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Abstract
Oral squamous cell carcinoma of the gingivo-buccal region (OSCC-GB) is the most com-
mon cancer among men in India, and is associated with poor prognosis and frequent 
recurrence. Cellular heterogeneity in OSCC-GB was investigated by single-cell RNA se-
quencing of tumors derived from the oral cavity of 12 OSCC-GB patients, 3 of whom 
had concomitant presence of a precancerous lesion (oral submucous fibrosis [OSMF]). 
Unique malignant cell types, features, and phenotypic shifts in the stromal cell popula-
tion were identified in oral tumors with associated submucous fibrosis. Expression lev-
els of FOS, ATP1A, and DUSP1 provided robust discrimination between tumors with or 
without the concomitant presence of OSMF. Malignant cell populations shared between 
tumors with and without OSMF were enriched with the expression of partial epithelial–
mesenchymal transition (pEMT) or fetal cell type signatures indicative of two dominant 
cellular programs in OSCC-GB—pEMT and fetal cellular reprogramming. Malignant 
cells exhibiting fetal cellular and pEMT programs were enriched with the expression of 
immune-related pathway genes known to be involved in antitumor immune response. In 
the tumor microenvironment, higher infiltration of immune cells than the stromal cells 
was observed. The T cell population was large in tumors and diverse subtypes of T cells 
with varying levels of infiltration were found. We also detected double-negative PLCG2+ 
T cells and cells with intermediate M1–M2 macrophage polarization. Our findings shed 
light on unique aspects of cellular heterogeneity and cell states in OSCC-GB.
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1  |  INTRODUC TION

Oral squamous cell carcinoma is the 16th most common malignancy in 
the world and is associated with high mortality. Oral squamous cell car-
cinoma of the gingivo-buccal region, commonly referred to as gingivo-
buccal oral cancer, ranks the highest among men, and sixth among 
women in India in terms of incidence and mortality.1 It is associated 
with tobacco chewing, presentation at advanced stages (stages III and 
IV), and a high rate of loco-regional failure, leading to poor prognosis.2 
Oral cavity tumors contain diverse cell types that show considerable 
interindividual variation and distinct genomic, epigenomic, and phe-
notypic features.3 Such cellular heterogeneity is a key determinant 
of differences in tumor progression, treatment failure/recurrence, 
and overall survival of a cancer patient.4,5 Single-cell genomics has 
provided unparalleled opportunities to explore tumor heterogeneity 
at cellular resolution.6 Recent single-cell transcriptomic analysis of 
HNSCCs has revealed considerable intra- and intertumor cellular di-
versity.7–9 However, these studies were undertaken on patients with 
tongue cancer or involved a comparison of oral cancer patients with 
and without HPV infection. The intratumor cellular heterogeneity of 
gingivo-buccal oral cancer remains to be characterized. We have pre-
viously shown from bulk-sequencing studies that there are notable 
differences in gene-expression profiles between tongue cancer and 
OSCC-GB patients.10 We, therefore, undertook this study to charac-
terize the landscape of cellular diversity in OSCC-GB tumors using 
scRNA-seq, and obtained novel information on the heterogeneity of 
cell types and cell states in this form of cancer.

2  |  MATERIAL S AND METHODS

2.1  |  Sample collection

Sections of freshly resected, treatment-naïve OSCC-GB tumors 
were collected from 12 patients (Table S1), with written informed 
consent, who presented themselves for treatment at the R. Ahmed 
Dental College and Hospital, Kolkata. Resected tissues were col-
lected in prechilled MACS tissue storage solution (Miltenyi Biotec) 
and transported on ice immediately after surgical procurement.

2.2  |  Preparation of single-cell suspension

Tumor tissue was dissociated within 2 h after collection. Each tissue 
was minced into ≤1–2 mm pieces in 1 mL enzyme mix (enzymes H, R, 
and A from Miltenyi Biotech in RPMI-1640 medium). The minced tis-
sue suspension and the remaining enzyme mix were transferred to a 
gentleMACS C tube and then placed onto the gentleMACS Octo dis-
sociator (Miltenyi Biotech). The gentleMACS program 37C_h_TDK_3 
was run for dissociation after attaching the heating elements. The 
homogenate was centrifuged briefly and filtered through a 70 μm 
cell strainer (BD Biosciences). The cell suspension was then cen-
trifuged at 300 g for 7 min, the supernatant was aspirated, and the 

pellet was resuspended in RPMI-1640 medium (Gibco). Red blood 
cells were lysed by incubating the pellet in RBC lysis buffer (Milte-
nyi Biotec) for 10 min at 4°C, after which 10 mL chilled RPMI-1640 
medium was added, centrifuged at 300 g for 10 min at 4°C, and the 
cell pellet was resuspended in RPMI-1640. The number of cells and 
fractions of live cells were counted using Trypan blue and Live/Dead 
Viability/Cytotoxicity Kit (Thermo Fisher Scientific) in a Countess II 
FL Automated Cell Counter (Thermo Fisher Scientific). Cell suspen-
sions with 75% or more viable cells were then diluted to a final con-
centration of ~1000 cells/μL.

2.3  |  Single-cell RNA sequencing library 
construction and sequencing

Single-cell gel bead-in emulsion and scRNA-seq library were gener-
ated using the Chromium controller (10X Genomics), Chromium Sin-
gle Cell 3′ Library and Gel Bead Kit and Chromium Single Cell 3′ Chip 
Kit (10X Genomics) according to the manufacturer's instructions. 
The quality of each final library was evaluated using a High Sensitiv-
ity chip in TapeStation (Agilent) and quantitated by real-time PCR 
in QuantStudio-7 (Thermo Fisher Scientific). The final libraries were 
then pooled for paired-end sequencing (2 × 100 bp) in NovaSeq-
6000 (Illumina) at an average depth of 50,000 raw reads per cell and 
200 million paired-end reads per sample.

