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Abstract

As the most prevalent chronic liver disease globally, NAFLD encompasses a

pathological process that ranges from simple steatosis to NASH, fibrosis,

cirrhosis, and HCC, closely associated with numerous extrahepatic

diseases. While the initial etiology was believed to be hepatocyte injury

caused by lipid toxicity from accumulated triglycerides, recent studies

suggest that an imbalance of cholesterol homeostasis is of greater

significance. The role of nuclear receptors in regulating liver cholesterol

homeostasis has been demonstrated to be crucial. This review summarizes

the roles and regulatory mechanisms of nuclear receptors in the 3 main

aspects of cholesterol production, excretion, and storage in the liver, as well

as their cross talk in reverse cholesterol transport. It is hoped that this review

will offer new insights and theoretical foundations for the study of the

pathogenesis and progression of NAFLD and provide new research

directions for extrahepatic diseases associated with NAFLD.

INTRODUCTION

NAFLD is a prevalent chronic liver disease affecting
approximately 2 billion people worldwide.[1] The condi-
tion is defined by the presence of fatty degeneration in
> 5% of liver cells, often coupled with metabolic risk
factors, such as obesity and type 2 diabetes, and a lack
of excessive alcohol consumption (≥30 g/d for men,

≥20 g/d for women) or other chronic liver diseases.[2]

The disease can progress from simple hepatic steatosis
to NASH, then to advanced liver fibrosis, cirrhosis, or
HCC. Over the past 20 years, the burden of NAFLD in
China has increased significantly; the prevalence began
to increase from 23.8% in the early- to mid-2000s,
accelerating in 2010, then reaching 32.9% in 2018,
resulting in an average prevalence of 29.6%.[3]

Abbreviations: ABCA1, ATP-binding cassette transporter A1; ABCG5, ATP-binding cassette transporter G5; ACAT, acyl-CoA cholesterol acyltransferase; AMPK,
AMP-activated protein kinase; apoA-I, apolipoprotein AI; CETP, cholesteryl ester transfer protein; CtBP, C-terminal binding protein; CYP7A1, cytochrome P450;
FGFR4, fibroblast growth factor receptor 4; FXR, farnesoid X receptor; GR, Glucocorticoid receptor; HFD, high-fat diet; HNF4α, hepatocyte nuclear factor 4 alpha;
LXR, liver X receptor; NRs, nuclear receptors; NZO, New Zealand Obese mice; PPAR, peroxisome proliferator-activated receptor; PPRE, peroxisome proliferator
response element; RA, Retinoic acid; RCT, reverse cholesterol transport; RXR, retinoid X receptor; SHP, small heterodimer partner; SR-B1, scavenger receptor B1;
TCHO, total cholesterol; TG, Triglyceride.
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An increase in NAFLD prevalence is associated globally
with aging, obesity, and diabetes,[4] whereas in China, it
is associated with an increase in older and young
patients exhibiting changes in diet and lifestyle. From
2010 to 2018, the incidence of NAFLD in Chinese
people aged below 60 years was higher than that in
those aged above 60 years.[3]

Patients with NAFLD commonly exhibit a series of
complex metabolic dysfunctions, including insulin resist-
ance, lipid metabolism abnormalities, gut microbiota
disturbances, and abnormal uric acid metabolism. Addi-
tionally, NAFLD is positively correlated with the onset of
atherosclerotic diseases, thereby increasing the risk of
stroke and myocardial infarction, which can lead to
systemic functional impairments or even death.[5] More-
over, the increasing prevalence of NAFLD among young
populations may exacerbate its burden on society.
Therefore, it is imperative to further elucidate the
pathogenesis of NAFLD. This review summarizes the
existing literature on NAFLD pathogenesis, specifically,
the roles and regulatory mechanisms of nuclear receptors
(NRs) in (1) maintaining hepatic cholesterol homeostasis,
(2) the development and progression of NAFLD, and (3)
cross talk during reverse cholesterol transport (RCT).

NAFLD PATHOGENESIS

The primary driving factor of NAFLD is nutrient excess,
which leads to the excessive accumulation of liver lipids
and disrupts the balance of hepatic lipid metabolism.[6]

However, research increasingly suggests that triglycer-
ides, which are lipid storage substances, serve as a
buffer against lipid-induced liver damage,[7,8] whereas
the accumulation of free fatty acids,[9] cholesterol,[10]

phosphatidylcholine,[11] and ceramides[12] plays a more
critical role in the development and progression of
NAFLD. Among these factors, maintaining cholesterol
metabolic homeostasis is particularly crucial.[10]

Cholesterol homeostasis

Cholesterol is a precursor for the synthesis of bile acids,
vitamins, and steroid hormones and is an essential lipid
molecule in animal cells. Cholesterol is crucial not only
for maintaining the barrier function and fluidity of cell
membranes but also for playing an important role in
intercellular signaling through the formation of lipid rafts
on the cell membrane.[13] Therefore, maintaining cho-
lesterol homeostasis is essential for maintaining basic
body activities.

