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Abstract

Background Perinatal outcomes vary for women with gestational diabetes mellitus (GDM).

The precise factors beyond glycemic status that may refine GDM diagnosis remain unclear.

We conducted a systematic review and meta-analysis of potential precision markers for

GDM.

Methods Systematic literature searches were performed in PubMed and EMBASE from

inception to March 2022 for studies comparing perinatal outcomes among women with

GDM. We searched for precision markers in the following categories: maternal anthropo-

metrics, clinical/sociocultural factors, non-glycemic biochemical markers, genetics/genomics

or other -omics, and fetal biometry. We conducted post-hoc meta-analyses of a subset of

studies with data on the association of maternal body mass index (BMI, kg/m2) with off-

spring macrosomia or large-for-gestational age (LGA).

Results A total of 5905 titles/abstracts were screened, 775 full-texts reviewed, and

137 studies synthesized. Maternal anthropometrics were the most frequent risk marker.

Meta-analysis demonstrated that women with GDM and overweight/obesity vs. GDM with

normal range BMI are at higher risk of offspring macrosomia (13 studies [n= 28,763]; odds

ratio [OR] 2.65; 95% Confidence Interval [CI] 1.91, 3.68), and LGA (10 studies [n= 20,070];

OR 2.23; 95% CI 2.00, 2.49). Lipids and insulin resistance/secretion indices were the most

studied non-glycemic biochemical markers, with increased triglycerides and insulin resistance

generally associated with greater risk of offspring macrosomia or LGA. Studies evaluating

other markers had inconsistent findings as to whether they could be used as precision

markers.

Conclusions Maternal overweight/obesity is associated with greater risk of offspring mac-

rosomia or LGA in women with GDM. Pregnancy insulin resistance or hypertriglyceridemia

may be useful in GDM risk stratification. Future studies examining non-glycemic biochemical,

genetic, other -omic, or sociocultural precision markers among women with GDM are

warranted.
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Plain language summary
Gestational Diabetes (GDM) is high

blood sugar that develops during

pregnancy and may cause complica-

tions. GDM diagnosis is centered on

blood sugar levels. Despite everyone

receiving standard treatment, the

clinical outcomes may vary from one

individual to another. This indicates a

need to identify factors that may help

GDM diagnosis and result in

improved classification of those at

greatest risk for complications. Here,

we systematically analyzed all pub-

lished evidence for potential markers

that could identify those with GDM

who have greater risk of complica-

tions. We find that high maternal

weight is a risk factor for offspring

born larger for their gestational age.

Other promising markers were iden-

tified, but further analysis is needed

before they can be applied in the

clinic.
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Gestational diabetes (GDM) is the most common metabolic
complication of pregnancy with an increasing prevalence
consistent with the concomitant global increase in obesity

and diabetes1. GDM traditionally refers to abnormal glucose
tolerance with onset or first recognition during pregnancy, typi-
cally diagnosed between 24 and 28 weeks’ gestation2. It is asso-
ciated with maternal and neonatal complications such as
hypertensive disorders of pregnancy, offspring large-for-
gestational-age (LGA), macrosomia, birth trauma, neonatal
respiratory distress, and neonatal hypoglycemia3.

Although treating hyperglycemia lowers the risk of maternal
and neonatal morbidity, some women with GDM likely would
not have had perinatal complications even if left untreated4,5,
while others still go on to develop complications despite adequate
glycemic control6. Maternal GDM with obesity (BMI ≥ 30 kg/m2)
vs. GDM without obesity is associated with a 2- to 4-fold greater
risk of macrosomia7–10. Recently, differences in perinatal out-
comes based on physiologic subtypes of GDM (e.g., insulin-
resistant vs. insulin secretion deficient) have been described11–14.
While the diagnostic criteria for GDM detect dysregulation of
glucose metabolism, GDM is increasingly recognized as a het-
erogeneous condition, which may include sub-phenotypes6,15. As
such, metabolic variations, beyond glycemic measures among
women with GDM may modify its impact on maternal and fetal
health16.

Several upstream determinants of metabolic health are con-
sidered risk factors for GDM and may also be markers by which
to stratify risk within the population of women who develop
GDM. These risk factors include genetics, higher BMI, prior
medical and obstetric history, and socio-demographic factors
such as race/ethnicity which may capture differences in societal
and environmental factors17–19. Prior systematic reviews have
focused on the prediction or prevention of GDM20–23, have used
a normoglycemic group for comparison24,25, or have focused on
glycemic markers as the sub-phenotyping variable among women
with GDM26. Despite great interest in risk stratification of women
with GDM, efforts to systematically review studies evaluating a
spectrum of social, physiological, and biological non-glycemic
factors that could identify sub-phenotypes within GDM are
lacking.

The Precision Medicine in Diabetes Initiative (PMDI) was
established in 2018 by the American Diabetes Association (ADA)
in partnership with the European Association for the Study of
Diabetes (EASD). The ADA/EASD PMDI includes global thought
leaders in precision diabetes medicine who are working to address
the burgeoning need for better diabetes prevention and care
through precision medicine27. As part of the ADA/EASD PMDI
effort to comprehensively evaluate the evidence for precision
diabetes medicine and inform the 2nd International Consensus
Report on Precision Diabetes Medicine28, we aimed to review the
existing literature to investigate GDM sub-phenotypes and het-
erogeneity in association with adverse perinatal outcomes. This
effort was undertaken to aid in determining whether factors other
than traditional glycemic measures could refine the diagnosis of
GDM. The following categories of precision markers were
included: maternal anthropometrics, clinical or socio-cultural
factors, diet and behaviors, non-glycemic biochemical markers,
genetics/genomics or other -omics, and fetal biometry.