2.4  |  Single-cell RNA sequencing data processing

The generated base call files were converted into FASTQ files using 
CellRanger version 4.0.0 (10X Genomics), then the reads were 
aligned to the GRCh38 reference transcriptome, and a filtered gene-
barcode matrix was generated. Seurat version 4.0.5 R toolkit11 was 
used for quality control and downstream analysis of our scRNA-seq 
data taking the gene-barcode matrix as input. Quality control, clus-
tering, visualization, and cell type annotation were carried out as de-
scribed in Supplementary Methods.

2.5  |  Identification of malignant cells

We devised a new method—the DP method—to identify malignant 
cells. As oral squamous cell carcinoma is epithelial cancer, it is ex-
pected that the malignant cells will reside solely within the epithelial 
cell portion and their gene expression pattern will be distinct from 
nonepithelial cells. Therefore, we calculated the Euclidean distance 
between the average expression levels of all genes expressed in no-
nepithelial cells of the tumor (which was used as the reference vec-
tor of expression level) and that of each epithelial cell of the tumor. 
The frequency distribution of the distance values was plotted, which 
invariably had an antimode possibly indicating two cell subsets—
epithelial malignant cells (with larger distances from the reference 
nonepithelial gene-expression vector) and the remaining epithelial 
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cells. The non-epithelial cells of the tumor are normal nonmalignant 
cells, even if they comprise of heterogeneous cell types. It is, there-
fore, expected that the gene expression levels of malignant cells, all 
of which are epithelial, will be grossly different from normal cells, 
and the remaining epithelial cells will be closer to normal cells. The 
presence of an antimode in the frequency distribution of distances 
among cells indicated the fullfilment of these expectations, identify-
ing malignant and nonmalignant epithelial cell subsets. To safeguard 
against possible misclassification, we discarded the malignant cells 
that belonged to the bottom 5% of the distribution of distances. Fur-
ther details are provided in Figure S1A.

We have also used the previously published method, InferCNV,12 
to identify malignant cells and compare the results with those ob-
tained with the DP method. Nonepithelial cells with minimum CNV 
scores were identified as a reference by the hierarchical clustering 
method. These reference cells were used to identify the CNV pat-
tern of epithelial cells. A cell with a CNV score >0.03 and CNV cor-
relation >0.4 was classified as malignant (Figure S1B,C).

2.6  |  Analysis of subclusters within malignant and  
nonmalignant cell clusters

After cell type identification, the malignant and nonmalignant 
cells (nonepithelial cells) were extracted using the “SubsetData” 
function of Seurat and clustered separately for further detailed 
analysis, using 15 PCs and resolution ranging from 0.5 to 1.0. 
Cell types were annotated as described earlier. We identified dif-
ferentially expressed genes and undertook gene set enrichment 
analysis using methods as described in Supplementary Methods. 
Putative single-cell trajectories were constructed using the R 
package Monocle (version 2.22.0).13 We also undertook a com-
parative analysis (see Supplementary Methods) between our 
dataset and previously published HNSCC datasets on patients 
from Western countries.

3  |  RESULTS

3.1  |  Characteristics of scRNA-seq data

We profiled 52,393 cells from primary tumors of 12 treatment-
naïve OSCC-GB patients, of which 28,186 cells were retained after 
quality control (mean number of cells per patient = 2557; Table S2). 
We evaluated the quality of our scRNA-seq data by comparing 
these data with bulk RNA-seq data previously published by us,10 
which revealed that the total number of expressed genes in each of 
the two datasets was nearly equal (Figure S2). The mean expression 
levels of genes commonly expressed (n = 14,716) in scRNA-seq and 
bulk RNA-seq data were highly correlated (r = 0.83, p < 2.2 × 10−16), 
reflective of high reliability of our methods of single-cell capture 
and analyses.

3.2  |  Cell type classification and broad 
characteristics of classified cells

Cell types were identified by annotation of 16 cell clusters as de-
scribed earlier (Figures 1B,C and S3, Tables S3 and S4). Among the 
epithelial cells, we identified malignant cells separately by DP and 
InferCNV methods (Figure S1A–C, Table S5). Malignant cells identi-
fied exclusively by the DP method had lower levels of expression of 
DNA repair and apoptotic genes than those identified as malignant 
exclusively by the InferCNV method (Figure S1D,E). These malignant 
cells also clustered separately from the nonmalignant epithelial cells 
(Figure S4) Hence, for further analysis, we used the 7386 cells classi-
fied as malignant by the DP method, the results of which were more 
robust than the ones obtained by InferCNV.

Nonmalignant nonepithelial cell clusters were cell type-specific 
and with low interindividual variation in gene expression pattern, 
although the proportions of specific cell types varied across pa-
tients (Figure 1D,E,H). Significantly (p < 0.00001) higher infiltration 
of immune cells (B, T, myeloid, and mast) compared to stromal cells 
(endothelial and fibroblast) was observed; this pattern was similar 
among patients with or without OSMF (Table  S6). The major cell 
populations in the TME were T cells and myeloid cells (Figure 1H). In 
contrast, subclusters of malignant cells were composed of cells from 
tumors either of multiple patients (Clusters 6, 8, 14, 15, 16; hence-
forth denoted as C6, C8, etc.), or predominantly of specific patients 
(Clusters 0, 1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13) (Figure 1F,G,I).