Cholesterol homeostasis refers to the dynamic balance
between the production, excretion, and storage of choles-
terol. Endogenous cholesterol is synthesized from acetyl-
CoA through a series of >30 reactions involving over 20
enzymes. Conversely, exogenous cholesterol from food is

absorbed by the intestines and transported to the liver via
chylomicrons. The liver, as the central hub of cholesterol
metabolism, converts both endogenous and exogenous
cholesterol into VLDL and releases it into the bloodstream.
VLDL is then processed into LDL, which is recognized by
LDL receptors on the cell surface and internalized, allowing
the cholesterol to be utilized by cells. Excess cholesterol is
either esterified by acyl-CoA cholesterol acyltransferase
(ACAT) and stored in lipid droplets or incorporated into
plasma lipoproteins and released into the bloodstream.
Cholesterol in the liver cells can also be excreted through
the intestines by being converted into bile acids in the
gallbladder. Excess cholesterol intake or synthesis can
lead to cholesterol accumulation in the liver and blood-
stream, resulting in pathological changes in organs, such
as fatty liver and atherosclerosis. Furthermore, mutations in
the genes regulating cholesterol homeostasis can lead to
a range of inherited diseases, including Schnyder
corneal dystrophy,[14] Smith-Lemli-Opitz syndrome,[15]

familial hypercholesterolemia,[16] Tangier disease,[17] and
sitosterolemia.[18] Acquired imbalances in cholesterol
homeostasis can also lead to several diseases, such as
Parkinson disease,[19] Alzheimer disease,[20] muscular
dystrophy,[21] cancer,[22–24] and common atherosclerosis-
related conditions.[25,26]

As the central of cholesterol metabolism in the body,
the liver plays a crucial role in cholesterol homeostasis;
approximately 50% of cholesterol is produced by the
liver.[27] The liver also utilizes the scavenger receptor
B1 (SR-B1) pathway to clear circulating cholesterol
carried by HDL and maintain peripheral cholesterol
homeostasis.[28] Approximately 70% of retinoic acid in
the human body is stored in HSCs, which play a critical
role in the progression of NAFLD to liver fibrosis and
cirrhosis.[29] The liver is the only organ that can eliminate
excess cholesterol by converting it into bile acids and
excreting it with bile.[30] Given the liver’s crucial role in the
development, progression, and treatment prognosis of
NAFLD, the regulation of cholesterol homeostasis has
become a topic of interest in recent years. Studies have
demonstrated the important role of NRs in regulating and
stabilizing hepatic lipid metabolism[31–37] (Fig. 1).

Role of cholesterol in NAFLD

The accumulation of liver cholesterol is caused by an
increase in endogenous cholesterol synthesis and
increased absorption of intestinal cholesterol, as well
as obstructed excretion of free cholesterol in bile,
conversion of bile acids, and nonbiliary transintestinal
cholesterol efflux.[38] In addition, animal models fed with
a high-cholesterol diet exhibit NAFLD characteristics
and are more likely to develop liver fibrosis and
atherosclerosis manifestations than models fed with a
high-fat diet alone.[39] Severe liver fibrosis and cirrhosis
are known risk factors for the development of liver
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cancer, which is the third deadliest cancer worldwide.[40]

Indeed, a significant proportion of liver cancer is caused
by NAFLD, which is more hazardous because of the
high incidence, late diagnosis, and poor prognosis of
HCC induced by this type of NAFLD than HCC induced
by viral hepatitis.[41,42] A large body of research has
shown that free cholesterol in the liver is a key
pathogenic factor in promoting HCC.[43–45] Overall,
cholesterol plays a crucial role in the occurrence of
NAFLD and the development of liver cirrhosis, HCC,
and extrahepatic atherosclerotic diseases.

NUCLEAR RECEPTORS

NRs are among the most abundant transcriptional
regulatory factors in metazoans and play crucial roles
in metabolism, sex determination, reproductive devel-
opment, and maintaining homeostasis.[46–48] The
human genome contains 48 NRs, in contrast to the 49
NRs found in rodents.[49] NRs comprise an N-terminal
regulatory region that activates transcription, DNA-
binding domains containing 2 zinc finger structures, a
nonconserved hinge region, a ligand-binding domain,

and a variable C-terminal region.[50] NRs can be divided
into 7 subfamilies, ranging from NR0 to NR6.[51]

As the ligands for many NRs are fatty acids, steroids,
and oxysterols, their role in liver lipid metabolism has
received extensive attention.[36,37,52–54] Table 1 lists the
NRs involved in cholesterol metabolism and NAFLD. In
the following sections, we summarize the roles of several
NRs in maintaining hepatic cholesterol homeostasis and
in the development and progression of NAFLD.

Liver X receptor

As a cholesterol sensor, liver X receptor (LXR) activates
the expression of a series of genes related to cholesterol
absorption, efflux, transport, and excretion under
increased cellular cholesterol levels.[126] LXR has 2
homologous subtypes, LXRα and LXRβ, which have
different tissue distributions. LXRα is highly expressed in
metabolically active tissues and cell types, including liver,
intestine, adipose tissue, and macrophages, whereas
LXRβ is more widely expressed. Its physiological ligands
include oxysterols, including 24(S), 25-epoxycholesterol,
25-hydroxycholesterol, and 22(R)-hydroxycholesterol,

F IGURE 1 The process of cholesterol from synthesis, absorption, utilization, and excretion. Abbreviations: ABCA1, ATP-binding cassette
transporter A1; ABCG5, ATP-binding cassette transporter G5; CYP7A1, cytochrome P450; LDLR, LDL receptor; SR-B1, scavenger receptor B1.
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TABLE 1 The role of nuclear receptors in hepatic cholesterol metabolism and NAFLD

Gene name Nuclear receptor Ligand Function in cholesterol metabolism and NAFLD References

NR0B1 DAX1 Orphan DAX-1 inhibits the transcriptional activity of LRH-1 and LXRα, and inhibits gluconeogenesis by
negatively regulating HNF4A