Our systematic review of 137 studies and 432,825 women with
GDM demonstrates that perinatal outcomes vary substantially
related to factors that extend beyond glycemia. Prior research has
largely focused on the impact of pre-pregnancy overweight or
obesity on adverse perinatal outcomes. In a meta-analysis of
10 studies of LGA and 13 studies of macrosomia, we found that
the co-occurrence of pre-pregnancy overweight/obesity with
GDM was associated with a 2 to 3-fold greater risk of LGA or

macrosomia. Furthermore, independent of maternal BMI, those
with higher triglycerides or insulin resistance, may be at higher
risk of having an offspring born LGA or with macrosomia. Areas
that currently require more evidence include investigations of
genetics, metabolites, and other novel biomarkers, as well as
integration of social, environmental, and behavioral factors.
Overall, our systematic review identified critical gaps and future
research areas for precision GDM diagnosis and highlighted
promising biomarkers that may open the door to non-glycemic
treatment targets in GDM.

Methods
A protocol for this review was registered at PROSPERO
(CRD42022316260) on 11 March 2022. Nota bene, as part of the
diabetes scientific community, ADA/EASD PDMI is committed
to using inclusive language, especially in relation to gender. We
choose to use gendered terminology throughout the article fol-
lowing the rationale for using female-sexed language in studies of
maternal and child health29. Additionally, most of the original
studies reviewed used “women” as their terminology to describe
their population, as GDM per definition is a pregnancy compli-
cation, which can only occur in individuals who are assigned
female sex at birth. In this review, we use the term “women”
throughout, but acknowledge that not all individuals who
experienced a pregnancy may self-identify as women.

Data sources and search strategy. Systematic literature searches
were performed in PubMed (https://pubmed.ncbi.nlm.nih.gov/)
and EMBASE (https://www.embase.com) databases from their
inception to March 2022. These databases were chosen because
both can be searched using multiple retrieval approaches such as
text word terms in relevant fields and standardized subject terms
(controlled vocabulary). Searches were limited to databases that
could return results for a combination of these two approaches, a
decision informed by the mandatory requirement of the
Cochrane Review quality assurance strategy. We searched for
observational studies (cohort and case–control) and clinical trials
that compared outcomes among women with GDM. The fol-
lowing categories of precision markers were included in the
current search: maternal anthropometrics, clinical or socio-
cultural factors (i.e., age, race/ethnicity, country of origin), diet
and behaviors, non-glycemic biochemical markers (e.g., lipids,
insulin, other biomarkers), genetics/genomics or other -omics
(e.g., proteomics, lipidomics, metabolomics, metagenomics), and
fetal biometry. The search was restricted to studies in adult
humans that were published in English. The search strategy and
terms are available in Supplementary Note 1. All studies were
screened by at least two reviewers and conflicts were resolved by a
third independent reviewer. All titles and abstracts were screened
for eligibility, and those that were assessed as potentially meeting
inclusion/exclusion criteria were selected for full-text evaluation.
To help ensure that other important articles were not missed,
during full-text evaluation, if a relevant study was referenced, we
included those in full-text evaluation as well.

Inclusion criteria. Studies were considered potentially eligible for
inclusion if they met the following criteria: 1) at least 100 parti-
cipants and a minimum of 30 GDM cases when reporting a
continuous precision marker, or 30 cases per GDM subtype, 2)
reported outcome data on maternal hypertensive disorders in
pregnancy, cesarean delivery, offspring anthropometry at birth
(macrosomia, LGA, small-for-gestational-age [SGA]), preterm
delivery, birth trauma, metabolic sequelae (e.g., hypoglycemia) or
mortality, and 3) presented data in text or tables that allowed for
the comparison of outcomes between subtypes of GDM or among
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women with GDM exclusively for continuous markers. Studies
evaluating prevention, treatment, or long-term maternal and
offspring prognosis were excluded as they were to be covered by
the objectives of complementary systematic reviews led by other
PDMI working groups30–32.

Exclusion criteria. As our main goal was to review studies
identifying GDM sub-phenotypes beyond glycemia, we excluded
studies that only reported on glycemic markers or thresholds
(e.g., HbA1c, fasting glucose, oral glucose tolerance test [OGTT]
glycemic values), or studies that were focused on assessing dif-
ferences in outcomes based on timing of glucose measurement.

We also excluded studies that 1) measured the precision
marker after GDM diagnosis (e.g., total gestational weight gain
[GWG] over the whole pregnancy, or fetal biometry after
32 weeks’ gestation), 2) combined pre-existing diabetes or overt
diabetes (based on non-pregnancy glycemic thresholds) with
GDM, 3) included women with multi-gestations, or 4) did not
contain full-length manuscripts in English.

Data extraction and quality assessment. Study and sample
characteristics were extracted independently by two reviewers and
conflicts were resolved by a third reviewer from full-text using a
web-based collaboration software platform that streamlines the
production of systematic literature reviews (Covidence systematic
review software, Veritas Health Innovation, Melbourne, Aus-
tralia). The following data elements were extracted from each
study when available: cohort characteristics (continent, country,
study type [hospital/registry/cohort], enrollment years); partici-
pant characteristics (age, BMI, the proportion nulliparous); GDM
information (sample size, diagnostic criteria or description);
timing of precision marker measurement (pre-pregnancy, before
or at GDM diagnosis); and perinatal outcomes (maternal, fetal/
neonatal).