3.3  |  Patients with prior OSMF showed distinctive 
gene expression and cell profiles

We noted that some clusters of malignant cells were specific to patients 
with OSMF. These clusters also seemed to be affine in the space of the 
first two UMAPs (Figure 1F). We called these clusters of cells Group 1 
and the remaining as Group 2; in all, 17 clusters of malignant cells were 
identified. Clusters of cells in Group 1 were almost exclusively from 
three OSCC-GB patients (P8, P10, and P12) who had a concomitant 
presence of OSMF (Figure 1G, Table S1). Cell clusters of Group 2 com-
prised cells from all OSCC-GB patients, but predominantly from the 
nine patients in whom OSMF was absent. Mean expression levels of 
three genes (FOS, ATP1A1, and DUSP1) were significantly (p < 0.05) dif-
ferent between the two groups (Table 1), which also provided perfect 
discrimination between the two groups, as revealed by the probability 
of correct classification of patients (100% for each of the two groups) 
in stepwise discriminant analysis. These three genes are predominantly 
expressed (level of expression and proportion of cells expressing) in 
cells belonging to Group 2. However, cells of patients belonging to 
Group 1 also express these genes, although at a lower level and pro-
portion than cells in Group 2 (Figure S5, Table S7). It is noteworthy that 
most clusters of malignant cells were patient-specific. Only 5 of the 
17 clusters—C6, C8, C14, C15, and C16—comprised cells from multiple 
patients.
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3.4  |  Epithelial–mesenchymal transition in 
malignant cells

Cells in C6, C14, and C15 (multiple patient clusters) and C1 (patient-
specific cluster) were significantly enriched with the expression 
of genes in pathways known to be involved in EMT (Figure  2A, 
Tables S8–S12), including ECM–receptor interaction, focal adhesion, 
adherence junction, and regulation of actin cytoskeletons pathways. 
Cells in these clusters (40.61% of all malignant cells) were also en-
riched with the expression of EMT, invasion, and metastasis gene 
signatures (Figure  2A, Table  S13), suggesting that these cells un-
dergo EMT leading to tumor invasion and metastasis.

In addition to the cells in the four clusters with enriched ex-
pressions of EMT genes, cells in two other clusters, C0 and C3, 
were enriched with expression of SNAI2 (Figure S6), epithelial and 

mesenchymal markers and pEMT-related genes (Figure  2B–D, 
Table S13) indicative of pEMT state.7

3.5  |  Fetal and germ-like epithelial cells are 
abundant in OSCC-GB tumors

Multiple clusters of malignant cells, viz., C8 and C16 (contributed by 
cells from multiple patients; 6.9% of malignant cells) and C7, C9, C10, 
C12, and C13 (patient-specific; 31.7% of cells) expressed genes that are 
fetal epithelial cell-specific in nature, including fetal squamous epithe-
lial cells, fetal lung squamous epithelial cells and fetal stomach squa-
mous epithelial cells (Figure 2F, Table S14). The expressions of cancer/
testis genes are usually restricted to the germ cells. However, in many 
cancers, these genes are reactivated and expressed in tumors.14 Cells in 
C2, C4, C5, and C11 (29.2% of malignant cells)—not enriched with EMT/
pEMT or fetal epithelial signature—showed expression of cancer-testis 
genes, including CTAG2, MAGEA4, MAGEA1, MAGEA10, and MAGEB2, 
indicative of germ-like epithelial cells (Figure 2F, Tables S8–S12).

3.6  |  Relationship between different malignant 
cell states

Pseudotime trajectory analysis revealed four branches (denoted as 
B1, B2, B3, and B4). B1 (at the beginning of the trajectory) was popu-
lated by cells with enriched expression of pEMT signature while B4 
(at one end of the trajectory) was by cells with enriched expression 
of fetal cell type signature (Figure 2H,I). Cells enriched with expres-
sion of fetal epithelial cell type signatures and cancer-testis genes 
were found to show lower expression of differentiation signature 
than the remaining malignant cells (Figure 2E). Of the 12 patients, 
6 patients (P3, P5, P6, P13, P14, and P15) were enriched with cells 
expressing fetal cell type signatures and 5 patients (P1, P2, P9, P10, 
and P12) with cells expressing pEMT signatures; P8 was enriched 
with cells expressing of cancer testis genes (Figure 2G). The mean 
expression levels of fetal cell type signature and pEMT signature 
genes in cells across patients were negatively correlated except in 
P8 (range of correlation coefficient = −0.11 to −0.40) (Table  S15). 
Such enrichment of cells expressing fetal cell type signature was also 
observed in previous HNSCC single-cell studies7,9 (Figure S7). The 

F I G U R E  1  Cell type classification in oral squamous cell carcinoma of the gingivo-buccal region (OSCC-GB). (A) Workflow for generating 
single-cell RNA sequencing profiles of OSCC-GB. (B) Clustering of 28,186 cells from 12 OSCC-GB patients identified 16 clusters. UMAP plot 
showing seven major cell types identified (T cells, B cells, myeloid, endothelial cells, epithelial malignant cells, fibroblasts, and mast cells). Pie 
chart showing the proportion of cells from each patient for each cell types. Each dot represents a cell. UMAP is colored by cell types and 
pie charts are colored by patient identity. (C) Dot plot showing expression of cell type representative marker genes. Cluster identity is on 
the y-axis and gene names are on the x-axis; color intensity represents the average gene expression level. (D–G) Clustering of (D, E) 20,800 
nonmalignant cells and (F, G) 7386 malignant cells of OSCC-GB patients. UMAP plot showing (D) nonmalignant cells and (F) malignant cells, 
colored by clusters. UMAP plot showing identified (E) nonmalignant cells and (G) malignant cells, colored by patients. *The patient has oral 
submucous fibrosis. (H) Proportions of cell types across OSCC-GB patients are arranged by the decreasing proportion of malignant cells. (I) 
Proportions of malignant cells belonging to the various clusters derived from different patients.