[55–57]

NR0B2 SHP Orphan The expression of SHP inhibits CYP7A1, and downregulation of SHP accelerates the
transformation of cholesterol to bile acids by activating CPY7A1

[58,59]

NR1A1 TRα Thyroid hormones Downregulation of TRα alleviates diet-induced hepatic steatosis [60,61]

NR1A2 TRβ Thyroid hormones Loss of TRβ shows excessive lipid accumulation in both human and mouse livers [62–64]

NR1B1 RARα Retinoic acids Loss of RARα-induced hepatic steatosis and decreased macrophage cholesterol effection in
HFD-fed mice. Upregulation of RARα could reduce hepatic lipid accumulation by decreasing
CD36 expression

[65–67]

NR1B2 RARβ Retinoic acids Upregulation of RARβ can alleviate hepatic lipid accumulation in hepatocytes [68,69]

NR1B3 RARγ Retinoic acids Upregulation of RARγ activates ABCA1-mediated cholesterol efflux [70]

NR1C1 PPARα Fatty acids Metabolomics has revealed that PPARα is an important regulator of bile acids by interacting with
SREBP2, and that PPAR-α/γ agonist Saroglitazar significantly improves insulin resistance and
dyslipidemia in NAFLD

[71–73]

NR1C2 PPARβ Fatty acids PPARβ/δ inhibits CYP7a1 expression by upregulating FGF21 [74]

NR1C3 PPARγ Fatty acids PARγ inhibitor GW9662 can reduce the development of NAFLD by inhibiting TLR4, but PPARγ
can promote cholesterol effluence by inducing the expression of ABCA1 in gallbladder
epithelium

[75,76]

NR1D1 REV-ERBα Heme REV-ERB coordinates the regulation of most genes encoding important enzymes in the
cholesterol biosynthesis pathway, and downregulation of Rev-ERbα promotes bile acid
metabolism through upregulation of CYP7A1

[77–79]

NR1D2 REV-ERBβ Heme Activation of REV-ERBα/β reduces hepatic triglyceride storage and inhibits cholesterol synthesis,
and can increase promoter activity of CYP7A1

[80,81]

NR1F1 RORα Sterols Overexpression of RORα reduces diet-induced hepatic lipid accumulation, and its inverse agonist
SR1001 regulates intestinal excretion of cholesterol by upregulating ABCG5/G8

[82,83]

NR1F3 RORγ Sterols Knockout of RORγ may reduce bile acid synthesis by decreasing levels of Cyp8b1, Cyp7b1, and
Cyp27a1

[84]

NR1H4 FXRα Bile acids FXRα can promote CYP7A1 expression through FGF19 and SHP/LRH-1 pathway, competitively
inhibit LXRα to promote CETP transcription and reduce liver cholesterol uptake and
accumulation

[85–87]

NR1H3 LXRα Oxysterols LXRα activates ABCG5/8 to promote the excretion of cholesterol in bile. LXRα can promote
cholesterol effection in gallbladder epithelium by inducing the expression of ABCA1. LXRα
deficiency leads to downregulation of CYP7A1 level, leading to liver cholesterol accumulation

[76,88,89]

NR1H2 LXRβ Oxysterols LXRβ agonists induce the expression of cholesterol pump ABCA1 in bile duct cells and promote
the output of cholesterol from the basolateral membrane of bile duct cells

[90]
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NR1I1 VDR 1α,25‐dihydroxyvitamin D3 VDR is significantly highly expressed in NAFLD, and its deficiency leads to reduced fat
accumulation when aging and adult mice are fed a high-fat diet

[91,92]

NR1I2 PXR Endobiotics and xenobiotics PXR aggravated hepatic steatosis caused by a high-fat diet, and PXR KO mice had significantly
reduced levels of liver triglycerides, hepatic steatosis, serum total bile acids, and liver gene
expression of enzymes involved in the bile acid synthesis pathway

[93,94]

NR1I3 CAR Xenobiotics CAR is able to confer hepatoprotection from bile acids by increasing their sulfation and excretion [95,96]

NR2A1 HNF4α Fatty acids Loss of HNF4α enhances hepatic cholesterol accumulation by inhibiting CYP7A1/CYP8B1, FXR,
and ABCAS1, and loss of HNF4α in mice shows hepatic steatosis and reduced plasma
cholesterol levels

[97–99]

NR2B1 RXRα 9‐Cis retinoic acid RXRα serves as a heterodimerization partner for PPARα, PXR, LXR, and FXR to participate in
the regulation of cholesterol metabolism

[100–104]

NR2C2 TR4 Orphan TR4 knockout reduces liver lipid accumulation and can reduce apoE levels [105,106]

NR2E1 TLX Orphan Mice with NR2E1 knocked out display a significant hepatic steatosis phenotype [107]

NR2F1 COUP-TFα Orphan COUP-TFα exerts a transcriptional repression effect by binding to the promoter region of apoCIII [108]

NR2F2 COUP-TFβ Orphan HNF4 and coup-TF-β synergistically activate the transcription of the CYP7A1 promoter [109,110]

NR2F6 EAR2 Orphan EAR2 inhibits the transcription of the genes encoding apoB, apoCIII, and apoAII [111]

NR3A1 ERα Estrogens ERα upregulates the expression of intestinal Npc1l1, Abcg5 and Abcg8, inhibits the
transcriptional activity of LXRα in liver, and interacts with FXR in an estradiol-dependent
manner to inhibit its function in vitro

[112–114]