The risk of bias and overall quality of each study were assessed
independently or in duplicate using the Joanna Briggs Institute
Critical Appraisal Tool for cohort studies, which was modified
specifically for the objectives of the current systematic review33

(Supplementary Note 2). We assessed the studies using a ten-

question measure and considered studies with two poor quality
metrics to be of low quality34.

Data synthesis and meta-analysis. For each category of precision
marker, two independent reviewers jointly summarized qualita-
tively the findings. Given the numerous studies evaluating effect
modification by maternal BMI, we performed a post-hoc meta-
analysis of studies that reported data that allowed for quantitative
measurement of the associations of maternal BMI with offspring
LGA or macrosomia among women with GDM.

We pooled odds ratios (ORs) from individual studies to
estimate the summary OR with 95% CI for each BMI category
using the Dersimonian and Laird random-effects model account-
ing for both within- and between-study variances35. We assessed
overall heterogeneity using the Cochran’s Q test and I2 statistics;
I2 > 75% was considered as evidence of statistical heterogeneity36.
Subgroup analyses were carried out by study enrollment period
(enrollment completed prior to 2010 vs. enrollment from 2010
onwards), quality grade (≥2 poor quality metrics vs. <2 poor
quality metrics), and covariate adjustment (yes vs. no). Degree of
potential publication bias was evaluated using the Egger’s test and
the Begg’s test37,38. Meta-analyses were conducted using R
(version 4.2.3) and the ‘metafor’ R package (version 4.0-0). A
two-sided p value of <0.05 was considered statistically significant.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Literature search. The literature search yielded 5905 non-
duplicated abstracts (Fig. 1). After independent review by two
investigators for each abstract, 5130 abstracts were excluded.
Among the 775 full-text studies reviewed, 638 were excluded
based on our study selection criteria, resulting in 137 studies that
met the selection criteria. All 137 studies were observational, with
no randomized clinical trials. The 137 studies were categorized
into three groups depending on the precision markers examined:
1) anthropometry (maternal anthropometry/fetal biometry); 2)
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Fig. 1 PRISMA systematic review attrition diagram. This shows the flow diagram for the number of references that were identified, screened, and
included.
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biochemical, genetics, -omics markers; and 3) clinical or socio-
cultural factors.

Overall study characteristics. Characteristics of the 137 studies
representing a total of 432,156 participants are shown in Sup-
plementary Data 1. The median number of study participants was
587. Of these studies, 68 evaluated maternal anthropometry, 33
evaluated non-glycemic biochemical markers, and 48 evaluated
clinical or socio-cultural factors (some studies reported more than
one precision marker). Most studies (72%) included pregnancies
from 2000 to 2020 and were from geographically diverse regions.
The studies were most frequently conducted in China (20%), the
US (12%), Australia (7%), and Spain (6%). The most frequent
diagnostic criteria for GDM were the 2010 International Asso-
ciation of the Diabetes in Pregnancy Study Groups (IADPSG)39/
2013 World Health Organization (WHO) criteria40.

Overall, 45% of the studies had two or more quality assessment
domains categorized as low (Fig. 2). The most frequent domain
ranked as low was related to confounding; ~40% of studies
reported unadjusted effect size estimates. In addition, self-
reported data is generally considered to be of low quality, and
since many studies ascertained maternal weight and/or BMI using
self-reported pre-pregnancy weight, 28% of studies had low-
quality rankings on the “ascertainment of precision marker”
domain. Other factors that impacted the quality rankings were
mostly due to unclear reporting in the manuscripts.

Studies of anthropometry as a precision marker. Study char-
acteristics—a total of 68 studies of women with GDM described
associations of pre-pregnancy overweight and obesity (defined by
maternal BMI based on WHO classifications41 or region-specific
cut-offs) with adverse pregnancy and perinatal outcomes7–10,42–105.
A small number of studies described the relationship of early
gestational weight gain (early GWG) prior to GDM diagnosis
(n= 4)49,106–108, or fetal biometry ultra-sound measures (biparietal,
head, abdominal circumference or femur length) before 32 weeks’
gestation (n= 9)42,55,64,87,98,109–112 with adverse perinatal out-
comes. The characteristics of these studies are summarized in
Supplementary Data 2. The median number of GDM cases was 594.

Maternal anthropometry—studies evaluating the relationship
between maternal BMI and adverse pregnancy outcomes tended
to be retrospective hospital record cohort or case-control studies

relying on self-reported pre-pregnancy weight. All but nine
studies44,59,65,80,88,94–96,103,113–115 reported that maternal over-
weight and obesity were associated with greater risk of at least one
adverse perinatal outcome, most commonly offspring LGA or
macrosomia.

Thirty-eightstudies reported data that could be meta-analyzed
to offer a quantitative assessment of maternal BMI as a
precision marker for risk of macrosomia or
LGA7–10,42,45–49,54–56,58,61,66,67,69–73,77,79,81,82,84,88–90,92–94,98,100,

101,105,113. Among women with GDM, the association of maternal
BMI and macrosomia was reported in 23 studies
(n= 34,016)7–10,45,47,48,56,61,70–73,77,81,84,90,92–94,98,100,113 and the
association of maternal BMI and LGA was reported in 26 studies
(n= 31,287)8,10,42,46,49,54,55,58,66,67,69–72,77,79,81,82,84,88–90,93,94,
101,105. Across the 38 studies, there were differences in how the BMI
categories were constructed and which category was used as a
reference. Pooled estimates from the 13 studies that reported
maternal overweight/obesity categories (versus BMI in normal range)
andmacrosomia (Fig. 3; n= 28,763)7,9,10,45,47,51,61,70,73,81,90,93,94 and
the ten studies that reported maternal overweight/obesity cate-
gories (versus BMI in normal range) and LGA (Fig. 4;
n= 20,070)10,49,70,79,81,90,93,94,101 are reported below. Meta-
analysis of other categories of BMI and reference groups (e.g.,
obese vs. non-obese) can be found in Supplementary Fig. 1 and
Supplementary Fig. 2.

