 

firing rate for each population. Achieving a solution where all 43 populations fired within 

experimental ranges was particularly challenging due to the high interdependence of these 

populations. As a result, it was common to find solutions where one or more populations 

were either silent or fired at excessively high rates. We also emphasize that the parameter 

optimization process did not include any oscillation features or LFPs. The comparison of 

simulated LFP oscillatory patterns against in vivo experimental data was used exclusively 

to validate model predictions after the model had been built and optimized, based on 

spontaneous firing rates.

To achieve variability in the baseline model, we modified the randomization seeds used 

to generate the probabilistic connections and spike times of Poisson background inputs. 

Specifically, we ran 25 simulations with different seeds (5 connectivity × 5 input seeds), 

each for 11.5-s simulations (the first 1.0–1.5 s were required to reach steady state). 

This resulted in 250 s of simulated data, which is comparable to some of the macaque 

experimental datasets used. Modeling results that include statistics were calculated across 

all of the 25 × 10-s simulations, which provided a measure of the robustness of the model 

to variations in connectivity and inputs and is comparable to the variability across different 

macaques and trials, respectively.

We developed the models using NetPyNE48 and parallel NEURON.49 Overall, we ran 

over 500,000 simulations in order to tune the model parameters and explore model 

responses to different inputs and conditions. This required over 5 million core hours on 

several supercomputers, primarily Google Cloud Platform and the EBRAINS ICEI Fenix 

Infrastructure.

All model source code, results, and comparisons to experimental data are 

publicly available on ModelDB and GitHub: https://github.com/NathanKlineInstitute/

Macaque_auditory_thalamocortical_model_data. The GitHub repository includes a detailed 

installation guide and system requirements, instructions for using the model and reproducing 

the figures, and a simplified demo of the model that can be simulated on desktop computers.
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Cell-type- and layer-specific activity recorded at multiple scales

The model generated layer- and cell-type-specific spontaneous activity (Figure 3). Distinct 

spiking patterns were recorded across thalamus and cortex (Figure 3A): Thalamus, cortex, 

and TRN showed clear alpha oscillations (~8 Hz); cortical granular and supragranular layers 

exhibited a similar oscillatory pattern but more diffuse over time and with higher variability 

in peak amplitudes; and infragranular layers showed more tonic firing and a slower delta (~2 

Hz) oscillation. Spiking responses also varied across cell types within a layer, e.g., L5B IT 

cells fired tonically whereas L5B CT cells showed phasic firing at delta frequency (only two 

peaks of activity). Overall, average spontaneous firing rates were below 5 Hz for excitatory 

neurons and below 20 Hz for inhibitory neurons, consistent with experimental data.50–53 

Spontaneous activity was simulated by driving the thalamic and cortical neurons with 

non-rhythmic Poisson-distributed low-amplitude background inputs. Therefore, the distinct 

responses of neural populations must be a consequence of their heterogeneous biophysical 

properties and synaptic connectivity.

The model responses were recorded and analyzed at multiple scales (Figure 3): neuronal 

membrane voltage traces (Figure 3C), spike times (Figure 3A), firing rate statistics (Figure 

3B), LFPs and CSD analysis (Figure 3D), and current dipole moments and EEG signals 

(Figure 3E). These measurements represent the same underlying biophysical phenomenon 

as evidenced by activity features shared across them, e.g., activity peaks around 1,300 ms 

and 1,800 ms (see Figures 3A, 3D, and 3E). This illustrates how the model can be used 

to interpret common experimental measurements (multiunit activity, LFP, EEG) and relate 

them to the underlying biophysical circuit properties. In the final section of our results, we 

use this approach to disentangle the layer- and cell-type-specific biophysical sources of an 

oscillation event.

At each simulated electrode, the LFP was calculated based on the transmembrane currents 

generated at each neuronal segment and the distance between the segment and the electrode. 

More specifically, we used the line-source approximation method and assumed that the 

model neurons were immersed in an ohmic medium with a fixed conductivity of σ = 0.3 

mS/mm.54,55 Electrodes were spatially distributed at 100-μm intervals along a vertical axis 

of the 2,000-μm A1 column. CSD was calculated as the second spatial derivative of the LFP 

signal. Current dipole moments for each cell were calculated based on the transmembrane 

currents of each cell segment and the segment location. EEG signals were computed using 

forward modeling from the current dipole moments and a finite-element volume conduction 

model of the human head.54,56,57 See STAR Methods for further details on the calculation of 

LFP and EEG signals.

Model simulations qualitatively reproduced characteristic spontaneous in vivo laminar 

LFP/CSD activity patterns recorded in macaques (Figure 4A). For instance, we observed 

examples in both experiment and model displaying: (1) ~50-ms-long current sinks (red) 

in the granular layer with current sources (blue) immediately below, plus current sources 

(blue) in the most superficial electrodes (Figure 4A, top); (2) ~150-ms-long current sinks 

fluctuating around the border of the granular and infragranular layers with current sources 

immediately below, and again in the most superficial electrodes (Figure 4A, middle); and 

(3) ~150-mslong current sources in the granular layer with current sinks above and below 
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(Figure 4A, bottom). While the three LFP/CSD examples share similarities, they also 

underscore the variability observed both within and between experimental and modeling 

data. In “emergence of spontaneous physiological oscillations across frequency bands,” we 

further quantify this variability, focusing on the oscillatory power of spontaneous responses. 

For reference, we also provide the associated spiking activity of all cortical and thalamic 

neurons during these LFP/CSD examples. It is important to note that since LFP/CSD 

patterns arise primarily from synaptic transmembrane currents along the dendritic tree and 

soma,58,59 they do not necessarily correlate with laminar spiking activity. In “unraveling 

the biophysical mechanisms underlying physiological oscillations at the cellular and circuit 

scales,” we analyze in more depth a specific LFP/CSD oscillatory pattern and how it relates 

to the network spiking activity and synaptic inputs.

Next, we evaluated the responses elicited in our model by a train of short-duration 

broadband noise (BBN) stimuli (Figures 4B–4D). BBN results from combining a wide 

range of sound frequencies with equal intensity across the spectrum, providing a more 

ecologically valid sound than click trains. However, the short duration and regular repetition 

of our stimuli bear a resemblance to the temporal properties of click trains. Specifically, 

we generated a train of 100-msduration BBN stimuli with an interval between stimulus, 

or stimulus onset asynchrony, of 850 ms. Our choice of stimuli was also influenced 

by the availability of macaque recordings using similar BBN train stimuli, allowing 

direct comparison. We underscore that our model was not specifically tuned to reproduce 

responses to the BBN train stimulus. Nevertheless, preliminary model results capture 

properties of macaque in vivo responses to BBN, although a systematic validation remains 

pending.

We illustrate the full network spiking response during two consecutive BBN stimuli and 

quantify the IC and excitatory thalamic and cortical responses through a poststimulus time 

histogram (Figure 4B). IC exhibited an initial population peak response of 107 spikes/bin 

(coincidentally equal to 107 spikes/s/neuron, since IC has 200 neurons), which decreased 

to 20 spikes/bin at the end of the stimulus. Given that the BBN stimulus amplitude and 

spectrum are approximately flat, this marked decrease in IC spiking activity indicates an 

adaptation response, implemented by the auditory nerve and IC phenomenological model.60 

We note that IC responses were identical across BBN stimuli, since the phenomenological 

model did not include random variability. Both the thalamic and cortical excitatory 

populations exhibited increased peak responses when comparing a 200-ms window post- 

vs. prestimulus (mean ± SD peak post-pre response: thalamus = 16.8 ± 3.8 spikes/bin, p = 

0.0001; cortex = 15.8 ± 41.4 spikes/bin, p = 0.002; N = 11, rank-sum test). Thalamic and 

cortical responses exhibited notable variability in response amplitude and delays, possibly 

influenced by the ongoing neural oscillations. Increasing the stimulus intensity may reduce 

the response variability. Thalamic and cortical responses did not exhibit adaptation to the 

repetitive BBN stimuli, potentially due to the lack of plasticity mechanisms.

Next, we compared the model average BBN CSD event-related potential (ERP) 300-ms 

responses against macaque in vivo data. Model ERP spatiotemporal patterns were consistent 

with experimental recordings within the supragranular, granular, and infragranular layers 

(Figure 4C). Finally, we illustrate an example 200-ms LFP/CSD model response evoked 
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by BBN stimulus exhibiting a CSD sink and source pattern similar to that recorded 

experimentally (Figure 4D). More specifically, both showed a ~150-ms-long current sink 

in the granular layer with current sources in the supragranular and infragranular layers 

immediately above and below. For context, we also include the corresponding model spiking 

raster plot including the activity of all IC, thalamic, and cortical neurons.

While reproducing responses to specific speech utterances is outside the scope of this paper, 

in Figure S4 we illustrate how our model transforms complex speech stimuli along the 

auditory pathway, from the cochlea and IC phenomenological to the biophysical thalamic 

and cortical model responses. We also identified examples of cortical laminar LFP/CSD 

patterns generated by the model that were comparable to those recorded experimentally, for 

example, ~150- to 200-ms-long current sinks in the granular layer, with alternating current 

sources and sinks in the infragranular layers (Figure S4B). However, these are isolated 

examples, and the model has not yet been tuned or systematically validated to reproduce the 

complex responses evoked by speech inputs.

Emergence of spontaneous physiological oscillations across frequency bands

Physiological oscillations across a range of frequency bands were observed in both the 

macaque and model thalamocortical circuits. In the model, these oscillations emerged 

despite having no oscillatory background inputs, suggesting they resulted from the intrinsic 

cellular biophysics and circuit connectivity. We quantified the power spectral density (PSD) 

of 10-s LFPs recorded from different macaques and from the model (Figure 5A). These 

results illustrate the high variability of spontaneous responses measured within and across 

macaques. This variability was comparable to that generated by the model. Despite the 

high variability, the model exhibited features similar to those observed consistently across 

macaques, including peaks at delta, theta/alpha, and beta frequencies. To quantify the 

variability and similarities and establish whether the LFP PSD generated by our model could 

be distinguished from that of macaques, we performed principal component analysis (PCA) 

(Figure 5B). PCA explained a large proportion of the variance (PC1 = 57%, PC2 = 14%). 