NR3A2 ERβ Estrogens Absence of Erβ alleviates the disruption of bile acid and cholesterol metabolism induced by
perfluorooctane sulfonate

[115]

NR3B1 ERRα Orphan VLDL-TG secretion is reduced in ERRα KO mice, leading to hepatic steatosis [116]

NR3B3 ERRγ Orphan Overexpression of ERRγ upregulates the expression of CYP7A1 both in vitro and in vivo [117]

NR3C1 GR Glucocorticoids GR interacts with FXR to reduce FXR transcriptional activity and promote hepatic cholestasis in
mice by recruiting CtBP coblocking complex, and GR regulator CORT118335 can reverse
hepatic cholesterol accumulation

[118,119]

NR3C2 MR Mineralocorticoids and
glucocorticoids

Specific blockade of MR exhibits hepatic antisteatotic effects [120]

NR3C4 AR Androgens AR reduces cholesterol synthesis by mediating phosphorylation of HMGCR and promotes
cholesterol synthesis and accumulation by activating sterol-regulatory element-binding protein
isoform 2

[121,122]

NR4A1 Nur77 Orphan Nur77 regulates liver lipid metabolism by inhibiting SREBP1c activity, and the levels of TCHO,
LDLR, HMGCR, and Nur77 in HepG2 cells are negatively correlated

[123,124]

NR5A2 LRH‐1 Phospholipids LRH-1 regulates hepatic cholesterol excretion through CYP7A1 and CYP8B1 [125]

Abbreviations: ABCA1, ATP-binding cassette transporter A1; CYP7A1, cytochrome P450; FXR, farnesoid X receptor; HNF4α, hepatocyte nuclear factor 4 alpha; KO, knockout; LDLR, LDL receptor; LXR, liver X receptor;
PPAR, peroxisome proliferator-activated receptor; SHP, small heterodimer partner.
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which are metabolites of cholesterol.[127] Previous studies
have shown that high-cholesterol diets result in signifi-
cantly more cholesterol accumulation in the livers of
LXRα-knockout mice than in those of wild-type mice.[128]

NPC1L1 is expressed in the brush border membrane
of intestinal cells and is essential for intestinal choles-
terol absorption.[129] Treatment of Caco-2 cells with the
LXR agonists T0901317 and GW3965 results in a
significant decrease in hNPC1L1 mRNA levels,[130]

indicating that LXR activation can inhibit cholesterol
absorption via dietary intake. SREBP2 regulates cellu-
lar cholesterol levels at the transcriptional level[131]; in
the liver of LXR (−/−) mice fed a low-cholesterol diet, the
mRNA levels of cholesterol synthesis-related genes
comprising SREBP-2 were significantly higher than
those in wild-type mice,[128] further demonstrating the
crucial role of LXR in maintaining cholesterol uptake
and synthesis.

Cytochrome P450 (CYP7A1) is the rate-limiting
enzyme in bile acid synthesis. Binding of LXRα to the
promoter region of CYP7A1 in rodents induces the
conversion of excess cholesterol to bile acids,[127]

whereas LXRα deficiency in mice leads to cholesterol
accumulation in the liver.[128] However, the same
phenomenon is not observed because the binding site
of LXRα is missing in the human CYP7a1 promoter
region.[132,133] ATP-binding cassette transporter A1
(ABCA1) is a crucial mediator for cholesterol efflux
from cells to apolipoprotein AI (apoA-I) and the
generation of HDL, which transfers peripheral choles-
terol to the liver for metabolism to prevent athero-
sclerotic diseases.[134] The transfection of LXRα and
retinoid X receptor (RXR) can transactivate the tran-
scription of ABCA1 in reverse in 293 cells.[135] More-
over, activating the AMPK pathway can upregulate the
mRNA and protein levels of LXRα and ABCA1.
Additionally, knocking out LXRα can eliminate the
upregulation effect of AMPK on ABCA1.[136] Apart from
ABCA1, ABCG1 also mediates cholesterol efflux to
HDL.[137] Multiple LXR and RXR heterodimer response
elements have also been found in the ABCG1 gene.[138]

However, the mechanism by which cholesterol efflux is
mediated by ABCG1, which is regulated by LXR
remains unclear. ATP-binding cassette transporter G5
(ABCG5)/8 is expressed as a heterodimer on the
surface of hepatocytes and intestinal cells and mediates
cholesterol excretion into bile and the intestines.[139]

ABCG5/8 levels are also regulated by LXR.[140] Thus,
downregulation of LXR inhibits cholesterol efflux from
macrophages, whereas upregulation of LXR increases
the levels of ABCG5/8 in the liver and small intestine,
promoting cholesterol reverse transport.[141]

The expression of LXR is correlated with the severity
of NAFLD,[142–144] with significant cholesterol accumu-
lation observed in LXR-knockout mice fed a high-
cholesterol diet.[145] Although some LXR agonists, such
as GW6340, 22(R)-hydroxycholesterol, and LXR-623,

exhibit well tolerated,[146,147] LXR activation can pro-
mote hepatic lipid synthesis and inhibit VLDL
degradation[148,149]; thus, it is rarely used for the clinical
treatment of NAFLD. Nevertheless, its potential as a
drug target is gradually being recognized.