Macrosomia—the pooled OR from 13 studies of macrosomia
(n= 28,763)7,9,10,45,47,51,61,70,73,81,90,93,94 was 2.65 (95% CI:
1.91–3.68) for overweight/obesity compared to normal BMI with
heterogeneity noted across the pooled studies (I2 > 75%) (Fig. 3).
Study-specific ORs based on country of recruitment are presented
in each figure. The association between overweight/obesity and
macrosomia among women with GDM in subgroup meta-
analyses is shown in Supplementary Table 1. Subgroup analysis
of studies with low quality (n= 3) yielded an OR of 6.44 (95% CI:
0.84-49.42), and among studies of high quality (n= 10) the I2 was
0% indicating study quality as a source of heterogeneity in the full
analysis. Subgroup analyses focusing on studies with enrollment
during or after 2010 (all of which used IADPSG diagnosis criteria),
studies of high quality, or studies with covariate adjustment did
not substantially change the results. No indication of publication
bias was suggested based on either the Egger’s test (P= 0.32) or
the Begg’s test (P= 0.51). Three studies examined maternal BMI
as a continuous variable associated with macrosomia in women
with GDM (n= 2611)8,98,113. A one-unit increment of maternal
BMI (kg/m2) was significantly associated with an increased risk of
macrosomia (OR: 1.12, 95% CI: 1.05–1.19) (Fig. 3).

LGA—the pooled OR from 10 studies of LGA
(n= 20,070)10,49,70,79,81,90,93,94,101 was 2.23 (95% CI: 2.00–2.49)
for overweight/obesity vs. normal BMI (Fig. 4). Study-specific
ORs based on country of recruitment are presented in each figure.
Subgroup analysis, where we stratified studies by enrollment
during or after 2010 (all of which used IADPSG diagnostic
criteria), or study quality rating, or restricted to studies with
covariate adjustment did not produce substantially different
results (Supplementary Table 2). No indication of publication
bias was suggested based on either the Egger’s test (P= 0.69) or
the Begg’s test (P= 0.29). Ten studies reported associations of
continuous BMI with offspring LGA (n= 6113)8,42,49,55,58,
66,67,69,88,89. A one unit increment of maternal BMI (kg/m2)
was associated with increased odds of LGA (summary OR: 1.09,
95% CI: 1.06–1.12) (Fig. 4).

Numerous studies among women with GDM also found
associations between maternal overweight/obesity and greater
risk of cesarean delivery44,51,54,64,70,72,73,75,78,92,95,105 or
preeclampsia and other hypertensive disorders of

0% 50% 100%

Sample size

Subtypes selected with same criteria

Precision marker measured consistently

Reliable ascertainment of precision marker

Confounding factors identified

Stretegies to account for confounding stated

Precision marker measured prior to outcome

Valid/reliable outcome measurement

Adequate follow up

Appropriate statistical analysis
Yes Unlear No Not Applicable

Fig. 2 Quality assessment of the included studies by critical appraisal
domain. The risk of bias and overall quality of each study was assessed
independently or in duplicate using the Joanna Briggs Institute (JBI) Critical
Appraisal Tool for cohort studies, which was modified specifically for the
objectives of the current systematic review. For each question, a reviewer
could indicate “not applicable” (blank filled bars), “yes” (blue filled bars),
“unclear” (orange filled bars), “no” (red filled bars). An answer of “yes”
indicates less risk of bias and greater quality, and answer of “no” indicates a
higher risk of bias and lower quality.
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pregnancy46,47,53,54,70,72,92,99,100,102,104. Four studies reported an
association with neonatal hypoglycemia56,58,61,62, two reported an
association with a composite outcome of neonatal morbidity and/
or admission to NICU47,96, and one reported an increased risk of
major congenital malformations63.

Early gestational weight gain (GWG)—three of four49,106–108

studies of early GWG (prior to GDM diagnosis) in women with
GDM found positive associations with LGA49,106,108, one of
which reported that trimester-specific weight gain above the
Institute of Medicine Guidelines116 was additionally associated
with increased risk of preeclampsia and macrosomia106.

Fetal biometry—among the nine studies with a fetal biometry
ultra-sound measure near the time of GDM diagnosis, six found
that larger fetal abdominal42,55,87,110,112 or biparietal
circumference98 was positively associated with greater neonatal
size (birthweight, LGA, macrosomia).

Studies of biochemical, genetics, or -omics as precision mar-
kers. Study characteristics—of the studies that reported bio-
chemical, genetic, or -omics (e.g., metabolomic, lipidomic)

markers, 14 described associations of lipid classes (triglycerides,
total cholesterol, LDL cholesterol, and HDL cholesterol) with
adverse pregnancy and perinatal outcomes7,65,66,74,82,88,89,97–99,
113,117–119. There were 12 studies that described associations of
insulin sensitivity/resistance profiles12,114,115,120–124 or insulin
secretion indices109,117,125,126 with perinatal outcomes. A small
number of studies subtyped GDM based on adipokines
(n= 2)109,127, metabolomics (n= 1)128, non-coding RNA
(n= 2)129,130, and variants in candidate genes (n= 2)131,132. The
characteristics of these studies are summarized in Supplementary
Data 3, which also includes studies with measurement of other
biochemical markers (e.g., proteinuria, platelet count). The
median (range) number of GDM cases was 242 (64-2647).