As can be observed, the cluster of model data points partly (11/25 data points) overlapped 

those of macaques 1 and 2, yielding them indistinguishable via PCA (circled green points in 

Figure 5B).

The mean PCA distance, calculated as the mean of the Euclidean distance between each pair 

of points between two clusters, provides a measure of the variability between the datasets. 

The mean PCA distance within each cluster for macaques was higher than that of the model 

(macaques mean ± SD = 1.1 ± 0.2, model = 0.6). This supports the observation that the 

10-s LFP PSDs within each experimental session have similar or more variability than those 

generated by the model. The mean PCA distance between macaque 3 days 1 and 2 (1.3) 

was lower than between different macaques (1.6 ± 0.3). This supports the intuitive notion 

that variability was higher across different animals than within the same animal across days, 

which in turn was higher than the variability within each recording session. Interestingly, 

there were several examples of the mean PCA distance between the model and macaque 

sessions being lower than between macaque sessions (e.g., model vs. macaque 2 = 1.3; 

macaque 2 vs. macaque 3 [day 1] = 2.2), demonstrating the similarities between the model 
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and experimental spontaneous LFP PSDs. Further validation was provided by plotting a 

shuffled version of the model LFP PSDs, which appeared as a clearly separate cluster 

with no overlap with the macaque data (with the exception of one outlier). The correlation 

matrix (Figure 5C) across all LFP PSDs showed a very low correlation between the model 

and shuffled model data (−0.01 ± 0.12). Crucially, it also showed a much stronger mean 

correlation between the model and macaques than between the shuffled model and macaques 

(0.31 ± 0.28 vs. −0.04 ± 12; p < 0.001, rank-sum test).

Individual oscillation events were detected in CSD data from resting-state recordings 

gathered in silico from the A1 model and in vivo from macaques. The analysis was 

performed using the OEvent software, which has previously been used to detect and quantify 

features of oscillation events in human and macaque electrophysiology recordings.61 

Once identified, oscillation events were classified according to frequency band: delta 

(0.5–4 Hz), theta (4–9 Hz), alpha (9–15 Hz), beta (15–29 Hz), and gamma (30–80 Hz). 

Oscillation events were then sorted once more based on their laminar location, in either the 

supragranular, granular, or infragranular layers. We were thus able to compare model and 

experiment oscillation events that occurred in the same regions of the cortical column within 

the same frequency band. Examples of matching individual oscillation events from each 

frequency band are shown in Figure 6A.

Several features were used to compare oscillation events across model and experimental data 

from different frequency bands, including temporal duration, peak frequency, and number of 

cycles in the oscillation (Figure 6B). Overall, these three features showed similar average 

values and overlapping distributions when compared across the model and experiment 

and across cortical layers. Duration was the most consistent value, with close average 

values across model and experiment at all frequency bands (p > 0.05, t test). Average 

peak frequency did not show significant differences for most frequency bands (p > 0.05, 

t test), with the exception of (1) theta, which showed a slightly lower average frequency 

compared to the macaque experimental data (p < 0.05, t test), and (2) gamma, which showed 

a slightly higher average frequency compared to experiments (p < 0.05, t test). Similarly, 

the model average number of cycles per oscillation event was not significantly different to 

experimental values across frequency bands (p > 0.05, t test) with the exception of gamma, 

which showed a slightly higher average value (p < 0.05, t test). The minor discrepancies 

in average values may, however, represent an artifact due to the short overall duration of 

simulations (25 × 10 s) compared to the duration of macaque experimental recordings, 

which were on the order of minutes.

Unraveling the biophysical mechanisms underlying physiological oscillations at the 
cellular and circuit scales

After verifying that the oscillation events detected in the model data were comparable to 

the events observed in the macaque data, we harnessed the model to examine the cellular- 

and circuit-level activity underlying these oscillation events. This underscores one of the 

model’s advantages: beyond generating comparable LFP and CSD data, its biological detail 

facilitates exploration of each population’s contribution to shaping overall LFP and CSD 

signals. Furthermore, we were able to examine the spiking activity of each population during 
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each oscillation event, mirroring multiunit activity from neurophysiological recordings, but 

with enhanced cell-type specificity. As LFP/CSD signals predominantly originate from 

synaptic transmembrane currents, we adapted an existing method62 to estimate the cell-

type-specific synaptic inputs driving the different populations and the oscillatory patterns 

within these inputs. This facilitates predictions about the most likely biophysical sources of 

LFP/CSD oscillatory events in terms of the oscillatory synaptic inputs generating them.

We illustrate this approach using an LFP/CSD beta oscillation event detected in the macaque 

A1 infragranular layer data and a similar oscillation event detected in the A1 model 

infragranular layer (Figure 7A). To determine the biophysical circuit sources underlying 

this oscillation event, we calculated the contribution from each model population to the CSD 

signal, which was recorded from an electrode at depth 1,900 mm (Figure 7B). This revealed 

that the layer 6 corticothalamic population (CT6) was by far the primary contributor to 

the CSD event amplitude, followed by the layer 6 intratelencephalic population (IT6). 

Consistent with this observation, analysis of the CSD signals generated by the CT6 and 

IT6 populations during the overall beta oscillation event uncovered oscillation events with 

similar beta oscillation frequencies (~15–20 Hz range) and amplitude (~5–10 mV/mm2) 

(Figure 7C). We then analyzed the CT6 and IT6 spiking activity during the oscillation event, 

which revealed a distinct CT6 oscillation in the same beta frequency range (Figure 7D). 

This evidenced spike-field coherence, with peak firing times of the CT6 neural population 

aligning with peaks in the CSD beta rhythm. No clear beta oscillation was observed in IT6 

spiking activity.

Considering that synaptic currents primarily underlie LFP/CSD signals, we proceeded to 

analyze the synaptic inputs driving the CT6 and IT6 populations during the CSD beta 

oscillation event. This analysis leverages our ability to access the exact spiking activity and 

connectivity of all neurons to reveal the synaptic input patterns from different presynaptic 

populations. Our methodology for estimating synaptic drive is depicted in Figure 7E and 

described in STAR Methods, which also outlines its limitations.

Both CT6 and IT6 received strong synaptic inputs from the PV5A population, exhibiting a 

beta oscillatory pattern in the 15–20 Hz range. This suggests that the synaptic currents in 

CT6 and IT6 triggered by PV5A presynaptic inputs may underpin the CSD beta oscillation 

event (Figure 7F). The strong beta synaptic inputs to IT6 explain how this population 

could contribute significantly to the overall CSD beta oscillation (via their transmembrane 

synaptic currents) despite not displaying spiking activity in the beta range. While CT6 and 

IT6 also received strong oscillatory inputs from PV6, these were in the gamma frequency 

range, and thus appear unrelated to the beta oscillation. The presence of coincident beta and 

gamma demonstrates a cross-frequency interaction often observed in neural oscillations63 

and highlights how the model can be used to make predictions and disentangle the origins of 

the complex cortical dynamics observed in vivo.64

As a final step, we decided to explore the origins of the PV5A beta oscillatory activity 

employing the same synaptic input analysis approach. This unveiled a robust synaptic input 

beta oscillatory pattern in PV5A originating from the IT5B population (Figure 7F). In turn, 

analysis of IT5B synaptic inputs revealed a strong beta oscillatory input from PV5A and 
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PV5B. In summary, we traced back the source of the CSD beta oscillation event to the 

synaptic currents in CT6 and IT6 originating from PV5A inputs, which in turn appear 

to result from beta-band recurrent oscillatory interactions between PV5A and IT5B (see 

schematic, Figure 7G). This demonstrates the potential utility of the model in identifying the 

key biophysical circuit elements underlying electrophysiological activity patterns.

Figure S5 provides an additional example revealing further insights into how neural 

populations interact to generate spontaneous LFP/CSD oscillatory events. Here, we analyzed 

a CSD theta oscillation event detected in the A1 model supragranular layer (Figure S5A), 

similar to those detected in the macaque A1 data (Figure 6A). Analysis of the population 

CSD signals during the event demonstrated that the layer 4 stellate (ITS4), layer 4 pyramidal 

tract (ITP4), and layer 5A intratelencephalic (IT5A) neural populations made the strongest 

contributions to the amplitude of the theta CSD event (Figure S5B). Consistent with the 

model prediction, the dominant CSD peak frequencies of these three populations were very 

similar to that of the overall theta oscillation event: overall, 6.5 Hz (Figure S5A); ITS4, 

6.75 Hz (Figure S5C); ITP4, 6.75 Hz (Figure S5D); IT5A, 7 Hz (Figure S5E). Interestingly, 

the individual population CSDs were not perfectly phase aligned; specifically, the IT5A 

signal (Figure S5E) appeared to be shifted by approximately 10–20 ms with respect to 

the layer 4 populations (Figure S5C,D). Although here we are only showing the top three 

contributing populations, other contributing populations also exhibited similar CSD signal 

phase shifts. We hypothesize that these phase shifts are responsible for the increased noise 

observed in the overall CSD signal compared to the individual population CSD signals that 

generated it. This increased noise may in turn explain the small differences in the CSD peak 

frequencies observed between the overall signal and the population signals that composed 

it. The contribution of IT5A to the overall CSD signal recorded at channel 8 is particularly 

interesting, given that the IT5A cell somas are located at a cortical depth of 1,250–1,350 μm 

whereas the channel 8 signals arise from electrodes at a depth of 700–900 μm. This suggests 

that IT5A apical dendrite currents generate a substantial component of the detected CSD 

theta oscillation.