TA B L E  1  Discriminant analysis of clusters of malignant cells, 
designated Group1 and Group 2.

(A) Tests of equality of group means between Group 1 and Group 2

Wilks' L F df1 df2 p value

SNHG25 0.904 1.065 1 10 0.3260

FOS 0.262 28.123 1 10 <0.0001

RPS23 0.893 1.193 1 10 0.3000

ATP1A1 0.592 6.901 1 10 0.0250

DUSP1 0.671 4.908 1 10 0.0490

PLCG2 0.841 1.895 1 10 0.1990

KRT1 0.801 2.485 1 10 0.1460

(B) Classification resultsa between Group 1 and Group 2

Group

Predicted group 
membership

Total1 2

Original group membership

Count 1 3.0 0.0 3.0

2 0.0 9.0 9.0

% 1 100.0 0.0 100.0

2 0.0 100.0 100.0

a100.0% of original grouped cases are correctly classified.
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mean expression levels of fetal cell type signature and pEMT signa-
ture genes in cells across patients were also negatively correlated in 
80% and 75% of patients in GSE103322 and GSE164690 datasets, 
respectively (Table S15).

3.7  |  Malignant cells abundantly express genes of 
immune-related pathways

Malignant cells, enriched with expression of immune-related path-
way genes (31.7% of malignant cells) known to be involved in antitu-
mor immune response, were abundant in C6, C14, C15, and C16 (cells 
from multiple patients) and C1 and C10 (patient-specific clusters). 
In particular, we detected cells enriched with expression of antigen 
processing and presentation pathway genes (C1, C6, C10, C14, C15, 
and C16), cytosolic DNA sensing pathway (C6), cytokine–cytokine 
receptor interaction (C6), NOD-like receptor signaling pathway (C6, 
C16), Toll-like receptor signaling pathway (C1, C6), and chemokine 
signaling pathway (C6) (Tables S8–S12).

3.8  |  T cells are abundant in tumors, with diverse 
subtypes and levels of infiltration

T cells accounted for approximately 36.4% of all cells in the OSCC-
GB tumors. Variability in the proportion of infiltrated T cell popu-
lation was observed across patients (Figure 3A). The proportion of 
T cells was very small (approximately 5%) in two patients, P12 and 
P13, relative to the total number of cells sampled from the tumor, in-
dicative of low T cell infiltration. Furthermore, the T cell population 
was transcriptionally heterogeneous as indicated by the formation 
of 10 subclusters (Figure 3B,C,H,I). The major clusters consisted of 
Tregs, CD4+ T cells, CD8+ T cells, DN T cells, and NK T cells. Cells in 
C4 were predominantly Tregs, as evidenced by high levels of expres-
sion of Treg-specific markers, FOXP3 and IL2RA. C6 was enriched 
with cells expressing high levels of NK cell marker (NCAM1) and killer 
cell lectin-like receptor D1 (KLRD1) (Figure  3C), thus representing 
NK T cells. Clusters C2 and C9 were enriched with CD4− and CD8− T 
cells (Figure  3B,C,H). In concordance with previous reports,15 this 
T cell subpopulation lacked expression of FOXP3 as well as natural 
killer cell marker (NCAM1), thus representing DN T cells (CD4− CD8− 
NCAM1−). These DN T cells also showed high expression of PLCG2 

which is known to play an important role in T cell receptor signal 
transduction and T cell selection16 (Figure 3D). Pseudotime trajec-
tory analysis revealed six branches, and branch B1 (at the beginning 
of the trajectory) was populated by DN T cells (Figure 3F,G), thus 
suggesting that these DN T cells differentiate into CD4+ and CD8+ 
T cells in concordance with the role of DN T cells in T cell devel-
opment and differentiation.17,18 A higher proportion of CD4− CD8− 
PLCG2+ T cells was observed in our study compared to previous 
HNSCC studies (Figure S8A–F). Clustering the T cells from all three 
datasets revealed a distinct cluster (C5) with enriched DN PLCG2+ T 
cells. This cluster was dominated by DN PLCG2+ T cells from our data 
(Figure S8G–L), thus suggesting a distinct T cell subtype abundance 
in OSCC-GB.

Cells in C5 (CD8+ and CD4+ T cells) and C9 (DN T cells) expressed 
high levels of cell proliferation markers MKI67 and TOP2A, repre-
senting proliferative T cells. C0, C7, and C8 showed enrichment of 
cells expressing high levels of naïve T cell markers ILR7 and CCR7, 
representing naïve T cells. C1 showed enrichment of cells express-
ing high levels of cytotoxicity-related genes (GZMA, GZMB, GZMK, 
PRF1, and NKG7), representing CD8+ cytotoxic T cells. Cells in C3 
(CD8+ T cells) expressed cytotoxicity-related genes (GZMA, GZMB, 
GZMK, PRF1, and NKG7) and CTLA4, LAG3, PDCD1 (PD1), HAVCR2 
(TIM3), TIGIT, and LAYN, suggestive of cytotoxic and exhausted CD8+ 
T cells19 (Figure 3B,H,I). C3 and C8 showed enrichment of cells ex-
pressing high levels of CXCL13 (Figure 3E). P9, P5, and P15 were en-
riched with cytotoxic T cells whereas P8, P1, and P2 were enriched 
with exhausted T cells (Figure 3J, Table S16). P1, P3, and P10 were 
enriched with both cytotoxic and exhausted T cells.