Lipid subclasses—among the 14 studies measuring triglycerides
prior to or at the time of GDM
diagnosis7,65,66,74,82,88,89,97–99,113,117–119, half reported that
higher triglycerides positively correlated with increased birth-
weight or risk of LGA or macrosomia after adjusting for maternal
BMI7,82,88,89,97,98,113, whereas six reported no association with
neonatal size65,66,74,117–119, and one reported no association with
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Fig. 3 Summary odds ratio (95% CI) of macrosomia for maternal body mass index overweight/obese vs. normal or continuously. Square represents the
odds ratio on the log scale; confidence interval (CI). a It shows the odds ratio (95% CI) for the association of maternal BMI categorized in overweight/
obesity vs. normal range and offspring macrosomia among 13 studies that included a total 28,763 participants. b Odds ratio for the association of
continuous maternal BMI (per kg/m2) and offspring macrosomia among three studies that included 2611 participants. Abbreviations: LGA large-for-
gestational age.
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preeclampsia99. Of the studies measuring total, LDL, or HDL
cholesterol (n= 12)65,66,74,88,89,97–99,113,115,118,119, one found a
positive association of LDL with LGA89, and three reported lower
mean HDL levels were associated with LGA66,74,119.

Insulin profiles and indices—a variety of methods of calculat-
ing insulin resistance/sensitivity and insulin secretory response
using timed insulin and glucose during the OGTT for GDM
subtyping were described. The homeostatic model assessment of
insulin resistance (HOMA-IR or HOMA2-IR) calculated at the
time of GDM diagnosis (http://www.dtu.ox.ac.uk/
homacalculator/)133 was most commonly used. The Matsuda
index134, modeled using glucose and insulin values across the
OGTT, was the most frequent measure of insulin sensitivity.
HOMA-B/HOMA-2B (http://www.dtu.ox.ac.uk; homeostatic

model assessment of beta-cell function; fasting insulin and fasting
glucose model), and the Stumvoll first phase insulin estimate
(modeled using timed insulin and glucose values from
OGTT)135,136 were the most utilized indices defining insulin
secretory response. Other indices such as the insulinogenic index
and disposition index were utilized rarely120,122.

All four studies examining HOMA-IR found that women with
GDM and high HOMA-IR (highest quartile or >2.0) had a
significantly increased risk of LGA or macrosomia compared to
those with GDM and lower HOMA-IR115,121,124,126, although in
one study the statistical comparison was to normal glucose
tolerant women126. In two studies, insulin-related measures such
as a defect in insulin sensitivity, insulin secretion, or a
combination of both were not associated with differences in
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a

Fig. 4 Summary odds ratio (95% CI) of large-for-gestational age for maternal body mass index overweight/obese vs. normal or continuously. Square
represents the odds ratio on the log scale; confidence interval (CI). a Odds ratio (95% CI) for the association of maternal BMI categorized in overweight/
obesity vs. normal range and offspring LGA among 10 studies that included a total 20,070 participants. b Odds ratio for the association of continuous
maternal BMI (per kg/m2) and offspring LGA among 10 studies that included 6113 participants. Abbreviations: LGA: large-for-gestational age.
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perinatal outcomes12,123. Three studies reported on insulin
profiles among participants with and without GDM114,120,122.
In two of these, participants with GDM who were insulin
resistant had higher rates of LGA and macrosomia (where women
with GDM without greater than usual insulin resistance had
similar rates as women without GDM); however, no statistical
tests for significant differences in the outcome rates among the
subtypes of GDM were reported114,122. A study of insulin
secretion peaks during an OGTT found that a delayed insulin
secretion peak was associated with increased risk of preeclampsia,
LGA, and neonatal hypoglycemia125, whereas both a study of
insulin levels following a 50 g glucose load and a study of fasting
plasma insulin found no association with adverse perinatal
outcomes109,117.

Adipokines—two studies measured adiponectin, leptin109,127,
and one additionally measured visfatin127. Neither study found
that adiponectin or leptin was associated with perinatal outcomes
among women with GDM; however, higher visfatin levels were
associated with lower risk of LGA127.

Metabolomics—a single study utilizing mass spectrometry
examined the association of plasma levels of carnitine and 30
acylcarnitines with adverse perinatal complications in women
with GDM128. Carnitine and acylcarnitine levels together with
clinical factors were used to construct a nomogram to predict
macrosomia within women with GDM, which resulted in an area
under the receiver operating characteristic (AUROC) curve
of 0.78.

Non-coding RNAs—two studies examined the association of
different classes of non-coding RNAs with various adverse
pregnancy outcomes129,130. One study of circulating long non-
coding RNAs (lncRNAs) measured in 63 women with GDM
found that including XLOC_014172 and RP11-230G5.2 in a
prediction model for macrosomia resulted in an AUROC curve of
0.962129. In a study of high or low plasma levels of circular RNA
circATR2, high circATR2 was associated with higher rates of
prematurity, miscarriage, intrauterine death, fetal malformations,
intrauterine infection and hypertension but not macrosomia or
fetal distress130.

Genetic studies—we did not identify any genome-wide-
association studies reporting on GDM subtypes. Two studies used
a candidate gene approach to subtype women with GDM based on
their genotype and examine associations with pregnancy
outcomes131,132. One study of a variant in the patatin-like
phospholipase-3 (PNPLA3)/adiponutrin gene (rs738409 C.G) found
that carrying the G allele (n= 96) compared with being a CC
homozygote (n= 104) was associated with lower fasting insulin,
insulin resistance, and LGA132. In a study of SNP 45TG in exon 2 of
the adiponectin gene, the G allele and GG+TG genotypes were
associated with GDM, lower adiponectin levels, and among the
women with GDM, greater incidence of macrosomia and neonatal
hypoglycemia compared to the TT group131.