DISCUSSION

Key findings and contributions

We have developed a detailed multiscale model of macaque auditory thalamocortical 

circuits, including MGB, TRN, and A1, and validated it against in vivo experimental 

data. The model integrated experimental data on the physiology, morphology, biophysics, 

density, laminar distribution, and proportion of different cell types, as well as their local 

and long-range synaptic connectivity (Figures 1 and 2). Realistic auditory inputs can be 

provided to the thalamus via a phenomenological model of the cochlear nucleus, auditory 

nerve, and IC. The model generated cell-type- and layer-specific firing rates in the ranges 

observed experimentally and simulated the corresponding measures at multiple scales: LFPs, 

laminar CSD analysis, and EEG (Figure 3). We identified multiple laminar CSD patterns 

during spontaneous activity and responses to BBN train stimuli similar to those recorded 

experimentally (Figure 4). Physiological oscillations emerged across frequency bands 

without external rhythmic inputs and were comparable to those recorded spontaneously in 
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vivo. Despite significant variability across animals and over time, the spectral power showed 

peaks at delta, theta/alpha, and beta frequencies in all animals and in the model (Figure 5). 

Additionally, individual CSD oscillation events closely matched physiological examples in 

all frequency bands (Figure 6A), and statistics on simulated CSD oscillation event duration, 

peak frequency, and number of cycles were consistent across layers and frequency bands 

with those reported in vivo (Figure 6B). We used the model to make predictions about the 

cellular and circuit biophysical mechanisms underlying specific oscillation events (Figure 7). 

Notably, the model disentangled the contribution of distinct neuronal population oscillatory 

activity and identified the synaptic transmembrane currents and key presynaptic populations 

involved. For example, the model predicted that the CSD beta oscillation event in Figure 7A 

was caused predominantly by synaptic input currents to CT6 and IT6 neurons, originating 

from the PV5A neurons through its recurrent interaction with IT5B neurons. Taken together, 

our findings underline the significant role played by modeling when interpreting the basic 

properties of in vivo electrophysiology data.

Although circuit models of similar size and complexity have been developed, these models 

have largely focused on rodent visual40 and somatosensory39 cortices. A highly detailed 

rat somatosensory cortex model was used to study stimulus-specific adaptation in the 

auditory cortex by modifying thalamic inputs,65 but the overall model cortical architecture 

and connectivity was not adapted to replicate the particularities of auditory circuits or 

the macaque species. Compared to our model, previous models of auditory cortex lack 

significant detail in terms of neuron model complexity, range of cell types, neuronal density 

and distribution, and/or circuit connectivity.66–70

In short, the main contribution of this work is a model that: (1) incorporates available 

data specific to the macaque species and auditory cortex; (2) includes a wide range of 

excitatory and inhibitory cell types from both cortical and thalamic regions; (3) uses 

synaptic connectivity that is cell-type specific and layer specific, and includes bidirectional 

thalamic connections with distinct core and matrix projections; (4) simulates realistic 

auditory inputs through a cochlear and IC model; (5) generates realistic multiscale measures, 

including spiking activity, LFP, CSD, and EEG; (6) recapitulates a range of macaque A1 in 
vivo results; and (7) can be used to predict the biophysical mechanisms underlying observed 

neural responses, including oscillatory patterns.

Limitations of the study

Due to gaps in experimental data and in our theoretical understanding of biological 

principles, the model is necessarily incomplete and inaccurate and will need to be revised as 

more in vivo data become available. This is particularly true for the non-human primate 

auditory system, which has been less studied and is not as well characterized as, for 

example, the rodent visual system. Specifically, the availability of electrophysiological and 

connectivity data from the macaque auditory system for the different cortical and thalamic 

cell types was limited, so, when required, we used data from other macaque regions or from 

other mammalian auditory systems. Validating the layer- and cell-type-specific firing rates 

was also challenging, due to the lack of macaque A1 data; thus, many of the comparisons 

to experiments rely on the readily available laminar LFP and CSD measures. Despite these 
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limitations, we believe our model incorporates more properties specific to macaque A1 and 

has been validated against more macaque A1 data than any previous model. Furthermore, 

it can be iteratively improved and further validated as newer and more precise data become 

available.

Generating physiologically constrained firing rates in all model populations required 

parameter tuning (also referred to as parameter fitting or optimization) of the connection 

strengths within biologically realistic ranges. Compared to our previous motor cortex 

model,62,71 this process was particularly challenging in the non-human primate auditory 

system model and required developing and iteratively improving our automated parameter 

optimization methods. We believe the reasons for this include the addition of two inhibitory 

cell types (VIP and NGF) and the incorporation of thalamic circuitry, which resulted in 

complex recurrent intracortical and thalamocortical interactions. The optimization methods 

resulted in a range of distinct model parameter combinations that produced valid network 

dynamics, a phenomenon known as parameter degeneracy. It is well known that biological 

neural circuits exhibit this same property: different combinations of neuron intrinsic and 

synaptic properties—each varying up to several orders of magnitude—can result in the 

circuit exhibiting the same physiological and functional outcome.47

In this initial iteration of the model, we did not include short-term facilitation and depression 

because of the increased complexity they would introduce to the parameter optimization 

process. We recognize this omission as a limitation, particularly when aiming to replicate 

in vivo circuit dynamics and functions, such as sensory input adaptation. For future model 

enhancements, the Neocortical Microcircuit Collaboration portal72 offers a valuable resource 

to parameterize these short-term dynamics of neocortical synaptic connections.

The relatively narrow diameter (200 μm) of our simulated cortical column did not allow for 

a detailed implementation of the tonotopic organization of thalamic inputs. Nonetheless, 

the A1 column was tuned to a specific best frequency as determined by the filtering 

of inputs through the cochlear and IC model. The A1 column also received a realistic 

number of afferent core and matrix thalamic inputs, with layer specificity and cell-type 

specificity. Future model versions can be extended to have a larger-diameter column, or 

multiple columns, each receiving distinct thalamic projections, enabling the studying of 

circuit mechanisms that support frequency discrimination of auditory stimuli. Hence, in this 

study we did not attempt to reproduce BBN stimulus trains and speech responses in detail 

and instead focused on reproducing features of spontaneous activity, including the high 

variability observed experimentally.

We also simulated EEG signals based on the current dipoles of individual neurons in 

the macaque auditory cortical circuit model. Calculating the voltage at the different scalp 

electrodes requires a realistic head volume conduction model. Unfortunately, we did not 

find a macaque head model and resorted to using the standard human head model available 

within the LFPy tool.54 This served as additional proof of concept of the ability of our model 

to simulate multiscale signals.
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Outlook on research and clinical applications

Overall, the computational model provides a quantitative theoretical framework to integrate 

and interpret a wide range of experimental data, generate testable hypotheses, and make 

quantitative predictions. It constitutes a powerful tool to study the biophysical underpinnings 

of different experimental measurements, including LFP, EEG, and MEG.73 This theoretical 

framework represents a baseline model that can be updated and extended as new data 

become available. Ongoing efforts by the BRAIN Initiative Cell Census Network and 

others may soon provide a cell census of the mammalian auditory cortex, similar to 

that recently made available for the motor cortex.74 Our model is fully open source 

and implemented using the NetPyNE tool,48 which was explicitly designed to facilitate 

integration of experimental data through an intuitive language focused on describing 

biological parameters. This will enable other researchers to readily adapt the model to 

reproduce experimental manipulations, e.g., chemogenetic or pharmacologic interventions, 

or dynamics associated with different brain diseases. Work is already ongoing to adapt 

the model to study the EEG correlates of schizophrenia in A175 and to evaluate a novel 

LFP recording device.76 To facilitate interoperability with other tools, NetPyNE can also 

export the model to standard formats, such as NeuroML77 and SONATA,78 making it widely 

available to the community. Our detailed circuit model also incorporates naturalistic auditory 

inputs, allowing future research linking structure, dynamics, and function and providing 

insights into neural representations during naturalistic stimulus processing. Given the 

general similarities between non-human primate and human thalamocortical circuitry,79,80 

this data-driven model has high translational relevance and can start to bridge the gap 

across species and offer insights into healthy and pathological auditory system dynamics in 

humans.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Salvador Dura-Bernal (salvador.dura-

bernal@downstate.edu).

Materials availability—This study did not generate new materials. Links to the model 

source code, analysis code, experimental data and simulation data are available in the data 

and code availability subsection below.

Data and code availability—The model source code, analysis source 

code, experimental data to constrain and validate the model, and simulation 

output data used in this study are available via GitHub: https://github.com/

NathanKlineInstitute/Macaque_auditory_thalamocortical_model_data and Zenodo: https://

doi.org/10.5281/zenodo.10066993. The repository includes a detailed installation guide and 

system requirements, instructions for using the model and reproducing the figures, and a 

simplified demo of the model that can be simulated on desktop computers. The model 

source code is also available via ModelDB at https://modeldb.science/2014832. The model 
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is defined using the NetPyNE specifications, a JSON-based human-readable language, 

which can be exported to the SONATA and NeuroML standardized formats.

Any additional information required to simulate the model or analyze the data reported in 

this paper is available from the lead contact upon request.

METHOD DETAILS

We developed a model of the macaque auditory system consisting of a phenomenological 

model of cochlea and IC, and biophysically-detailed models of auditory thalamic and 

cortical circuits (Figure 1). We validated the model against macaque in vivo experimental 

data. This section details the modeling, experimental and analysis methods used.

Single neuron models

Morphology and physiology of neuron classes: The network includes conductance-based 

cell models with parameters optimized to reproduce physiological responses. We used 

simplified morphologies of 1–6 compartments for each cell type, and sized dendritic lengths 

to match macaque cortical dimensions (Figure 8.3/4.4 in Oliver et al.81). We fitted the 

electrophysiological properties of each cell type to extant electrophysiology data from 

macaque when available, or other animal models when it was not. Passive parameters, 

such as membrane capacitance, were tuned to fit resting membrane potential (RMP) and 

other features of subthreshold traces (e.g., sag from hyperpolarization). Active parameters 

included values such as the fast sodium channel density, and were tuned to reproduce 

characteristics like oscillatory bursting and firing rate vs. input current (f-I) curve (see 

Figure S1).