Hepatocyte nuclear factor 4 alpha

Hepatocyte nuclear factor 4 alpha (HNF4α) is a nuclear
transcription factor expressed in the liver, kidney,
intestine, and pancreas[150]; it binds to DNA as a
homodimer and is the main regulatory factor for the
expression of bile acid, lipid, glucose, and drug
metabolism genes.[36,151] Mutations in the HNF4α gene
can cause maturity-onset diabetes of the young in
adolescents.[152] HNF4α is critical for pancreatic islet β-
cell proliferation, as mice with HNF4α knockout in their β
cells cannot respond to insulin resistance-induced
proliferation.[153] Mutations in HNF4α are also associ-
ated with changes in HDL cholesterol,[154,155] which has
prompted suggestions that HNF-4α is a central regula-
tor of glucose and lipid metabolism.[156] Previous animal
studies have shown that HNF4α-knockout mice exhibit
significant accumulation of liver cholesterol, as well as
significant decreases in total cholesterol, HDL choles-
terol, and triglyceride levels in serum relative to the
control serum, with a significant increase in serum bile
acid concentration.[157] These changes in serum lipid
profiles may be attributed to liver dysfunction or defects
in lipid transport and metabolism.

SR-B1 mediates cholesterol uptake in the liver, and
HNF4α can enhance the transcription of SR-B1
mediated by another NR, peroxisome proliferator-
activated receptor (PPAR)γ.[158] A decrease in HNF4α
levels can inhibit the expression of NPC1L1 in Caco-2
cells and inhibit the uptake of cholesterol by cells.[159]

ApoA-1 is the main carrier protein of HDL and exerts
atherosclerosis protective properties by participating in
the ABCA1 and ABCG1 pathways involved in
RCT.[160,161] ApoA-1-defective mice do not form normal
HDL particles and cannot effectively transport choles-
terol to liver tissue, leading to cardiovascular diseases
such as atherosclerosis. HNF4α, PPARα, and LXR
participate in the downregulation of human ApoA-I gene
expression and ApoA-I protein secretion mediated by
TNFα in HepG2 cells.[162] Moreover, HNF4α is an
important transcription factor that binds to the CYP7A1
promoter region. Unlike LXR, HNF4α regulation of
CYP7A1 levels appears to be bidirectional, with
previous results showing that HNF4α inhibits CPY7A1
transcription levels.[163] In another study, bile acid-
induced dissociation of the HNF-4α co-activator com-
plex HNF-4/PGC-1α/cAMP response element binding
protein also inhibited CYP7A1 transcription.[164] How-
ever, in mice with liver-specific knockout/overexpres-
sion of HNF4α, reduced de novo synthesis of fat and
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cholesterol was detected in the knockout mice, whereas
overexpression of Hnf4α significantly induced the
expression of genes related to cholesterol absorption,
storage, and excretion, such as Mtp, Apob, Cyp7a1,
Cyp8b1, Lrp, Ldlr, SR-B1, Acat2, Lcat, Abca1, Abcg5,
Abcg8, Apoa1, Apoa2, and Apoc2. In addition, over-
expression of Hnf4α showed no significant effect
on Srebp-2, Hmgcr, Srebp-1c, or Fas,[97] indicating that
HNF4α plays a critical role in cholesterol metabolism but
may not affect lipid synthesis, suggesting the potential
role of HNF4α as a cholesterol sensor.

The pathogenesis of NAFLD is related to the
abnormal concentration, structure, and function of
HDL.[165] In a study on HNF4α-knockout mice, the livers
were enlarged and showed obvious lipid changes.[166]

Furthermore, research indicates that HNF4α is required
for the preventive effect of liver cell-activating transcrip-
tion factor 3 on the formation of NASH.[167] Additionally,
HNF4α can prevent the progression of NAFLD to NASH
by regulating P53 and bile acid signaling pathways.[98]

These findings indicate that HNF4α not only participates
in the pathogenesis of NAFLD but also plays an
important role in disease progression. Recent research
has shown that small molecule-activated RNA can
activate HNF4α and significantly lower blood cholesterol
and glucose levels.[151] Furthermore, HNF4α mRNA
therapy has been shown to restore the metabolic
activity of liver cells in mice with liver fibrosis and
in vitro human liver cells.[168]

Peroxisome proliferator-activated receptor
(PPAR)

The PPAR family members are vertebrate-specific
nutrient-sensing NRs. Three members have been
identified in this family: PPARα, β/δ, and γ. The
expression and function of the 3 subtypes of PPAR
are unique, as is their tissue distribution. PPARαPPARα
is highly expressed in the liver, skeletal muscle, and
brown adipose tissue, whereas PPARγ is mainly
expressed in white adipose tissue, and PPARβ/δ is
expressed ubiquitously. The function of PPAR is closely
related to energy homeostasis and nutrient sensing.
The α and β/δ subtypes are involved in energy
utilization, whereas γ contributes to energy storage in
fat.[32] PPAR acts as a transcription factor in the form of
homologous or heterodimer binding to a cis-acting
element called a peroxisome proliferator response
element (PPRE) of the target gene.[169]

PPARα plays a crucial role in regulating lipid
homeostasis by promoting fatty acid oxidation.[170]