3.9  |  Plasma and memory cells are dominant B 
cell subtypes

B cells accounted for approximately 7.5% of all the cell popula-
tions and consisted of nine subclusters (Figure  S9). Variation in 
the proportion of B cells across tumors was observed. Plasma B 
cells were represented by C0, C3, C6, and C8, which expressed 
CD38 and CD27 but did not express MS4A1/CD20 or CD24. C1, 
C2, C4, C5, and C7 comprised memory B cells that expressed 
MS4A1/CD20, CD19, and CD27 but did not express CD38. Addi-
tionally, C6 was found to be enriched with cells expressing high 
levels of CCL5, interleukins including IL32 and IL7R, and GNLY, 

F I G U R E  2  Malignant cell state heterogeneity in oral squamous cell carcinoma of the gingivo-buccal region (OSCC-GB): partial epithelial–
mesenchymal transition (pEMT) and fetal and germ-like cell state in OSCC-GB tumors. (A) Dot plot of the average expression of Kyoto 
Encyclopedia of Genes and Genomes (KEGG) ECM receptor interaction, KEGG focal adhesion, epithelial–mesenchymal transition (EMT), 
metastasis, and invasion gene signatures across clusters (gene signatures on the x-axis; cluster identity on the y-axis); color represents the 
average gene expression level. (B, C) Violin plots showing expression of (B) VIM and (C) KRT5 across clusters. Cluster identity on the x-axis; 
expression level on the y-axis. (D) The box plot shows the average expression of pEMT-associated genes across clusters. Cluster identity 
are on the x-axis; average expression levels are on the y-axis. (E) Violin plot showing expression of differentiation gene signature across 
clusters. Cluster identity on the x-axis; expression level on the y-axis. (F, G) Dot plots of the average expression of pEMT and fetal cell type 
signatures and cancer testis genes across (F) clusters and (G) patients (gene signatures on the x-axis; cluster/patient identity on the y-axis); 
color represents the average gene expression level. *Clusters containing cells from multiple patients. (H, I) Pseudotime analysis exploring the 
development trajectories of malignant cells. Each dot corresponds to a single cell, colored by (H) pseudotime and (I) cluster.
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indicating their cytotoxic potential. Cells in C0 showed high ex-
pression of immunoglobulin genes including IGKC, IGHG2, IGLC3, 
IGLC2, and JCHAIN. C8 was enriched with cells expressing MZB1, 
suggestive of a marginal zone (MZ) B cell subpopulation. Cells ex-
pressing FOXP1 and YBX3, critical for early B cell development and 
differentiation, were enriched in C7.

3.10  |  Among myeloid cell subtypes, M1 
macrophages are the most common

The myeloid cell population (14% of the total cell population) was 
represented by 13 major clusters mostly consisting of macrophages 
(Clusters 0, 3, 4, 5, 6, and 10) expressing CD14, CD68, and FCGR3A 
(CD16) (Figure 4A,B,E). C1 was enriched with cells expressing CD1C 
and CLEC10A, indicative of myeloid dendritic cells, whereas C2 and 
C12 were enriched with cells expressing CLEC4C and IL3RA, sug-
gestive of plasmacytoid dendritic cells.20 Macrophages showed el-
evated expression of pro-inflammatory-related genes (IL1A, IL1B, 
IL6, and TNF) compared to anti-inflammatory-related genes (IL10 and 
TGFB1) (Figure 4C,D). Cells expressing APOBEC3A, which is involved 
in promoting pro-inflammatory M1 macrophage polarization,21 were 
enriched in C5. Cells in C0 and C4 were enriched with the expres-
sion of LGMN that was earlier reported to be involved in inducing M2 
phenotype.22 Cells expressing FABP5, a marker for lipid-rich foamy 
macrophages,23 were enriched in C3, suggesting that they could be 
lipid-laden foam macrophages. In concordance with a previous re-
port24 there was a distinct subcluster (C6) with enrichment of cells 
expressing the T cell marker gene (CD3D) and TCR marker genes 
TRAC (Figure 4A,E), suggesting that they could be CD3+ TCR+ mac-
rophage cell populations.

3.11  |  Macrophages in tumors exhibit an 
intermediate M1–M2 polarization state

Lineage relationships among the macrophage subsets were inferred 
using pseudotime trajectory analysis. The trajectory consisted of 
four decision points (Figure  4F,G). Cells started with an M1 phe-
notype expressing M1 marker genes (CD86) and traveled through 
branch points one to four whereas cells with an M2 phenotype 
expressing M2 marker genes (CD163) traveled through branch 
points two to four (Figure  4H,I). These features indicate that the 

macrophages in OSCC-GB tumors analyzed in our study showed an 
intermediate M1–M2 macrophage polarization state. We also ob-
served that macrophages showed elevated expression of pro- and 
anti-inflammatory-related genes and M1 and M2 marker genes in 
previous HNSCC datasets (Figures S10 and S11).