Within the A1 network, we modeled four classes of excitatory neurons: the 

intratelencephalic spiny stellate (ITS), intratelencephalic pyramidal (IT), pyramidal tract 

(PT) and corticothalamic (CT). These were distributed across the six cortical layers. The 

ITS model consisted of 3 compartments (a soma and 2 dendrites), and was adapted from 

a previously published layer 4 (L4) spiny stellate model.82 There is evidence for the 

presence of stellate cells in A1 in mammals, including rodents, rabbits, bats, cats and 

humans,45,81,83,84 although in some species these were relatively rare compared to visual 

and somatosensory cortices. Several macaque studies also mention the role of A1 L4 stellate 

cells in receiving input from thalamus.85–87 The IT, PT, and CT cell models were each 

composed of 6 compartments: a soma, axon, basal dendrite, and 3 apical dendrites. These 

models were based on previous work,88 in which simplified cell models were optimized 

to reproduce subthreshold and firing dynamics observed in vivo.89–91 Apical dendrite 

lengths were modified to match macaque cortical dimensions and layer-specific connectivity 

requirements. The classification of cortical neurons into IT, PT and CT was based not only 

on their projection targets, but also on their local connectivity, laminar location, morphology, 

intrinsic physiology and genetics.45,92 Although the PT terminology may be confusing for 

A1, this cell class refers to subcerebral projection neurons, including brainstem, and has 

been previously used for non-motor cortical regions (A1, V1, S1).45,92,93 PT neurons have 

also been labeled as “extratelencephalic” (ET), but this does not distinguish them from 

the also extratelencephalic CT neurons. In A1, a category of neurons described as “large 
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pyramidal cells” overlap significantly with features of the PT cell class: mostly occupy 

L5B, have thick-tufted morphologies reaching up to L1, are intrinsically bursting and project 

to brainstem, including inferior colliculus (IC), superior olivary complex and the cochlear 

nuclear complex.93–96

Four classes of inhibitory neurons (NGF, SOM, PV, VIP) were also simulated in 

the A1 network model. The vasoactive intestinal peptide (VIP) cell model was based 

on a previously published 5-compartment model,97 whereas the somatostatin (SOM) 

and parvalbumin (PV) interneurons were based on published 3-compartment models.98 

Parameters such as dendritic length were modified to better fit extant cortical data regarding 

rheobase and f-I curve.99 The neurogliaform (NGF) cell model was adapted from an existing 

model in rodent,100 with soma compartment size modified to more closely match the 

geometry of NGF cells in monkeys.35 Channel mechanisms, including A-type potassium and 

Ih currents, were also added to the soma compartment to replicate the electrophysiological 

characteristics (e.g., sag, f-I curve) described for these cell types in the literature.35

In thalamus, the modeled MGB contained thalamocortical (TC) cells, high-threshold 

thalamocortical cells (HTC), and local thalamic interneurons (TI). The TC and HTC cells 

were both single-compartment models capable of tonic and burst firing,101 with the HTC 

model having the addition of a high-threshold T-type channel mechanism.102 The locally 

inhibitory TI cells had 2 compartments (a soma and a dendrite) and were fitted to in 
vitro electrophysiology data recorded from lateral geniculate nucleus.103–105 These cells 

were optimized to reproduce the oscillatory bursting observed in this cell type.105 The 

thalamic reticular nucleus (TRN) contained the single-compartment inhibitory reticular 

(IRE) cells, with parameters also optimized to display this cell type’s characteristic intrinsic 

rhythmicity.106,107

Thalamocortical circuit model populations

Auditory thalamus: Our auditory thalamus model included the medial geniculate body 

(MGB) and the thalamic reticular nucleus (TRN). The MGB was composed of two types 

of thalamocortical neurons (TC, HTC) and thalamic interneurons (TI). TRN was composed 

of reticular nucleus cells (IRE). The overall proportion of excitatory to inhibitory neurons 

was 3:1. For TC, TI and IRE cell types, we included two separate populations in order to 

capture the distinct connectivity patterns of the core vs. matrix thalamic circuits. Matrix 

populations were labeled with an “M” at the end: TCM, IREM, TIM. The proportion of core 

to matrix neurons was 1:1.108 The density and ratio of the different thalamic populations was 

based on experimental data.37,46 The resulting ratio of thalamic to cortical neurons was 1:17, 

consistent with published data.38

Auditory cortex: We modeled a cylindrical volume of the macaque primary auditory 

cortex (A1) with a 200 μm diameter and 2000 μm height (cortical depth) including 

12,187 neurons and over 25 million synapses (Figure 1B). The cylinder diameter was 

chosen to approximately match the horizontal dendritic span of a neuron located at the 

center, consistent with previous modeling approaches.39,40 Macaque cortical depth and layer 

boundaries were based on macaque published data.41,42 The model includes 36 neural 
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populations distributed across the 6 cortical layers and consisting of 4 excitatory (IT, ITS, 

PT, CT), and 4 inhibitory types (SOM, PV, VIP and NGF). Details of the biophysics and 

morphology of each cell type are provided in the section above (“single neuron models”). 

The laminar distribution, cell density and proportion of each cell type were based on 

experimental data.41,43–45 Layer 1 included only NGF cells. Layers 2 to 6 included IT, 

SOM, PV, VIP and NGF cells. Additionally, ITS cells were added to layer 4, PT cells 

to layer 5B, and CT cells to layers 5A, 5B and 6. The resulting number of cells in each 

population depended on the modeled volume, layer boundaries and neuronal proportions and 

densities per layer.

Thalamocortical circuit model connectivity

Connectivity parameters: connection probability and weight: We characterized 

connectivity in the thalamocortical circuit using two parameters for each projection: 

probability of connection and unitary connection strength. The probability of connection 

was defined as the probability that each neuron in the postsynaptic population was connected 

to a neuron in the presynaptic population. For example, if both pre- and postsynaptic 

populations have 100 neurons, a probability of 10% will result in an average of 1,000 

connections (10% of the total 10,000 possible connections). The set of presynaptic neurons 

to connect to was randomly selected and autapses and multapses were not allowed. Given 

the neuronal morphologies were simplified to 6 or fewer compartments, we used a single 

synaptic contact for each cell-to-cell connection.

Unitary connection strength was defined as the EPSP amplitude in response to a spike 

from a single presynaptic neuron. Given that synaptic weights in NEURON are typically 

defined as a change in conductance (in uS), we derived a scaling factor to map unitary EPSP 

amplitude (in mV) to synaptic weights. To do this, we simulated an excitatory synaptic 

input to generate a somatic EPSP of 0.5 mV at each neuron segment. We then calculated 

a scaling factor for each neuron segment that converted the EPSP amplitude (mV) values 

used to define connectivity in NetPyNE into the corresponding NEURON synaptic weights 

(in uS). This resulted in the somatic EPSP response to a unitary connection input being 

independent of synaptic location, also termed synaptic democracy.109 Evidence from CA1 

pyramidal neurons shows that synaptic conductances increased with distance from soma, 

to normalize somatic EPSP amplitude of inputs within 300 mm of soma.110 However, this 

effect is not evident in L5 cortical pyramidal neurons.111 Nonetheless, scaling of synaptic 

conductances can be further justified in terms of accounting for dendritic filtering due to 

space-clamp artifacts, which distort the measured synaptic conductance at the soma.112 

A similar correction factor has been previously implemented in the Blue Brain Project 

somatosensory cortex (S1) model’s pyramidal neurons.39,72 Scaling factors calculated for 

PT cell apical tufts were very high and resulted in overexcitability in network simulations, 

given that each cell can receive hundreds of inputs that interact supralinearly.113,114 We, 

therefore, thresholded all dendritic scaling factors to a maximum of 5.0 with respect to the 

soma.

Types of synapses—Excitatory synapses consisted of colocalized AMPA (rise, decay τ: 

0.05, 5.3 ms) and NMDA (rise, decay τ: 15, 150 ms) receptors, both with reversal potentials 
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of 0 mV. The ratio of NMDA to AMPA receptors was 1:1,115 meaning their weights were 

each set to 50% of the connection weight. NMDA conductance was scaled by 1/(1 + 0.28 

Mg · e(−0062 V)) with Mg = 1mM.116 Inhibitory synapses from SOM to excitatory neurons 

consisted of a slow GABAA receptor (rise, decay τ: 2, 100 ms) and GABAB receptor, with 

a 9:1 ratio. Synapses from SOM to inhibitory neurons only included the slow GABAA 

receptor. Synapses from PV consisted of a fast GABAA receptor (rise, decay τ: 0.07, 18.2). 

Synapses from VIP included a different fast GABAA receptor (rise, decay τ: 0.3, 6.4),117 

and synapses from NGF included the GABAA and GABAB receptors with a 1:1 ratio. The 

reversal potential was 0 mV from AMPA and NMDA, −80 mV for all GABAA and −93 mV 

for GABAB. The GABAB synapse was modeled using second messenger connectivity to a G 

protein-coupled, inwardly-rectifying potassium channel (GIRK).118 The remaining synapses 

were modeled with a double-exponential mechanism.

This initial version of the model does not include short-term facilitation and depression, 

given the added complexity it would add to the parameter optimization process. We 

acknowledge this as a limitation of the model, especially in the context of replicating in 
vivo circuit dynamics and function, such as adaptation to sensory inputs. The Neocortical 

Microcircuit Collaboration portal72 provides a useful resource to parameterize the short-term 

dynamics of neocortical synaptic connections in future model versions.