Studies of clinical and sociocultural factors as precision mar-
kers. Study characteristics—of the studies reporting associations
of clinical, sociocultural factors or composites of multiple risk
factors among women with GDM55,59,60,65,69,78,80,85,86,96,97,

103,104,113,137–171, 14 compared differences in adverse perinatal
outcomes between different races, ethnicities, or countries of
origin69,96,147–150,152,154–160, and six included multiple risk fac-
tors as a composite variable78,86,141,144,162,163. Four studies
investigated psychological factors, and five reported on con-
comitant presence of pre-eclampsia or hypertensive disorders of
pregnancy in women with GDM. The characteristics of these
studies are summarized in Supplementary Data 4. Half of the
studies included pregnancies from 1990-2009, with four studies

from the 1980s. A third of studies diagnosed GDM using 2010
IADPSG criteria, and 20% did not report diagnostic criteria. The
median (range) number of GDM cases in these 48 studies was 950
(100–170,572).

Race/ethnicity—studies have reported various findings com-
paring outcomes in women with GDM from different races or
ethnicities69,96,147–150,152,154–160. In the US, women with GDM
who identified as Black or African American were at higher risk
of perinatal complications, including fetal death148,154. Findings
were inconsistent regarding risk of reported complications in
women with GDM who identified as Hispanic (versus non-
Hispanic): two studies did not find major differences in adverse
outcomes149,158, while one large study reported a higher rate of
preterm birth148. In Hawaii, White women with GDM were at
greater risk of macrosomia compared to other race/ethnicity
groups (Hawaiian/Pacific Islander, Filipina, or other Asian
women)152. Several studies in Australia, US, and Canada
comparing women with GDM from different race/ethnicity
groups found that women who identified as Asian were less
likely to have LGA offspring (compared to White-identified
women)147,150,154,155,159,161. In two Canadian studies, women
with GDM from First Nations or Indigenous groups were at
higher risk of perinatal complications150,157.

Clinical, and co-existing medical factors and conditions—many
studies that met our inclusion criteria also reported the
association of other factors such as prior history of GDM,
macrosomia, polycystic ovary syndrome (PCOS), or family
history of diabetes with risk of perinatal adverse outcomes
among women with GDM. Given that these risk factors were not
pre-specified in our search, our summary of these studies should
be considered as a scoping (rather than systematic) review.

Of the studies examining multiple clinical or sociocultural
factors (e.g., BMI, maternal age, prior GDM pregnancy), four
found that the presence of one or more risk factors was associated
with greater neonatal size (birthweight percentile, LGA, macro-
somia), compared to women with GDM and no risk
factors78,86,141,162. Two of these studies reported a higher risk
of cesarean delivery78,86. One study reported that GDM with one
or more risk factors was associated with cesarean delivery and not
neonatal size144, and another found no difference in perinatal
outcomes among women with or without risk factors163.

In general, there was no consistent association of maternal age,
parity, prior GDM, or family history of diabetes with risk of
adverse perinatal outcomes in women with GDM. Studies that
identified co-existing medical conditions (e.g., PCOS, preeclamp-
sia, hypertensive disorders of pregnancy, infertility treatment)
showed that PCOS was a marker for higher risk of
preeclampsia140,145. Co-existing preeclampsia or hypertensive
disorder of pregnancy in women with GDM was associated with
smaller size at birth compared to GDM pregnancies without
preeclampsia or hypertensive disorder of pregnancy57,80.

Four studies reporting on psychological factors found that
worse depression, anxiety, or diabetes distress scores146,151,153,164

were markers of greater risk of various adverse perinatal
outcomes, or were related to differences in neonatal size146,151,153.
There was a lack of studies evaluating diet or physical activity as
risk markers among women with GDM. Three studies included
other risk factors (e.g., fetal sex, seasonality of conception,
epicardial fat)167,170,171 with findings that will need replication
before conclusions can be drawn.

Discussion
Our systematic review of 137 studies and 432,825 women with
GDM demonstrates that perinatal outcomes vary substantially
related to factors that extend beyond glycemia. Prior research has
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largely focused on the impact of pre-pregnancy overweight or
obesity on adverse perinatal outcomes. In a meta-analysis of
10 studies of LGA (n= 20,070) and 13 studies of macrosomia
(n= 28,763), we found that the co-occurrence of pre-pregnancy
overweight/obesity with GDM was associated with a 2 to 3-fold
greater risk of LGA or macrosomia. Notably, even across the
spectrum of maternal size, a one-unit increase in BMI is asso-
ciated with a 9% greater risk of LGA and a 12% greater risk of
macrosomia. Furthermore, independent of maternal BMI, those
with higher triglycerides or insulin resistance, may be at higher
risk of having an offspring born LGA or with macrosomia. Stu-
dies reporting on genetics and ‘omics were scarce, and we could
not draw conclusions on these potential precision markers. There
was inconsistent evidence that individual maternal clinical and
sociocultural factors were associated with greater risk of perinatal
complications.