3.12  |  Endothelial cell subtypes that perform 
diverse cellular functions are present

Endothelial cells accounted for 3% of the total cell population and 
consisted of nine major clusters (Figure S12). C2 was enriched with 
cells expressing ESM1, an endothelial tip cell-related gene.25 These 
cells were also enriched with CA2 and COL13A1 expression. CA2 
expression supports endothelial cell survival under lactic acidosis 
in the tumor ecosystem26 while COL13A1 expression is involved 
in cell–matrix, and cell–cell adhesion. C4 was a distinct cluster en-
riched with cells expressing PDPN, PROX1, and IGF1. PDPN was 
earlier reported to be expressed in lymphatic endothelium27 and 
PROX1 is widely used as a marker for lymphatic endothelial cells.28 
C5 was enriched with cells expressing SEMA3G and SULF1, previ-
ously reported as aiding angiogenesis.29 C0 and C6 were enriched 
with cells expressing ACKR1,30 suggestive of being enriched with 
venous endothelial cells. These cells also showed high expression 
of the vascular cell adhesion molecule 1 (VCAM1) and chemokine 
CCL14. C7 was enriched with cells expressing PDGFRB, a pericyte 
marker,31 suggesting that these cells were pericytes. As reported 
earlier,32 these cells expressed genes encoding collagens I, III, and VI 
(COL1A1, COL3A1, and COL6A3, respectively). C8 was enriched with 
cells expressing proliferation markers MKI67 and TOP2A, represent-
ing proliferative endothelial cells.

3.13  |  Two major groups of fibroblasts found in 
OSCC-GB

Subclustering of the fibroblast cell population (5% of total cells) re-
vealed two major groups, with specific characteristics as reported 
earlier7,33 (Figures 5 and S13). The first group consisted of cells (C0, C3, 
and C7) with an enriched expression of ECM-related genes, including 
the fibroblast activation protein (FAP), podoplanin (PDPN), and MMP-
related genes (MMP2, MMP1, and MMP3) (Figure  5A,B,D–G), thus, 
representing CAFs. The second group consists of cells (C1, C4, C5, 

F I G U R E  3  T cell state heterogeneity in oral squamous cell carcinoma of the gingivo-buccal region (OSCC-GB) tumors. (A) Fraction of T 
cells among OSCC-GB patients. Patient identity on the y-axis. Colors indicate groups (purple, all OSCC-GB; green, Group 1; blue, Group 2). 
(B) UMAP plot of expression profiles of T cells from 12 patients, UMAP is colored by cluster. (C) Feature plot showing expression patterns of 
T cell marker genes. Each cell is denoted by a dot. (D, E) Violin plots showing expression of (D) PLCG2 and (E) CXCL13 across clusters. Cluster 
identity on the x-axis; expression levels on the y-axis. (F, G) Pseudotime analysis exploring the development trajectories of T cells. Each dot 
corresponds to a single cell, colored by (F) pseudotime and (G) cluster. (H) Heatmap showing expression levels of T cell state-specific genes 
across clusters. Patients and cluster identity are on the x-axis; gene names on the y-axis. (I, J) Dot plots showing the average expression level 
of T cell state-specific genes across (I) clusters and (J) patients. Cluster/patient identity are on the y-axis. Color represents the average gene 
expression level.
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and C6) with an enriched expression of alpha-smooth muscle actin 
(ACTA2) and myosin light chain proteins (MYLK) (Figure 5A,C,E,F,H), 
thus representing myCAFs. We also observed these two major fibro-
blast populations (CAF and myCAFs) in GSE103322 and GSE164690 
datasets (Figures S14 and S15). Interestingly, we found that in C0, a 
large proportion (>60%) of fibroblasts were from OSMF-associated 
tumors and OSCC-associated OSMF tumors show a higher propor-
tion of CAF than non-OSMF-associated tumors (Figure 5A,I,J), thus 
suggestive of the distinct role of CAF in OSMF-associated tumors. 
In concordance with a previous report,9 C7 cells were characterized 
by the expression of elastic fibroblasts markers (MFAP4, MFAP5, and 
FBLN1), representing the elastic fibroblasts (Figure 5D).

3.14  |  Coexpression states in cells expressing 
driver genes of OSCC-GB

We earlier identified genes that are significantly and frequently 
mutated specifically in OSCC-GB tumors (ARID2, MLL4, KMT2B, 
USP9X, UNC13C, and TRPM3), genes with recurrent amplification 
(DROSHA, MECOM, YAP1, and NFIB) and DDX3X, a gene with ho-
mozygous deletion.34 We found significant upregulation of VMP1 
and NEAT1 in cells that express ARID2, KMT2B, USP9X, YAP1, NFIB, 
and DDX3X compared to the nonexpressing cells (Table  S17) in 
our samples. Significant upregulation of MALAT1 in cells express-
ing ARID2, KMT2B, YAP1, and NFIB as well as upregulation of F3 in 