Connection delays—Connection delays were estimated as 2 ms to account for 

presynaptic release and postsynaptic receptor delays, plus a variable propagation delay 

calculated as the 3D Euclidean distance between the pre- and postsynaptic cell bodies 

divided by a propagation speed of 0.5 m/s. Conduction velocities of unmyelinated axons 

range between 0.5 and 10 m/s,119 but here we chose the lowest value given that our 

soma-to-soma distance underestimates the non-straight trajectory of axons and the distance 

to target dendritic synapses.

Intra-thalamic connectivity—Intrathalamic connectivity was derived from existing 

rodent, cat and primate experimental and computational studies40,108,120–122 (see Figure 

2). More specifically, connection probabilities and unitary strength for TC→RE, RE→TC 

and RE→RE (both core and matrix populations) were largely based on a previous primate 

thalamus study108 and validated with data from mouse ventrobasal thalamus120 and cat 

MGBv.40,108,120–122 No evidence was found for TC recurrent connections. Thalamic 

interneuron connectivity was derived from the same cat MGBv study, which provided the 

number of synaptic contacts for TI→TI, TI→TC and TC→TI, from which we estimated 

the probability of connection from each projection. We also verified that our model intra-

thalamic connectivity was generally consistent with that of the Allen Brain Institute visual 

thalamocortical model.40,122 Given that thalamic neuron models were single-compartment, 

no specific dendritic synaptic location information was included.

Intra-cortical connectivity—Connectivity within the A1 local circuit populations was 

defined as a function of pre- and postsynaptic cell type and layer. Given the overall lack 

of detailed cell type-specific connectivity experimental data for macaque A1, we used as 

a starting point the connectivity from two experimentally grounded mammalian cortical 

microcircuit modeling studies: the Allen Brain Institute (ABI) V140 and the Blue Brain 
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Project (BBP) S1.39 We then updated the model connectivity with experimental data specific 

to macaque A1, when available, or simply mammalian A1.

Both studies included the projection-specific probability of connection and unitary 

connection strength parameters that we required for our model. However, the ABI V1 model 

had fewer excitatory (1) and inhibitory (3) broad cell types than our A1 model (4 E and 4 

I), whereas the BBP S1 model included significantly more (11 E and 15 I). Neither model 

included the distinction between L5A and L5B present in our A1 model. The ABI V1 did 

provide length constants to implement distance-dependent connectivity, which we wanted 

to include for some of the A1 projections. Therefore, as a first step, we mapped our cell 

types to the closest ones in the ABI V1 model and obtained the corresponding connectivity 

matrices for A1. We then updated the A1 connectivity of cell types that were missing from 

ABI V1 based on data from BBP S1, more specifically, the ITS, PT, CT and VIP cell types. 

To do this we mapped A1 cell types to those closest in BBP S1, and scaled the connectivity 

parameters of missing cell types proportionally, using shared cell types as reference (e.g., 

IT or PV). Through this systematic approach we were able to combine data from ABI V1 

and BBP S1 in a consistent way, to determine the connectivity parameters of all the A1 

populations.

Inhibitory connections were further refined using data from A194,117,123 or from studies 

with more detailed cell type-specific data.42,124 We updated the L2/3 SOM connectivity so 

they projected strongly not only to superficial layer excitatory neurons, but also to deeper 

ones by targeting their apical dendrites; this was not the case for PV cells, which projected 

strongly mostly to intralaminar excitatory neurons.123,124 More specifically, probabilities 

of connection from L2/3 SOM and PV to excitatory neurons were a function of the 

postsynaptic neuron layer (L1-L6) based on data from an A1 study.123 The probability 

of connection from VIP to excitatory neurons was set to a very low value derived from 

mouse A1 data.117 Following this same study, VIP→SOM connections were made strong, 

VIP→PV weak, and VIP→VIP very weak. Connection probabilities of all I → E/I 

projections decayed exponentially with distance using a projection-specific length constant 

obtained from the ABI V1 study.

Information on the dendritic location of synaptic inputs was also incorporated, when 

available, into the model. Cortical excitatory synapses targeted the soma and proximal 

dendrites of L2–4 excitatory neurons, distal dendrites of L5–6 excitatory neurons, and were 

uniformly distributed in cortical inhibitory neurons.40,45,94 L1 NGF neurons targeted the 

apical tuft of excitatory neurons, L2–4 NGF targeted the apical trunk of L2–4 excitatory 

neurons and the upper trunk of L5–6 excitatory neurons, and L5–6 NGF targeted the lower 

trunk of L5–6 excitatory neurons.42,94,124 Synapses from SOM interneurons were uniformly 

distributed along excitatory neurons, those from PV and VIP neurons targeted the soma and 

proximal dendrites of excitatory neurons.42,123,124

Thalamocortical and corticothalamic connectivity: Thalamocortical connections were 

layer- and cell type-specific and were derived from studies in mouse auditory cortex125 

and rodent somatosensory cortex.120,126 Core MGB thalamocortical neurons projected to 

cortical excitatory neurons in cortical layers 3 to 6. The strongest projections were to layer 
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4 ITP, ITS and PV neurons. Weaker thalamocortical projections also targeted L3 IT and PV; 

L4 SOM and NGF; L5–6 IT, CT and PV; and L5B PT and SOM. Matrix thalamocortical 

neurons projected to excitatory neurons in all layers except 4, and to L1 NGF, L2/3 PV 

and SOM, and L5–6 PV. Core thalamic inputs targeted the soma and proximal dendrites of 

cortical excitatory cells, whereas matrix thalamic inputs targeted their distal dendrites.108,122

Corticothalamic projections originating from L5A, L5B and L6 CT neurons targeted all 

core thalamus populations (TC, HTC, TI and IRE); whereas projections from L5B IT and 

PT neurons targeted the matrix thalamus populations (TCM, TIM, IREM). Connectivity 

data was derived from primate and rodent studies on auditory cortex and other cortical 

regions.45,94,108,122,127,128

Background inputs—To model the influence of the other brain regions not explicitly 

modeled on auditory cortex and thalamus, we provided background inputs to all our model 

neurons. These inputs were modeled as independent Poisson spike generators for each cell, 

targeting apical excitatory and basal inhibitory synapses, with an average firing rate of 40 

Hz. Connection weights were automatically adjusted for each cell type to ensure that, in the 

absence of local circuit connectivity, all neurons exhibited a low spontaneous firing rate of 

approximately 1 Hz.

Full model synaptic weight tuning

Overview of approach: Although we followed a systematic data-driven approach to 

build our model, the complete experimental dataset required to build a detailed model 

of the macaque auditory thalamocortical system is currently not available. Therefore, 

we had to combine experimental data from different species, different brain regions and 

obtained using different recording techniques. It is therefore not surprising that in order 

to obtain physiologically constrained firing rates across all populations, we needed to 

tune the connectivity parameters. Automated optimization methods have been previously 

used for simpler networks e.g., recurrent point-neuron spiking networks.129–133 However, 

optimization of large-scale biophysically-detailed networks typically requires expert-guided 

parameter adjustments,39,100 for example through parameter sweeps (grid search).40 In 

order to find a more systematic approach to tune this type of model, here we explored 

automated optimization methods, and gradually refined them and combined them with 

heuristic approaches as needed. Here we describe the final approach employed to obtain the 

tuned network.

Automated optimization algorithm: Our starting point was the network with cell type-

specific background inputs adjusted so that all cells fired at approximately 1 Hz in the 

absence of connectivity. We then added intracortical and thalamocortical connectivity with 

parameters taken from the literature and similar existing models. In the resulting network, 

before tuning the connectivity parameters, many of the populations were silent (0 Hz) 

or fired at very high rates (>100 Hz). We aimed to obtain a baseline network where all 

population average firing rates were in range with experimental recordings.

We initially attempted to tune the network using classic parameter grid search methods, but 

failed to obtain good solutions. After evaluating several automated optimization approaches, 
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we settled on the Optuna package (http://optuna.org),134 a hyperparameter optimization 

framework designed for machine learning applications. This framework uses by default 

a tree-structured parzen estimator to dynamically search the parameter space. Compared 

to evolutionary algorithms, which we had used in the past, Optuna has the advantage of 

not requiring all candidates of a generation to be completed before moving to the next 

generation. Instead, it dynamically decides the next candidate to explore based on all the 

candidates evaluated up to that point, which makes it faster and less resource-consuming, 

while providing solutions with similar fitness values.

In order to automatically evaluate each candidate network we defined an objective function 

that quantified the fitness error based on the network population average firing rates. 

Specifically, by minimizing this objective function we aimed to obtain a network where 

all 43 cortical and thalamic neural populations produced physiological firing rates (Figure 

S2). We, therefore, defined an objective function that increased exponentially with the 

difference between each model population’s measured and target firing rate. We multiplied 

this difference by a constant that dictated the rate of growth of the exponential function. 

We broadly defined the target physiological firing rates based on experimental50–53 as 5 

Hz for excitatory populations and 10 Hz for inhibitory populations, with exponential rate 

of growths of 1/20 Hz and 1/30 Hz, respectively. Given the large number of populations, 

we purposely kept the fitness function relatively relaxed to facilitate finding solutions. 

For example, excitatory populations firing at 5 Hz, 25 Hz and 100 Hz would generate 

a fitness error of 1 (=e(5−5)/20), 2.7 (=e(25−5)/20) and 116 (=e(100−5)/20), respectively. We 

defined the overall fitness error as the mean fitness error across populations. To avoid 

extremely large values from individual populations dominating the overall error fitness, we 

set the maximum fitness error per population to 1000. To avoid silent populations we set 

a minimum required firing rate of 0.05 Hz, below which the fitness error was directly set 

to 1000. Finally, to ensure a relative homogeneity of the firing rates over the 1000 ms 

simulations, we evaluated this function separately over four consecutive 250 ms periods 

and averaged the result. This avoided solutions where, for example, a population exhibited 

the target firing rate, but fired strongly only during the first 100 ms and was silent for the 

remaining time. We therefore formally defined the objective function to be minimized as 

objective function = 1/ Np ⋅ Nt ⋅ ∑p = 1 . . Np ∑i = 1 . . Nt min e ∣ r p, i − t p, i ∣ /s p, i , fitmax  if r p, i ≥ m p

else fitmax, where Np is the number of neural populations, Nt is the number of time periods 

that are evaluated, p is the population index, i is the time period index, r p, i  is the average 

firing rate for population with index p during time period with index i, t p, i  and s p, i  are 

the target rate mean and exponential rate of growth for population p and time period with 

index i, and fitmax is the maximum (worst possible) fitness value.