Recent research on the NZO mouse model, which
simulates human metabolic syndrome, has revealed
significant changes in the pathways and targets
involved in fatty acid metabolism mediated by PPARα,
as well as notable changes in cholesterol-related

targets.[171] Interestingly, mice with liver-specific
inactivation of fatty acid synthase exhibited lower serum
and liver cholesterol levels, decreased SREBP-2,
increased HMG-CoA, and reduced cholesterol bio-
synthesis. However, these phenotypes were corrected
after the application of PPARα agonists.[172] Bile acids,
formed from cholesterol in the liver, represent an
important pathway for eliminating cholesterol from the
body. Sterol 12α-hydroxylase is a branching enzyme in
the bile acid biosynthesis pathway that determines the
ratio of cholic acid to chenodeoxycholic acid. Adminis-
tration of the PPARα agonist WY-14,643 to mice results
in a several-fold increase in sterol 12α-hydroxylase
mRNA.[173] Several studies have suggested that alter-
ations in small, dense LDL may increase the risk of
NAFLD-associated atherosclerosis and cardiovascular
disease.[174,175] Pparα agonists fibrate reduce small
dense LDL particles and TG to regulate dyslipidemia in
atherosclerotic disease.[176] Additionally, PPARα syner-
gizes with LXR to promote cholesterol excretion, with
the co-application of PPARα and LXR agonists increas-
ing fecal cholesterol excretion in mice by more than 12
times that observed with a single agonist.[177] Although
the primary biological function of PPARα is related to
fatty acid metabolism, researchers are increasingly
investigating its role in cholesterol homeostasis and
have shown that fenofibrate, a PPARα agonist widely
used to treat hyperlipidemia, can also be used to treat
NAFLD.[178]

Nur77

The gene induced by nerve growth factor B, also known
as Nur77, belongs to the NR subfamily 4A and is
encoded by the NR4A1 gene. Nur77 is a type of orphan
receptor that can function independent of a ligand
despite not having a clear endogenous ligand.[179]

Structural studies of the ligand-binding domains of all
3 NR4A members have shown that these receptors lack
a conventional-sized ligand-binding pocket because of
the presence of large hydrophobic amino acid residue
side chains.[180–183] Members of the NR4A subfamily
bind to DNA as monomers, homodimers, and hetero-
dimers. As monomers of the NR4A subfamily, they bind
to NGFI-B response elements; however, as homo-
dimers and heterodimers with other NR4A members, all
3 members of the NR4A subfamily bind to Nur response
elements. Nur77 and Nurr1 can also heterodimerize
with the retinoid X receptor.[184–188] In terms of function,
the NR4A family is closely related to metabolic
diseases.[189–191]

Overexpression of Nur77 in mouse livers can reduce
the hepatic triglyceride content and lower the expres-
sion of Srebp1c, an important regulator of cholesterol
metabolism.[123] The levels of genes involved in hepatic
cholesterol metabolism, such as LDLR and HMGCoA
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reductase, increase as Nur77 expression is down-
regulated and decrease as Nur77 expression is
upregulated.[124] Treatment with Csn-b, which is a
Nur77 transcriptional activator, gradually reduces the
gene levels of LDLR, ABCG5, SREBP1c, and SREBP2
in mouse livers, while increasing the gene levels of SR-
B1 and hepatic lipase. When Nur77 was knocked out,
the expression of these genes was downregulated, and
the lipid content in mouse liver was reduced by 39.9%
after Csn-b treatment.[192] Another study showed that
Nur77 reduces the expression of Abcg5 and Abcg8,
which are 2 LXR target genes in mice.[123]

Although the overexpression of Nur77 can help the
liver to excrete cholesterol and reduce the hepatotoxic-
ity caused by cholesterol, Nur77 is highly expressed in
both HCC and cancerous cirrhosis,[193] which suggests
its potential role in the progression of NAFLD to HCC.

Farnesoid X receptor

Farnesoid X receptor (FXR) is a bile acid-activated
receptor that is mainly expressed in the liver and
intestinal tissues and has 2 members in mammals:
FXRα and FXRβ.[194] Existing studies have shown that
FXR regulates the metabolism of bile acids, carbohy-
drates, and lipids.[195,196] After activation, FXR and RXR
form a heterodimer and induce expression of the small
heterodimer partner (SHP) gene, leading to the tran-
scriptional inhibition of the rate-limiting enzyme in bile
acid synthesis, 7α-hydroxylase (CYP7A1).[197] FXR also
stimulates the synthesis of FGF-19, which inhibits the
expression of CYP7A1 and sterol 12α-hydroxylase
(CYP8B1) through the fibroblast growth factor receptor
4 (FGFR4) pathway in hepatocytes.[198–200] The FXR/
SHP and FXR/FGF19/FGFR4 pathways constitute the
main negative regulators of bile acid synthesis. FXR
inhibits the uptake of bile acids in the liver by
suppressing the expression of sodium taurocholate
cotransporting polypeptide via an SHP-dependent
mechanism.[201] FXR also upregulates the expression
of genes encoding bile salt export pump and multidrug
resistance protein 3 and increases the efflux of bile
acids from hepatocytes into the canaliculus.[202,203]

Moreover, FXR enhances the expression of organic
solute transporter α/β, thereby increasing the efflux of
bile acids from hepatocytes into the portal vein.[204] In
addition, FXR regulates key enzymes involved in bile
acid conjugation and detoxification.[202] Overall, FXR is
closely related to the entire metabolic process of bile
acid synthesis, transport, and reabsorption.[205,206] In
both in vivo and in vitro models of cholestasis in the
liver, FXR activation can improve bile stasis, thereby
protecting the liver from the high cytotoxicity of bile
acids.[207] Furthermore, FXR induces the synthesis of
FGF15/19 and upregulates FGF15/19-FGFR4 signal-
ing, which may increase the risk of HCC.[208] According

to previous research, FXR activation exhibits potential
antitumor activity in colorectal cancer,[209] HCC,[210] and
cholangiocarcinoma.[211]

In a multicentre study, FXR activation inhibited
cholesterol uptake and conversion to bile acids but
also affected cholesterol synthesis and excretion.
Furthermore, FXR activation promoted the expression
of liver scavenger receptors, thereby enhancing RCT.
Moreover, obeticholic acid not only increased LDL but
also decreased HDL,[212] which was further supported
by the low HDL levels in animals treated with GW4064
and XL335.[213,214] In contrast, FXR antagonists are
more beneficial for hypercholesterolemia.[215–217] Thus,
more data are required to better understand the
potential of selective FXR agonists for modulating the
cholesterol levels of humans, as well as the potential of
statins for mitigating the associated adverse effects.