F I G U R E  4  Myeloid cell population in oral squamous cell carcinoma of the gingivo-buccal region. (A) UMAP plot of expression profiles of 
myeloid cells. Each cell is denoted by a dot. UMAP is colored by cluster. (B-D) Feature plots showing expression levels of (B) macrophages 
and dendritic cell marker genes, (C) pro-inflammatory genes, and (D) anti-inflammatory genes across clusters. Each cell is denoted by a 
dot and the color intensity represents the gene expression level. (E) Dot plot showing distribution and expression of top two differentially 
expressed genes across clusters; color intensity represents the average gene expression level. Genes are on the x-axis; cluster identity on the 
y-axis. (F–I) Pseudotime analysis of macrophages shows four decision points. Each dot corresponds to a single cell, colored by (F) pseudotime 
and (G) cluster and expression of (H) M1 marker (CD86) and (I) M2 marker (CD163) genes.
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F I G U R E  5  Cancer-associated fibroblast (CAF) and myofibroblast (myCAF) in oral squamous cell carcinoma of the gingivo-buccal region 
(OSCC-GB). (A) UMAP plot of the expression profiles of fibroblast cells from 12 OSCC-GB tumors. Each cell is denoted by a dot. UMAP is 
colored by cluster. (B, C) Feature plots showing distribution and expression of fibroblast marker genes across clusters. Each cell is denoted 
by a dot and color represents the average gene expression level. (D) Dot plot showing distribution and expression of top two differentially 
expressed genes across clusters. Color represents the average gene expression level. Genes are on the x-axis; cluster identity on the y-axis. 
(E–H) Pseudotime analysis of fibroblasts. Each dot corresponds to a single cell, colored by (E) pseudotime and (F) cluster and expression 
of (G) CAF and (H) myCAF marker genes. (I, J) Column graphs showing fractions of (I) fibroblast cells from OSCC-GB and oral submucous 
fibrosis (OSMF)-associated OSCC-GB tumors across clusters and (J) CAF and myCAF populations within OSCC-GB and OSMF-associated 
OSCC-GB tumors. Cluster identity/groups are on the x-axis; cell fraction on the y-axis.
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cells expressing ARID2, USP9X, YAP1, and NFIB, compared to the 
respective nonexpressing cells, were also observed. LAMA3 was 
significantly upregulated in cells that express ARID2, YAP1, and 
NFIB, while PLCG2 was significantly upregulated in cells expressing 
KMT2B and DDX3X. MACF1 was significantly upregulated in cells 
expressing ARID2 and KMT2B while CDK6 was found to be signifi-
cantly upregulated in cells that expressed DROSHA and NFIB com-
pared to the nonexpressing cells.

3.15  |  Comparison of scRNA-seq data with bulk 
transcriptomic data

Our scRNA-seq analysis revealed that the upregulation of immune 
checkpoint genes previously identified10 in our bulk RNA sequenc-
ing data, CD274, CD80 and IDO1, were predominately present in 
specific myeloid cell populations (Figure S16). Of 13 clusters of the 
myeloid cell population, C5, C7, C10, and C11 showed prominent 
expression of these genes, highlighting their multifaceted functions 
within the myeloid cell compartments. Additionally, consistent with 
our bulk data, we observed significant enrichments of pathways 
such as ECM-receptor interaction and focal adhesion (Figure 2A) in 
OSCC-GB in specific malignant cell clusters C0, C1, C3, C6, C14, 
and C15.

4  |  DISCUSSION

In the oral cavity, OSCC-GB is the most common form of cancer. 
It shows distinctive gene expression profiles compared to that of 
other oral cavity cancers, for example, tongue cancer. Patients dis-
play considerable clinical heterogeneity and variable response to 
treatment, which is likely due to the heterogeneity of cell types and 
gene expression states within the tumors.10 Such heterogeneity is 
difficult, if not impossible, to decipher from bulk genomic analyses of 
tumor.35 We, therefore, used scRNA-seq and novel statistical meth-
ods of data analysis (notably, to identify malignant cells that per-
formed more accurately than the commonly used InferCNV method) 
for an unbiased characterization—globally, the first report on OSCC-
GB—of the cell type and cell state diversity in the tumor of individual 
OSCC-GB patients.

Consistent with previous studies7,36 we found that nonmalignant 
cells clustered by cell type. Most, but not all, of the malignant cell 
clusters (12 of 17 clusters of malignant cells) were, however, patient-
specific. This feature reflects that some transcriptional programs of 
malignant cells are shared while others are unique to individual pa-
tients, possibly because sets of cancer-associated somatic alterations 
are heterogeneous across patients. Our finding differs from earlier 
reports where all malignant cell clusters were patient-specific.7,35

We found two major subgroups of malignant cells; one subgroup 
was specific to tumors that were associated with OSMF, whereas 
the other was not associated with this precancerous lesion. Expres-
sion of FOS, ATP1A1, and DUSP1 provided perfect discrimination 

between these two groups. This finding is suggestive of the exis-
tence of malignant cells unique to oral tumors with associated sub-
mucous fibrosis, indicating that tumors in these patients might have 
developed from their precancerous lesions.

An interesting finding in our study was the presence of fetal and 
germ-like epithelial malignant cells. This agrees with earlier reports 
of tumor cells recapitulating signatures of early developmental pro-
grams including embryonic and fetal development.37 Epithelial tis-
sues underwent fetal-like cellular reprogramming and adopted an 
undifferentiated fetal-like state.38 In our samples, the subpopulation 
of malignant cells expressing these fetal gene signatures and cancer-
testis genes also exhibited reduced expression of differentiation sig-
natures indicative of undifferentiated fetal-like and germ-like states. 
An earlier report suggests that in hepatocellular carcinoma, a pop-
ulation of monocyte-derived macrophages and PLVAP endothelial 
cells are reprogrammed to acquire a fetal-like phenotype.39 How-
ever, this is the first report of such fetal-like states in malignant cells, 
which seems to be a dominant cell state in OSCC-GB.