We note that the objective function used to optimize the baseline model parameters did not 

include any features of oscillatory patterns or local field potential (LFPs). Hence, the vivo 

LFP oscillatory patterns reproduced by the model were not used in any way to train or 

optimize the model, only to validate the model predictions.

Layer-specific and cell-type specific parameters: To reduce the fitness errors, we 

gradually included more tuning parameters (see Figure S2). Our final approach included 
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4 projectionclass weight gains (E→E, E→I, I→E, I/I) for each of the 7 layers (1, 2, 3, 

4, 5A, 5B, 6). The analysis also revealed the highly specific dynamics for each of the 

four inhibitory cell types, which prompted us to include inhibitory cell type-specific weight 

gains: E→ PV, E→ SOM, E→ VIP, E→ NGF and PV→ E, SOM→ E, VIP→ E, NGF→ 
E. Including both layer-specific and cell type-specific parameters resulted in overall better 

solutions with lower fitness errors.

Stepwise layer-by-layer tuning: Increasing the number of parameters (dimensions) 

increases the size of the parameter space to explore, which increases the number of 

optimization trials (simulations) required to obtain a good solution, and increases the risk 

of getting stuck in local minima. There are two main ways to reduce the parameter space: 

1) reducing the number of parameters, e.g., including only parameters for a subset of 

layers, or of projection types; and 2) reducing the range of parameter values explored, 

e.g., constraining these based on previous optimization results. Both of these solutions are 

implemented in the stepwise layer-by-layer tuning approach, reducing the massive HPC 

resources required to explore the large model parameter spaces.

To implement the layer-by-layer tuning approach, we first optimized the parameters within 

L4 alone. Once this layer achieved valid firing rates in all cell populations we added L3, 

and tuned the L3 connectivity parameters, while we kept L2 parameters within a small range 

of the previously obtained solution. We repeated this for L2, L5A, L5B, L6 and finally L1. 

Due to a small bug when tuning L2 and L3, once the full model was tuned, we retuned 

to L2 and L3 while keeping the rest of parameters within a small range (Figure S2). A 

similar layer-by-layer approach was followed to tune the Allen Brain Institute V1 model,40 

although they used a heuristic unidimensional grid search approach, whereas we employed 

an automated multidimensional dynamic search using Optuna.

Projection-specific weight tuning: Once we had obtained a reasonable solution for most 

model populations using the layer-by-layer approach, additional fine-tuning was required 

to improve the rate of specific populations. In particular, the SOM2 and SOM3 were 0 Hz 

and PV2 and VIP2 were firing too high (>100 Hz). The parameters explored did not appear 

to provide enough specificity to improve the rate of these populations without worsening 

some of the others. Therefore, we had to tune the weight gains of specific population-to-

population projections, e.g., from IT2 to SOM2. Using Optuna, we optimized the weights 

of all projections targeting the populations with inadequate rates: PV2, SOM2, VIP2 and 

SOM3. This resulted in improved rates for these populations.

Final model: Our final network included all 43 thalamic and cortical populations firing 

within 0.1 and 25 Hz, i.e., no epileptic or silent populations. Due to the unprecedented 

scale and level of detail in the model, e.g., complex interaction between 4 interneuron types, 

we had to employ an exploratory approach evaluating several methods to tune the weights. 

Overall, this required over 500,000 simulations and over 5 million core hours on HPCs. The 

lessons learned during this process should facilitate the automated tuning of similar detailed 

models in the future.

Dura-Bernal et al. Page 22

Cell Rep. Author manuscript; available in PMC 2023 December 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Phenomenological models of peripheral auditory structures: To simulate spontaneous 

activity in our baseline model we used background white noise as inputs to our thalamic 

and cortical populations. However, in order to accurately simulate auditory stimuli input we 

also connected a model of peripheral auditory structures such as the auditory nerve (AN) and 

inferior colliculus (IC). To simulate these structures, we used phenomenological models that 

captured the signal transformations occurring in these regions.60 These models produced 

outputs to drive the thalamocortical cells in the downstream, more biologically detailed 

portion of the auditory pathway model. The AN responses modeled here included several 

characteristic nonlinearities such as rate saturation, adaptation, and phase locking.60,135 

Outputs from the AN model were convolved and modulated with synaptic information and 

used as inputs to a phenomenological model of inferior colliculus (IC). Model neurons of the 

IC utilized different types of modulation transfer functions to capture both the spectral and 

amplitude modulation tuning observed in this structure.60,135–137 These phenomenological 

models mitigated common encoding issues encountered at high frequencies and high sound 

levels, providing us with IC outputs that were useful throughout a broad range of frequencies 

and noise.135

The AN and IC models were implemented in MATLAB and are available within the 

UR_EAR 2.0 tool (see Figure S3). We used .wav files as input to this tool and obtained 

time-resolved IC firing rates. The model allowed customization of several options, including 

the cochlear central frequency and bandwidth. We saved the firing rates for different input 

sounds and converted these to spike times using a Python-based inhomogeneous Poisson 

generator.138 We then used NEURON spike generators (VecStims) defined in NetPyNE to 

provide the IC spike times as input to the model thalamic populations.

Model building, simulation and optimization: We developed the computational model 

using the NetPyNE tool,48 and ran all parallel simulations using NEURON 8.049,139 

with a fixed time step of 0.05 ms. NetPyNE is a python package that provides a high-

level interface to NEURON, and allows for the definition of complicated multiscale 

models using an intuitive declarative language focused on the biological parameters. 

NetPyNE then translates these specifications into a NEURON model, facilitates running 

parallel simulations, and automates the optimization and exploration of parameters using 

supercomputers. We executed our simulations primarily on Google Cloud and EBRAINS 

ICEI Fenix Infrastructure supercomputers using a Slurm-based cluster with 80-core compute 

nodes.71 Some simulations were also run on XSEDE supercomputers Comet and Stampede, 

either using our own allocations or through the Neuroscience Gateway (NSG).140 We used 

the NetPyNE software tool to design, execute, organize, and analyze the simulations, as well 

as to export our model to the SONATA78 and NeuroML77 standards.

Simulated recordings, data analysis and visualization

Spiking raster plot, firing rate statistics and voltage traces: The NetPyNE package48 was 

used to record and analyze simulation output data, and to visualize spiking raster plots, firing 

rate statistics, and neuronal membrane voltage traces.
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Local field potential (LFP): The extracellular or local field potential (LFP) was calculated 

from the neuron transmembrane currents based on volume conduction theory. For this we 

assumed that the model neurons are immersed in a homogeneous and isotropic medium, that 

is, it is the same in all positions and has the same electrical conductivity in all directions, 

sigma = 0.3 mS/mm. The extracellular potential at each electrode can then be calculated 

as the sum of transmembrane currents generated at each segment of each cell, divided 

by the distance between the segment and the electrode. Since we assume a homogeneous 

distribution along each cylindrical compartment, we can extend this approach from a point 

current source to a line-source approximation by integrating along the center axis of each 

somatic and dendritic cylindrical compartment (see Equation 6 in54). This approach has been 

previously described in detail and has been widely adopted.54,55,141

Simulated LFP electrode contacts were spatially distributed at 100 μm intervals along a 

vertical axis of the 2000 μm A1 column. Model LFP recording, analysis and visualization 

was performed using the NetPyNE package, which implements the method described above.

Current source density (CSD): We compared the in silico current source density (CSD) 

signals with in vivo data recorded from the supragranular, granular, and infragranular layers 

of A1 while macaques were at rest. CSD was calculated as the second spatial derivative of 

the LFP. CSD analysis and visualization was performed using the NetPyNE package.48

Current dipoles and electroencephalogram (EEG): The biophysical neurons responsible 

for generating the electroencephalogram (EEG) signals are at enough distance from the EEG 

scalp contacts that only the current dipole moments contribute to the recorded signal.54,55 

Therefore, we first need to compute the current dipole moments from the single neuron 

models in our circuit. The current dipole moment of a neuron can be calculated by 

multiplying the transmembrane current at each segment by the 3D coordinates of each 

segment’s midpoint, and summing across all segments (see Equation 11 in54).

EEG signals can then be computed through forward modeling by combining the current 

dipole moments with a volume-conductor model for the head.142 Volume-conductor models 

vary in terms of the complexity of their electrical conductivity spatial distribution. These 

range from the very simplified homogeneous model to the more detailed four-sphere head 

model, to finite element models (FEM) with anatomically-detailed head models. Here, 

we employed the New York Head model, a precise standardized adult human FEM head 

model.56,57

We used the LFPykit54 python package for the implementation of the current dipole moment 

calculation and EEG forward modeling. We interfaced the NetPyNE modeling tool with 

LFPykit such that the required calculations were performed at each time step and stored 

within the NetPyNE standardized data structures.