Anthropometry as a precision marker. Findings from our meta-
analysis provide strong evidence that women with GDM and
overweight/obesity compared to women with GDM and BMI in
the normal range are at greater risk of fetal overgrowth. Although
assessment of the relative contribution of maternal glycemia
versus obesity to adverse pregnancy and perinatal outcomes was
beyond the scope of this review, the risks associated with obesity
and GDM are likely to be additive54. Current evidence suggests
metabolic alterations that accompany obesity increase the risk of
adverse perinatal outcomes172. This underscores the need to
better refine the phenotyping of women with GDM based on
lipids, insulin resistance, and other metabolic alterations that may
contribute to fetal overgrowth.

Fetal biometry is not a novel precision marker of overgrowth
risk and arguably reflects the consequences of GDM. Never-
theless, few research studies have evaluated a combination of
early ultrasound fetal growth biometry with other metabolic data,
in association with, or prediction of, adverse perinatal outcomes.
These studies may help identify early metabolic biomarker
profiles (and, therefore, targets) of birth size.

Biochemical, genetics, or -omics as precision markers. Most
studies examining lipids in association with adverse perinatal
outcomes have measured a standard lipid panel that includes
three measures of cholesterol levels (total, LDL and HDL cho-
lesterol) and triglycerides. Half of the studies reported higher
triglycerides, independent of BMI, were associated with macro-
somia or LGA, with fewer studies finding that higher LDL or
lower HDL was associated with neonatal size. Data on the asso-
ciation of triglycerides with neonatal size in women with GDM
align with a recent meta-analysis of studies in the general preg-
nant population that higher triglycerides were associated with
increased birthweight and higher risk of LGA and
macrosomia173. However, not all studies included in our review
reported positive associations, and many factors, such as differ-
ences in timing of blood collection and variability in the dis-
tribution of characteristics across studies, could explain
inconsistencies. Few studies examined the joint effects of multiple
lipid subclasses, and future studies should include other and more
detailed lipid measures to further clarify the mechanisms leading
to fetal overgrowth (which lipids or lipid fractions, placental
transfer, etc.) so novel therapeutic approaches can be developed
and tested.

Many studies reported data on insulin profiles among women
with GDM but made statistical comparisons to normal glucose-
tolerant women. In general, it appears that women with GDM
who have greater insulin resistance are at increased risk of fetal
overgrowth and LGA. Subtyping by the presence or absence of

insulin resistance and deficiency was described by Powe et al. in
2016, but this paper was not included in our review because of
small GDM sub-group sample sizes11. Many of the subsequent
studies included here used a similar insulin resistance/insulin
deficiency classification rubric and referred to Powe et al. as part
of the rationale or methodology. There are inadequate data to
determine whether a predominant defect in insulin secretion
without excess insulin resistance is related to adverse perinatal
outcomes. Insulin sensitivity or resistance in pregnancy can be
estimated using insulin or C-peptide and glucose values at
multiple time-points during the standard OGTT (e.g., using the
Matsuda formula which has been validated in pregnancy);
however, the studies that calculated insulin resistance using
HOMA-IR, which simply requires fasting insulin and glucose
values, found that this index was a marker for higher rates of LGA
or macrosomia in women with GDM, making it an appealing
simple biochemical marker115,121,124,126. If GDM subtyping based
on insulin physiology is to be translated clinically, there is a need
for laboratory standardization of insulin (or C-peptide) assays to
support establishing clinical thresholds.

Given the role of adiponectin as an insulin sensitizer174 and
leptin as modulator of food intake and energy expenditure175, as
well as the robust body of data tying maternal adiposity to
pregnancy outcomes in GDM, it is surprising that our review only
identified two studies that reported associations between
adipokines and adverse perinatal outcomes among women with
GDM. It is difficult to assess if this reflects a publication bias
where null findings have been excluded or a true lack of research
in this area. Future studies assessing adipose-derived peptides as
precision markers among women with GDM should also consider
additional effect modification by insulin sensitivity or maternal
adiposity. This latter point may be particularly relevant as
previous studies of adipokines in general pregnancy have reported
effect modification by maternal BMI176,177.

No studies that met our inclusion criteria included measures of
branched-chain amino acids, which have been implicated in
diabetes risk and complications both within and outside of
pregnancy178,179. Although we recognize that pregnancy cohorts
not restricted to GDM have found associations of amino acids
with glucose metabolism and perinatal outcomes180–184; whether
amino acid subclasses or indeed hormonal profiles might be used
as potential precision markers among women with GDM that
identify increased risk of adverse perinatal outcomes has not been
adequately studied and future research in this area is needed.

Studies performed to date attempting to identify genetic markers
that predict adverse outcomes among women with GDM are not
only limited in number but have major methodologic limitations.
First, the identified studies have had small sample sizes and were
performed in homogenous populations, without replication in
independent cohorts. Moreover, reviewed genetic studies used a
targeted approach examining either a single or limited number of
variants/molecules. Future studies among larger diverse popula-
tions are needed for genome-wide association studies. None of the
studies included in our review focused on metagenomics.

Clinical and sociocultural factors as precision markers. Certain
racial/ethnic groups (such as Asian, First Nations/Indigenous,
Hispanic) have been observed to have an increased risk of GDM.
In the current review, being part of a minoritized race/ethnicity
group was associated with adverse outcomes only in some
instances. In studies where differences were observed, they mir-
rored patterns of health disparities reflecting different perinatal
complication rates in the general population185. We note that
these racial and ethnic categories and their relationship with
outcomes are highly dependent on the overall social context
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(countries or regions) and may reflect experiences of racism,
some aspects of culture, socioeconomic status, and many other
factors that influence health outcomes such as diet and envir-
onmental pollutants or toxicants17–19. Studies that met our
inclusion criteria did not directly investigate some of the corre-
lates of race and ethnicity (e.g., diet, environmental exposures).
We encourage future studies to carefully consider and collect data
on the sociocultural influences and other correlates of race and
ethnicity, and separately investigate genetic similarity, ancestry, or
the inequities related to racism.