Epithelial–mesenchymal transition, an important hallmark of can-
cer, is a continuous process by which cells with epithelial phenotype 
acquire the mesenchymal phenotype. In concordance with the role 
of EMT in tumor invasion and metastasis,40 a subpopulation of malig-
nant cells in OSCC-GB with enriched EMT, invasion, and metastasis 
signatures could contribute to tumor invasion and metastasis through 
EMT. Recent evidence indicates that malignant cells can acquire a hy-
brid and transient state called pEMT.41 Cells expressing EMT signa-
tures also expressed both the epithelial and mesenchymal markers 
but did not express most of the EMT transcription factors except 
SNAI2 in concordance with previous HNSCC scRNA-seq studies.7,42 
SNAI2 overexpression was found to be correlated with pEMT in non-
small-cell lung cancer and HNSCC,7,42 thus indicative of the existence 
of a subpopulation of malignant cells being in pEMT state. In this sub-
population, genes of the ECM-receptor and focal adhesion pathways 
were highly expressed and were also highly correlated with the levels 
of expression of the pEMT genes. These findings suggest the involve-
ment of ECM-receptor and focal adhesion pathways in pEMT in OS-
CC-GB, as previously reported in some other cancers.43–45

Even though cell populations of patients with prior OSMF clus-
tered separately from those without, we identified four small cell 
populations that were shared between the two patient types. Of 
these, two were in the pEMT state while the remaining two were in 
the fetal-like state, indicative of pEMT and fetal cellular reprogram-
ming, respectively. The pEMT and fetal-like states were mutually ex-
clusive in our dataset. Pseudotime trajectory analysis suggested that 
the cells in the pEMT state are tumor-initiating and transitioning to 
cells in the fetal-like state. Thus, these findings indicate the impor-
tance of pEMT and fetal cellular reprogramming in OSCC-GB. We 
found evidence of the existence of such a fetal cell type signature 
in HNSCC datasets from other regions of the world,7,9 suggesting 
that these cell states are present and largely mutually exclusive in 
malignant cells in HNSCC.

Double negative T cell infiltration in other solid tumor types such 
as non-small-cell lung cancer, liver, glioma, and pancreatic tumors 
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has been reported.46–48 Double negative T cells have strong anti-
tumor effects49 known to inhibit cell proliferation and invasion in 
human cancer cells.50 The DN T cells observed in our patients likely 
play an important role in antitumor activity in OSCC-GB. Higher 
abundance of CD4− CD8− PLCG2+ (DN PLCG2+) T cells in our data 
compared to previous HNSCC studies,7,9 suggest a predominance of 
this T cell subtype in OSCC-GB.

We found that the myeloid cells were the second largest im-
mune cell population in the OSCC-GB tumor ecosystem, under-
lining the importance of this cell-type in OSCC-GB pathogenesis. 
The coexistence of both M1 and M2 macrophages observed in our 
patients suggested an intermediate M1–M2 macrophage polar-
ization, which has been recently found in other cancer types.51,52 
These macrophages exhibited both pro-inflammatory and pro-
tumorigenic characteristics as evidenced by the expression of 
both cytotoxic and anti-inflammatory cytokines. This simultane-
ous expression of M1 and M2 markers in the macrophage popula-
tion is indicative of a transition in which the TME becomes more 
conducive to the proliferation of malignant cells. A unique pop-
ulation of macrophages (CD3+ TCR+ macrophages) was found to 
be present in almost all patients, underscoring its importance in 
OSCC-GB tumorigenesis.

Our data show two major groups of fibroblasts of OSCC-GB 
patients: CAFs and myCAFs. As reported earlier,53 the myofibro-
blast population is high in OSMF leading to severe fibrosis. How-
ever, we found ~80% of fibroblasts in OSMF-associated OSCC-GB 
were CAFs. These CAFs were enriched with the expression of ECM-
related genes indicative of ECM remodeling  phenotype. This sug-
gests a phenotype shift in the stromal population, which might have 
a link with OSMF-associated OSCC-GB pathogenesis.

The reliability of our scRNA-seq data is underscored by the 
high concordance between the single-cell data and our previously 
published bulk RNA sequencing data. Additionally, we found that 
genes that predominate in the bulk data are mostly contributed by 
specific subsets of the cell population. In particular, cells of my-
eloid origin are instrumental in immune evasion in OSCC-GB. This 
further highlights the dynamic nature of the TME that regulates 
immune response within the TME, facilitating tumor growth and 
survival. Our single-cell analysis has provided enhanced insights 
over those obtained from the results of bulk sequencing analysis. 
From scRNA-seq data, we identified genes whose expressions in 
the malignant cells are associated with tumor progression and poor 
prognosis (NEAT1, MALT1, etc.) which express some of the driver 
genes of OSCC-GB identified by us earlier using the bulk sequenc-
ing data.

In summary, OSCC-GB-associated OSMF tumors show an ex-
pression profile distinct from tumors not associated with OSMF. Oral 
squamous cell carcinoma of the gingivo-buccal region with concom-
itant presence of OSMF is likely to have developed from the precan-
cerous lesion. This inference is also supported by the fact that the 
mean age at onset of OSCC-GB in patients with OSMF (44.7 years; 
range, 36–60 years) is over 10 years earlier than patients without 
OSMF (59.2 years; range, 46–76 years). Fetal cellular reprogramming 

and pEMT appear to play major roles in OSCC-GB tumorigenesis. 
Double negative PLCG2+ T cells and intermediate M1–M2 macro-
phage polarization were also detected in this cancer type. Our study 
presents the first comprehensive analysis of the tumor ecosystem 
of OSCC-GB. The results of the single-cell transcriptomic analy-
sis presented here, in addition to being consistent with our earlier 
findings obtained from bulk RNA sequencing data, have provided 
deep insights into the nature and extent of cellular heterogeneity, 
evidenced by the diversity of cell types and cell states, as well as 
helped identify unique gene expression programs that could not be 
obtained from bulk-cell analysis.
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