Oscillation event detection: Using the OEvent package,61 we generated Morlet wavelet 

spectrograms and their corresponding CSD waveforms to identify individual oscillation 

events occurring in spontaneous data, and to compare these events across in vivo and in 

silico contexts. OEvent extracted moderate/high-power events using 7-cycle Morlet wavelets 
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on non-overlapping 10 s windows.73,143 We used linearly spaced frequencies (0.25 Hz 

frequency increments) ranging from 0.25–125 Hz. Power time-series of each wavelet 

transform were normalized by median power from the recording/simulation. We applied 

a local maximum filter to detect peaks in the spectrogram. Local peaks were assessed to 

determine whether their power exceeded a 4x median threshold to detect moderate-to high-

power events. Frequency and time bounds around the peak were determined by including 

time and frequency values before/after, above/below peak frequency until power fell below 

the smaller of 0.5× maximum event amplitude and 4× median threshold. As shown in Figure 

6, this produced a bounding box around each oscillation event that was used to determine 

frequency spread (minF to maxF), duration, and peak frequency (frequency at which 

maximum power is detected). We merged events when their bounding box overlapping 

area in the spectrogram exceeded 50% of the minimum area of each individual event. This 

allowed for the continuity of events separated by minor fluctuations below threshold. We 

then calculated additional features from this set of events, including the number of cycles 

(event duration x peak frequency). We classified events into standard frequency bands on 

the following intervals: delta (0.5–4 Hz), theta (4–9 Hz), alpha (9–15 Hz), beta (15–29 

Hz), gamma (30–80 Hz). Classification was based on the frequency at which maximum 

power occurred during each event. The number of oscillation events detected per frequency 

band was: delta: Nmodel = 12; Nexp = 55, theta Nmodel = 44; Nexp = 126, alpha: Nmodel 

= 59; Nexp = 138, beta: Nmodel = 192; Nexp = 318, and gamma: Nmodel = 2359; Nexp = 

1625. Absolute oscillation event numbers often differed between model and experiment 

datasets due to differences in recording length. These oscillation event analysis techniques 

yielded morphologically similar events between the simulated and macaque data (Figure 6). 

Non-normalized CSD data were used to validate and analyze the contributions of individual 

cell populations to the detected oscillation events (Figure 7).

Broadband noise stimulus generation and analysis: The broadband noise (BBN) stimulus 

sound wave was originally generated in MATLAB using a duration of 100 ms, sampling 

frequency of 100,000 Hz, and maximum amplitude of 1/π. The signal power spectra was 

evaluated to ensure an homogeneous power distribution across frequencies. The signal was 

saved as a .wav file and used as sound input in both the macaque experiments and the model 

(Figures 4B–4D). The MATLAB code is available online (see data and code availability 

section).

The BBN sound wave was processed in the model via the phenomenological model 

of auditory nerve (AN) and inferior colliculus (IC), which generated as output the 

instantaneous IC firing rates. The best frequency used for AN/IC model was 5656 Hz, 

consistent with the macaque A1 data used for comparison. The model IC firing rates were 

subsequently converted to spike times and assigned to the IC spike generator (Vecstim) 

population within the NetPyNE auditory thalamocortical model. The IC population serves as 

input to the thalamic populations.

The CSD event-related potentials (ERPs) in Figure 4D were calculated by averaging the 300 

ms of CSD signal across the BBN stimuli train trigger times. The experimental recording 

consisted of 122 stimulus events with trigger times ranging from 13.6 s to 89.2 s at intervals 

(SOA) of 624.5 ms. The model recording consisted of 11 events with trigger times ranging 
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from 2.5 s to 11.0 s at intervals (SOA) of 850 ms. CSD signals were averaged across 

a specific channel corresponding to either supragranular, granular or infragranular layer 

(experiment: channels 4, 10, 13; model: channels 6, 11, 12). Prior to averaging, CSD signals 

were smoothed using a bandpass filter in the 1–30 Hz range.

Analysis of synaptic input drive: We analyzed the synaptic inputs driving different 

populations to better understand changes in the sources of observed CSD oscillatory 

patterns. To do this we estimated the input strength from each presynaptic population to 

the target postsynaptic population. Note that to estimate synaptic drive we took advantage 

of the fact that the synaptic strength between two neurons is defined in the model as the 

somatic unitary postsynaptic potential (uPSP), in mV. Our modeling tool internally estimates 

the required peak synaptic conductance in nS to approximate the somatic uPSP, making 

all synapses similarly efficient independent of dendritic location (synaptic democracy). 

Therefore, we can estimate the synaptic drive between two neurons by multiplying the 

synaptic strength (uPSPs in mV) by the firing rate of the presynaptic cell. To get the total 

synaptic drive to each postsynaptic cell within a given time window, we estimated the 

synaptic drive from each presynaptic cell and summed it across the presynaptic population. 

The last step was to average across all cells of the target postsynaptic population. The final 

equation for estimated synaptic drive between two populations is shown below:

st = 1
Npost i = 0

Npost

j = 0

Ni, pre

rj, twi, j

where, s is the average estimated synaptic drive between a presynaptic and a postsynaptic 

population within time window t, Npost is the number of cells in the postsynaptic population, 

Ni, pre is the number of cells in the presynaptic population that project to postsynaptic cell i, rj

is the number of spikes fired by cell j within time period t, and wi, j is the synaptic strength 

between presynaptic cell j and postsynaptic cell i (in mV, as it represents somatic uPSP).

In the specific analysis in Figures 7E and 7F, we used the methods above to calculate the 

spike-triggered average time histogram of estimated synaptic drives to the CT6, IT6, PV5A 

and IT5B postsynaptic populations. We analyzed the inputs for a time window of 180 ms 

preceding the postsynaptic spike and using a histogram bin size of 5 ms. To quantify the 

oscillatory patterns present in the presynaptic input time histogram signals, we computed 

their power spectral density using the Morlet wavelet transform method.

Experimental dataset: We used a dataset which included local field potentials invasively 

recorded from the primary auditory cortex (A1) of 4 female non-human primates (NHPs) as 

they sat quietly in a dark room with their eyes mostly open (previously described in61). In a 

subset of recordings, short sentences in the English language were presented at 80dB SPL. 

In both conditions, there were no behavioral requirements of the NHPs and no rewards were 

offered. Outside of the recording sessions, NHPs had full access to fluids and food.

All procedures were approved in advance by the Animal Care and Use Committee of 

the Nathan Kline Institute. NHP data was recorded during acute penetrations of A1 in 
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rhesus macaques weighing 5–8 kg, who had been prepared surgically for chronic awake 

electrophysiological recordings. Prior to surgery, each animal was adapted to a custom 

fitted primate chair and to the sound proofed recording chamber. Surgical preparation was 

performed under general anesthesia using aseptic techniques (for details see144,145). Briefly, 

to provide access to the brain, either Cilux (Crist Instruments) or Polyetheretherketone 

(PEEK; Rogue Research Inc.) recording chambers were positioned normal to the cortical 

surface of the superior temporal plane for orthogonal penetration of A1. These recording 

chambers and a PEEK headpost (used to permit painless head restraint) were secured to the 

skull with ceramic screws and embedded in dental acrylic. Each NHP was given a minimum 

of 6 weeks for post-operative recovery before behavioral training and data collection began.

During recordings, NHPs were head-fixed and linear array multielectrodes (23 contacts with 

100, 125 or 150μm intercontact spacing, Plexon Inc.) were acutely positioned to sample all 

cortical layers of A1. Neuroelectric signals were continuously recorded with a sampling rate 

of 44 kHz using the Alpha Omega SnR system.

For NHP data analyses using current-source density (CSD) signals, CSD was calculated 

as the second spatial derivative of laminar local field potential. This was done to 

reduce potential issues related to volume conducted activity. To examine patterns of 

LFP/CSD activity in NHP recordings, we first determined the supragranular, granular, and 

infragranular layer depths for each macaque subject, as done previously.146 In macaques, 

the determination of the supragranular, granular, and infragranular layer depths relied 

on functional demarcation of these regions based on responses to preferred modality 

stimuli. For each NHP subject, we examined an averaged CSD profile resulting from the 

presentation of a stimulus which provoked an excitatory response in A1 (e.g., clicks, best 

frequency tones). An early sink in this CSD profile indicated the presence of the granular 

layer, while source/sink pairs above and below the granular layer designated the presence of 

the supragranular and infragranular layers, respectively.

The animal names and recording dates used in the LFP PSD analysis of Figure 5 are as 

follows: Macaque 1: bu031032, 6/19/2019; Macaque 2: ma031032, 9/22/2020; Macaque 3 

(Day 1): rb031032, 3/27/2018; Macaque 3 (Day 2): rb045046, 5/24/2018.

All the experimental data used in this study and its associated description are available 

online (see data and code availability).

QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical details of our study can be found in the results main text and figure captions. 

Specifically, we included the statistical test used in the main text, in brackets, next to 

the reported value. Similarly the value of N is indicated either in the main text or in the 

corresponding figure caption. Significance was generally defined as p < 0.05 and statistically 

high significance as p < 0.001. As measures of dispersion and precision, we used either 

mean ± SD (standard deviation) or median ± IQR (interquartile range), as indicated in the 

main text. For statistical analysis we used the Numpy, Scipy and Pandas Python packages.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Model of auditory thalamocortical circuits integrates multiscale experimental 

data

• Simulates physiological membrane voltages, firing rates, LFP/CSD, and EEG 

signals

• LFP/CSD oscillation events across frequencies match spontaneous in vivo 
data

• Predicts cellular and circuit mechanisms underlying LFP/CSD oscillation 

events
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Figure 1. Overview of the macaque auditory system model and the biophysically detailed 
auditory thalamocortical circuits model
(A) A phenomenological model is used to capture the transformation of input sound into 

electrical impulses in the cochlea, superior olive, and inferior colliculus (IC). Output from 

IC then drives a detailed biophysical model of auditory thalamocortical circuits, including 

medial geniculate body (MGB), thalamic reticular nuclei (TRN), and primary auditory 

cortex (A1). Note that many of the connections are bidirectional but are not shown for 

simplicity.

(B) 3D representation of the A1 column model (only 20% of neurons are shown for clarity).