RXRα

RXR consists of 3 subtypes: α, β, and γ. The ligand of
RXR is 9-cis RA; however, high concentrations of all-
trans RA can also activate RXR by conversion to 9-cis
RA.[218] Conventional research on NRs has been limited
to identifying ligands and determining their biological
functions. However, the discovery of RXR and its ability
to serve as a heterodimerization partner for other NRs
has ushered in a new era of NR research. To date,
studies have revealed that RXR can form heterodimers
with other NRs[219–221] and also form homodimers.[222]

NRs bind to a DNA sequence called hormone response
elements, which contain at least 6 core nucleotides—
AGGTCA—and can be constructed into various struc-
tured motifs.[223] RXR and its dimerization partners
recognize hormone response elements on DNA that are
spaced 1 to 5 nucleotides apart. The complexity
resulting from these various combinations can be
partially explained by the tissue-specific expression
of NRs.

The 3 subtypes of RXR are widely expressed in vivo,
with RXRα being the most abundant subtype expressed
in the liver.[220] High doses of all-trans RA have been
used to treat acne and reportedly cause hyperlipidemia
and hepatotoxicity[224]; the mechanism behind this effect
may be that all-trans RA inhibits the transcriptional
activation of CYP7A1 by the FXR/RXR dimer.[100] The
expression of ABCG1 in the liver is closely related to
cholesterol efflux to HDL, and as a heterodimerization
partner, RXR participates in almost the entire process of
cholesterol efflux through ABCG1. Overexpression of
LXR/RXR can activate the transcription of ABCG1 in
HepG2 cells,[225] and activation of the RXR/RAR dimer
can upregulate the expression of the main component
of HDL in the liver (apoA-I).[226] Additionally, the RXR
agonist LGD1069 can activate the RXR/PPAR pathway
to increase HDL cholesterol levels without changing
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apoA-I levels in the liver.[227] CYP3A4 catalyzes the 25-
hydroxylation of cholesterol, and 25-hydroxycholesterol
is metabolized more quickly by CYP7A1 and CYP8B1
than 4β-hydroxycholesterol.[228] Furthermore, CAR/RXR
enhances the transcription of CYP3A4 in the form of
heterodimers, and interestingly, LXR can inhibit the
transcription of PXR-dependent CYP3A4.[229]

The ligand of RXR is a metabolite of vitamin A, and
absorption of vitamin A in the human body requires the
assistance of intestinal bile acids. Additionally, as RXR
can serve as a dimerization partner for several
important NRs in bile acid metabolism, RXR links
vitamin A and bile acid metabolism.[230] Both in vivo
and in vitro experiments have demonstrated that vitamin
A metabolites can directly regulate the expression of
bile acid homeostasis-related genes through RXR or
RAR and can also regulate gene transcriptional activity
through FXR/RXRα. Furthermore, SHP and FGF19/15,
2 pathways that inhibit bile acid synthesis, are also
mediated by vitamin A.[100,231,232] Currently, obstacles to
the application of vitamin A for NAFLD treatment include
uncertainty regarding vitamin A status in the liver and
the cell toxicity caused by high vitamin A concentra-
tions. (Fig. 2).

Reverse cholesterol transport

Although the process from NAFLD to HCC and eventual
mortality may persist for decades, it is the accompany-
ing atherosclerotic disease of NAFLD that serves as the
primary cause of death.[233] The prevailing view is that
the hallmarks of atherosclerosis are uncontrolled uptake
of oxidized LDL by macrophages, impaired cholesterol
efflux, and accumulation of cholesterol esters as
cytoplasmic lipid droplets, leading to foam cell formation
in the arterial intima. RCT refers to the process by which
excess cholesterol is transported from peripheral tissue
cells into circulation, metabolized in the liver, and
ultimately excreted in feces, which is the main pathway
for the liver to clear excess cholesterol in circulation.

Cholesterol efflux from cells to HDL marks the onset
of RCT, in which NRs play a crucial role. Macrophages
absorb cholesterol from oxidized LDL through CD36
and scavenger receptor A. Internalized oxidized LDL
provides PPARγ activation ligands and fatty acids,
which induce the expression of CD36.[234] The loss of
NCOR1, an NR corepressor, relieves the inhibition of
PPARγ on CD36 transcriptional activity, leading to
increased foam cell formation.[235] Tamoxifen can
relieve PPARγ activation of CD36 transcription.[236] In
a previous study, overexpression of Nur77 reduced
CD36 and scavenger receptor A levels, inhibiting the
process of macrophage differentiation into foam
cells.[237] After macrophages take up cholesterol,
ACAT1 catalyzes the formation of cholesterol esters to
maintain a balance with free cholesterol. The excessive

accumulation of cholesterol esters promotes foam cell
formation. PPARα is the target of fibrate drugs, whose
activation reduces the cholesterol ester content in
macrophages but does not downregulate ACAT1 gene
expression. Instead, PPARα promotes the entry of
ACAT1 substrates, which are long-chain fatty acids, into
mitochondria for β-oxidation, reducing the efficiency of
cholesterol esterification and thus reducing the ratio of
cholesterol esters to free cholesterol.[238] Excess cho-
lesterol in cells is transported out to mature HDL via SR-
B1 and ATP-binding cassette protein G1 (ABCG1) and
A1 (ABCA1). Over 70% of cholesterol efflux in
macrophages is mediated by ABCA1 and ABCG1.[239]