Limitations. It is important to highlight that in our review all the
studies that met the inclusion/exclusion criteria were observational
in design, and thus inadequate to provide the level of evidence
required to change clinical practice currently. Different criteria for
diagnosing GDM have been adopted at different time periods and
across different geographic regions, which ultimately has led to
women with differing degrees of hyperglycemia and maternal/fetal
risks being diagnosed with GDM186,187. In our summary of the
literature, IADPSG was the most common reported diagnostic cri-
teria in the studies that were included in our systematic review. We
included all studies meeting pre-specified inclusion/exclusion criteria
regardless of differences in diagnostic approach. We evaluated non-
glycemic precision markers that could reliably distinguish at-risk
sub-phenotypes irrespective of the timing, threshold value, or
number of above-threshold values. In the current review, the meta-
analysis estimates of maternal BMI as a precision marker of mac-
rosomia or LGA risk were similar regardless of diagnostic criteria or
time period of study enrollment. We note that not all articles pro-
vided details on the definition of macrosomia or LGA, and therefore,
this may have introduced some error in the meta-analysis estimates.

In our review, there was an inclusion criterion that manu-
scripts be published in English, which somewhat limits the global
scope of included studies and representation of some regions of
the world (e.g., no studies from India were included). Given the
increasing prevalence of GDM and risk of diabetes, studies of the
utility of precision markers for diagnosing GDM from different
regions are needed. We excluded studies with less than 100
participants (and <30 GDM cases), as it would be difficult to draw
sound conclusions from studies with fewer participants. However,
this undoubtedly limited the inclusion of pilot studies or with
smaller sample size, which could have limited the diversity of
populations included. Lastly, the GDM diagnosis PMDI working
group is a partnership that was initiated by the ADA and EASD
which invited GDM experts from across the globe. Although we
are an international working group of clinical and research
scientists, our expertise may not completely capture the vast
global spectrum of scientific and clinical work related to GDM.
We hope this initiative will spark additional collaborations and
multinational efforts that will continue to contribute to precision
initiatives to help identify successes and opportunities in tailored
GDM diagnostics.

Future directions. Our systematic review has identified several
major areas for further research. There remains a need for
mechanistic studies to provide an understanding of why the identi-
fied precision biomarkers are associated with an increased risk of
adverse pregnancy outcomes. Replication studies of any potential
biomarkers are needed in large and diverse populations across the
world, and these should be accompanied by work to standardize the
laboratory analysis of biomarkers used to diagnose subtypes of GDM
at certain thresholds. Additionally, it will be worthwhile to leverage
the information provided herein to investigate whether the identified
precision markers for identifying at-risk GDM subtypes are depen-
dent on the criteria used for GDM diagnosis. Multinational studies

measuring environmental and behavioral factors such as dietary
intake, physical activity, differences in socioeconomic opportunity,
and neighborhood characteristics are needed, given their potential
impact on perinatal outcomes among women with GDM. Moreover,
large studies including participants from many regions across the
world with measurements of genetic variants and multi-omics that
integrate clinical and sociocultural data are needed and could provide
insight into the determinants and causal pathways of heterogeneity
within GDM and its outcomes. This may require applying approa-
ches often used in systems biology, machine learning, or in the
aggregation and analysis of large datasets from different sources using
methods such as multilayer networks and clustering188.

For future clinical implications, some of the next questions are: if
precision markers such as insulin resistance or higher triglycerides
are part of causal pathways that lead to adverse outcomes, can we
directly target them safely in pregnancy? Although somewhat
controversial, Metformin targets insulin resistance and is accepted
in some contexts for use during pregnancy; however, well-designed
clinical trials for insulin-resistant GDM women are needed to
accurately estimate the benefit-to-risk ratio. There is a need to test
whether dietary approaches, supplements, or other therapeutics
can effectively and safely reduce triglycerides among women with
GDM. Thus, scientific identification of the physiological and
mechanist attributes that lead to pregnancy-induced excessive
insulin resistance and triglycerides, with linkage to prognostic
differences, will improve the development of novel therapeutic
options that are targeted to the causal pathways in pregnancy.

Conclusions
We conducted a systematic review to identify potential precision
markers that would refine the diagnosis of GDM and identify
women with GDM at higher risk of perinatal complications. The
results of our meta-analyses that included over 20,000 women
demonstrated that a higher maternal BMI in women with GDM
is a marker for risk of offspring LGA or macrosomia. Other
promising precision markers include maternal triglycerides and
insulin resistance indices (e.g., HOMA-IR); however, these bio-
markers require additional replication and development of stan-
dardized clinical laboratory assays before implementation in
clinical practice. Areas that currently require substantially more
evidence include investigations of genetics, metabolites, and other
novel biomarkers, as well as integration of social, environmental,
and behavioral factors. Advances in computing and the promo-
tion of cross-disciplinary team science may be one approach for
addressing these gaps and future directions. Overall, our sys-
tematic review identified critical gaps and future research areas
for precision GDM diagnosis and highlighted promising bio-
markers that may open the door to non-glycemic treatment
targets in GDM.

Data availability
Complete lists of the publications where data were extracted for this study are provided
in Supplementary Data 1. Source data for Fig. 2 are available in Supplementary Data 5.
Additional information is available via contact with the corresponding author. Data for
meta-analyses are available via contact with Dr. Jiaxi Yang.
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