(C) Dimensions of simulated A1 column with laminar cell densities, layer boundaries, cell 

morphologies, and distribution of populations. Medial geniculate body (MGB) and thalamic 

reticular nuclei (TRN) populations’ simplified morphologies are shown on the bottom, 

highlighting distinct core- and matrix-projecting populations. All models are conductance 
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based with multiple ionic channels tuned to reproduce the cell’s electrophysiology. NCD 

denotes normalized cortical depth with values ranging from 0 (pia) to 1 (white matter 

[WM]).
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Figure 2. Connectivity matrix of model thalamocortical populations
Probability of connection between all 36 cortical and 6 thalamic populations. Horizontal 

and vertical thick white lines separate cortical layers, and thick orange lines separate cortex 

from thalamus. Note that the IC→MGB connection is not shown as there is no feedback 

connection from MGB→IC in our model, given that we use phenomenological cochlea/IC 

models (see STAR Methods).
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Figure 3. Cell-type- and layer-specific activity recorded at multiple scales
(A) Spiking raster plot.

(B) Box-and-whisker plot statistics of population firing rates (interneurons grouped across 

all layers) during simulation times from 1 to 11 s (box center and sides = mean and 

interquartile range [IQR]; whisker = 1.5 × IQR; stars = mean).

(C) Example voltage traces for different cell types and layers.

(D) Laminar CSD with LFP overlaid.

(E) Sum of current dipole moments across all neurons (top panel; Px, Py, and Pz indicate 

dipole moment orientations) used to calculate the EEG signals (middle and bottom panels) 

recorded from scalp electrodes distributed across a volume conduction head model (each 

electrode in gray; mean in green). All recordings arise from the same underlying biophysical 

model and are time-aligned starting at 1,000 ms of simulation time.
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Figure 4. Example spiking and laminar LFP/CSD responses during spontaneous activity and 
broadband noise train stimuli and comparison to macaque in vivo LFP/CSD
(A) Comparison of example spontaneous LFP/CSD in model and macaque, illustrating the 

variability of spontaneous activity patterns and how the model reproduced some key features 

of each example pattern (e.g., in top-left example, a 50-ms-long current sink in the granular 

layer and current source in the infragranular layer). Transmembrane currents (sinks and 

sources) in CSD color maps are color coded red and blue, respectively. y axis represents LFP 

and related CSD channels at depths spanning pia to white matter, with supragranular (S), 

granular (G), and infragranular (I) layers indicated.

(B) Spiking raster plot and spike time histogram of the model’s response to a broadband 

noise (BBN) stimulus train (red dotted line indicates BBN stimuli onset). (C) Comparison 

of macaque vs. model average CSD event-related potentials (ERPs) in response to BBN 

stimulus recorded at supragranular, granular, and infragranular layers (experiment, N = 122; 

model, N = 11; experiment scale bars represent 0.5 mV/mm2; model scale bars represent 1 

mV/mm2; vertical dotted lines at 100 ms and 200 ms).
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(D) Comparison of macaque and model example LFP/CSD response to BBN stimulus shows 

similar activation pattern (same color code and axes as in A).
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Figure 5. LFP PSD of macaques and model
(A) Power spectral densities (PSDs) of 10-s LFPs recorded from three macaques exhibit 

high variability within and across individuals and show features consistent with the model 

LFP PSD, including peaks at delta, theta/alpha, and beta. Insets show normalized PSDs.

(B) PCA of the LFP PSDs reveals an overlap between model and macaque that is absent in 

the shuffled model.

(C) Correlation matrix of LFP PSDs illustrates that the model is more strongly correlated 

with the macaques than the shuffled model.
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Figure 6. Comparison of spontaneous CSD oscillation events across frequency bands in the 
model and macaque experiments
(A) Examples of similar oscillation events detected across frequency bands in model (left) 

and macaque experiments (right). Each event is depicted with a CSD spectrogram (top 

panels; power units are mV2/mm4/Hz; red bounding box delineates the oscillation event) and 

the CSD time series signal (bottom panels; red: raw CSD time series, blue: bandpass-filtered 

CSD time series using cutoff frequencies shown in spectrogram red bounding box). Theta 

and alpha events are from supragranular layers, beta and delta from infragranular layers, and 

gamma from the granular layer.

(B) Statistical comparison of spontaneous CSD oscillation event properties in the model 

and macaque experiments. Oscillation events were detected in resting-state recordings, then 

sorted by frequency band: delta (Nmodel = 12; Nexp = 55), theta (Nmodel = 44; Nexp = 

126), alpha (Nmodel = 59; Nexp = 138), beta (Nmodel = 192; Nexp = 318), and gamma 

(Nmodel = 2,359; Nexp = 1,625). The following oscillation event features were compared 

for each frequency band: duration (ms), peak frequency (Hz), and number of cycles. 

Box-and-whisker plots (box = interquartile range [IQR]; whisker = 1.5·IQR; orange line 

= median; black circles = outliers) compare the model and experimental data distributions 

for each feature and frequency band. Statistical analysis revealed no statistically significant 

differences between the model and experiment means (t test, p > 0.05, not significant, 

denoted by n.s.y; applies to all panels but only shown once for clarity).
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Figure 7. Model predicts layer- and cell-type-specific sources of LFP/CSD oscillatory events
(A) Similar CSD spontaneous beta oscillations were detected in macaque experiments (top) 

and model (bottom).

(B) Model populations with the strongest contribution to the CSD signal amplitude (mV/

mm2) during the time of the beta oscillation event at the corresponding electrode channel 

(depth 1,900 μm).

(C) CSD spectrogram and time series of the two populations (CT6 and IT6) with the 

strongest contributions to the beta oscillation event reveal consistent beta oscillatory events.

(D) Analysis of spiking activity (raster plot, histogram, and power spectral density) during 

the beta oscillation event reveals a similar spiking beta oscillatory pattern in CT6 but not 

IT6.

(E) Schematic of the method to estimate the synaptic input drive over time from different 

presynaptic populations based on the circuit spiking activity and connectivity.

(F) Analysis of synaptic input patterns to CT6, IT6, PV5A, and IT5B. Plots show time 

histogram and power spectral density (beta band highlighted in gray) of the estimated 

synaptic input patterns from the five strongest presynaptic populations targeting CT6, IT6, 

PV5A, and IT5B.

(G) Summary schematic of model prediction: the CSD beta event is generated by CT6/IT6 

synaptic inputs originating in PV5A, which in turn result from beta oscillatory interactions 

between PV5A and IT5B.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

In Vivo Experimental data Neymotin et al.61 Zenodo: https://doi.org/10.5281/
zenodo.10066993

Data used to constrain the 
auditory thalamocortical model

This paper Zenodo: https://doi.org/10.5281/
zenodo.10066993

Auditory thalamocortical model 
output simulated data

This paper Zenodo: https://doi.org/10.5281/
zenodo.10066993

Software and algorithms

Auditory thalamocortical model 
and data analysis source code

This paper; https://github.com/NathanKlineInstitute/
Macaque_auditory_thalamocortical_model_data

N/A

NetPyNE http://netpyne.org Zenodo: https://doi.org/10.5281/
zenodo.4767870

NEURON https://neuron.yale.edu/ N/A

OEvent https://github.com/NathanKlineInstitute/OEvent N/A

UR EAR https://www.urmc.rochester.edu/MediaLibraries/URMCMedia/
labs/carney-lab/codes/UR_EAR_v2_1.zip

N/A

LFPykit https://github.com/LFPy/LFPykit Zenodo: https://doi.org/10.5281/
zenodo.7820713

Python http://python.org N/A

Cell Rep. Author manuscript; available in PMC 2023 December 18.

https://github.com/NathanKlineInstitute/Macaque_auditory_thalamocortical_model_data
https://github.com/NathanKlineInstitute/Macaque_auditory_thalamocortical_model_data
http://netpyne.org
https://neuron.yale.edu/
https://github.com/NathanKlineInstitute/OEvent
https://www.urmc.rochester.edu/MediaLibraries/URMCMedia/labs/carney-lab/codes/UR_EAR_v2_1.zip
https://www.urmc.rochester.edu/MediaLibraries/URMCMedia/labs/carney-lab/codes/UR_EAR_v2_1.zip
https://github.com/LFPy/LFPykit
http://python.org

	SUMMARY
	In brief
	Graphical abstract
	INTRODUCTION
	RESULTS
	Development of a data-driven model of macaque auditory thalamocortical circuits
	Cell-type- and layer-specific activity recorded at multiple scales
	Emergence of spontaneous physiological oscillations across frequency bands
	Unraveling the biophysical mechanisms underlying physiological oscillations at the cellular and circuit scales

	DISCUSSION
	Key findings and contributions
	Limitations of the study
	Outlook on research and clinical applications

	STAR★METHODS
	RESOURCE AVAILABILITY
	Lead contact
	Materials availability
	Data and code availability

	METHOD DETAILS
	Single neuron models
	Morphology and physiology of neuron classes

	Thalamocortical circuit model populations
	Auditory thalamus
	Auditory cortex

	Thalamocortical circuit model connectivity
	Connectivity parameters: connection probability and weight

	Types of synapses
	Connection delays
	Intra-thalamic connectivity
	Intra-cortical connectivity
	Thalamocortical and corticothalamic connectivity

	Background inputs
	Full model synaptic weight tuning
	Overview of approach
	Automated optimization algorithm
	Layer-specific and cell-type specific parameters
	Stepwise layer-by-layer tuning
	Projection-specific weight tuning
	Final model
	Phenomenological models of peripheral auditory structures
	Model building, simulation and optimization

	Simulated recordings, data analysis and visualization
	Spiking raster plot, firing rate statistics and voltage traces
	Local field potential LFP
	Current source density CSD
	Current dipoles and electroencephalogram EEG
	Oscillation event detection
	Broadband noise stimulus generation and analysis
	Analysis of synaptic input drive
	Experimental dataset


	QUANTIFICATION AND STATISTICAL ANALYSIS

	Inclusion and diversity
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	KEY RESOURCES TABLE