As mentioned previously, the transcription of ABCA1
and ABCG1 is regulated by LXR/RXR heterodimers.
Subsequent studies have clarified that the ligand
activation of PPARγ amplifies the cholesterol clearance
mediated by LXR-ABCA1.[240] An investigation of 131
patients with coronary artery disease also revealed that
the use of the PPARγ inhibitor GW9662 led to a
decrease in LXR-α and ABCA1 levels in the group,
accompanied by impaired cholesterol efflux
capacity.[241] Cholesterol carried by HDL is eventually
taken up by hepatic SR-B1 receptors after circulation
and metabolized in the liver, which brings us back to the
liver function discussed at the beginning of this review.

PROGRESS IN RELATED DRUG
RESEARCH

Cholesterol originates from endogenous synthesis or
diet and is eliminated primarily through biliary secretion.
A significant increase in cholesterol synthesis was
found in patients with NAFLD and was positively
correlated with liver fat content,[242] while increased
cholesterol intake led to more severe steatosis.[243]

Although statins have been shown to be effective in
reducing the risk of NAFLD and have cardiovascular
protective abilities,[244,245] and treating mice with ator-
vastatin mitigated liver and blood vessel damage
caused by HFD while increasing bile acid synthesis and
excretion.[246] Moreover, in view of its potential liver
damage and the exact effects of cholesterol metabolic
homeostasis on atherosclerotic disease, drug research
targeting NR therapy for NAFLD is still particularly
important. GFT505, a dual PPAR-α/δ agonist, is a
promising novel agent for the treatment of NAFLD and
has been shown to improve insulin sensitivity, lipids,
and liver enzymes in patients with MetS or prediabetic
abdominal obesity in phase II clinical trials.[247,248] Low
doses of thyroid hormone effectively and safely reduced
hepatic fat content in men with type 2 diabetes mellitus
and NAFLD,[249] and oral selective THR-β agonist MGL-
3196 significantly reduced hepatic fat accumulation in a
multicenter study.[250] LXR, a key NR regulating
cholesterol effection and transport, and its reverse
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stimulant SR9238 inhibited liver steatosis induced by
high-fat diet in mice[251] and alleviated inflammation and
fibrosis in mouse models of NASH.[252] Obeticholic acid
(OCA), also known as INT747, is a selective FXR
agonist that has been entered into clinical studies. OCA
can significantly improve insulin sensitivity and reduce
markers of liver inflammation and fibrosis, thereby
improving NAFLD progression.[253] OCA reduced blood
cholesterol levels in a Western diet and STZ-induced
insulin deficiency and hyperglycemia mouse model.[254]

In addition, in a multicenter study, OCA therapy
improved NAFLD-induced steatosis and hepatocellular
ballooning and was well tolerated, with pruritus being
the most common adverse event.[212]

CONCLUSIONS

The dysregulation of NRs disrupts the comprehensive
control of energy metabolism via the gut-liver-adipose
axis, leading to the onset of NAFLD, with the imbalance
of cholesterol homeostasis playing a crucial role. The
effects of NRs on cholesterol metabolism are complex,

as they are linked to both fatty acid and glucose
metabolism and may appear simultaneously. Although
the activation of LXR and PXR increases steatosis,
PPAR and FXR reduce steatosis; interestingly, hepatic
inflammation is downregulated by the activation of these
receptors. This may represent a protective mechanism
as it simulates the weakened activation of TLR4 by
lipopolysaccharides, making the liver highly resistant to
lipotoxicity. During the progression of NAFLD, FXR
appears to have an antifibrotic effect; however, its role
in human NASH requires further investigation. Nur77 is
highly expressed in HCC and cirrhosis; however, this
does not negate its protective role in the initial stages of
NAFLD. Novel treatment strategies are required that
provide the beneficial effects of NR activation while
minimizing adverse metabolic effects. Such strategies,
which are currently under development, include dual
receptor agonists, tissue-specific agonists/antagonists,
and the use of FGF21. Chinese herbal medicine has
also shown substantial therapeutic potential in targeting
some NR targets in RCT.[255,256] Furthermore, the
impact of NR cross talk in NAFLD may be profound;
for example, the synergistic or regulatory effects of

F IGURE 2 The molecular mechanism of nuclear receptor regulation on the rate-limiting enzyme CYP7a1 in bile acid synthesis. The inner ring
represents the key nuclear receptor. The intermediate ring represents the factor or pathway that the nuclear receptor acts on. The outer ring is a
model graph. Abbreviations: CYP7A1, cytochrome P450; FXR, farnesoid X receptor; HNF4α, hepatocyte nuclear factor 4 alpha; LXR, liver X
receptor; PPAR, peroxisome proliferator-activated receptor; retinoid X receptor; SHP, small heterodimer partner.
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HNF4α, LXR, and Nur77 on the regulation of cholesterol
efflux and the cascade effect of PPARγ and LXR in RCT
regulation. However, more research is warranted to
explore the mechanisms of cross talk between NRs.
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