Skip to main content
. 2023 Nov 27;100(6):1149–1158. doi: 10.1007/s11524-023-00795-y

Table 3.

Multiple logistic regression modeling the association between telehealth availability and year*rurality interaction

Variables1 Model 1: 2015–2019 Model 2: 2015–2020
aOR 95% CI p-value aOR 95% CI p-value
Year*rurality interaction Joint test p < 0.0001 Joint test p < 0.0001
Within-rural estimates of year2
Rurality3
   < 10% rural 1.33 1.26, 1.40  < 0.0001 1.79 1.72, 1.86  < 0.0001
  10 to < 20% 1.31 1.26, 1.37  < 0.0001 1.71 1.66, 1.77  < 0.0001
  20 to < 30% 1.26 1.21, 1.31  < 0.0001 1.56 1.51, 1.62  < 0.0001
   30% 1.14 1.09, 1.19  < 0.0001 1.43 1.39, 1.48  < 0.0001
  Within-year estimates of rurality Within-2015 Within-2015
Rurality
   < 10% rural Ref Ref
  10 to < 20% 1.12 0.93, 1.34 0.22 1.19 0.99, 1.42 0.06
  20 to < 30% 1.56 1.30, 1.86  < 0.0001 1.87 1.56, 2.24  < 0.0001
   30% 2.69 2.26, 3.20  < 0.0001 3.22 2.71, 3.82  < 0.0001
  Rurality Within-2019 Within-2020
   < 10% rural Ref Ref
  10 to < 20% 1.07 0.93, 1.24 0.35 0.94 0.83, 1.07 0.36
  20 to < 30% 1.25 1.08, 1.45  < 0.01 0.95 0.83, 1.08 0.43
   30% 1.47 1.27, 1.71  < 0.0001 1.05 0.92, 1.20 0.46

1Models adjusted for facility owner type, health department licensure, CARF accreditation, and integrated primary care

2Year is a continuous variable

3Percentage of state residents living in rural areas was derived from the US Census Bureau’s 2020 American Community Survey, defined as anyone not residing in an urbanized area of 50,000 people or more, or an urban cluster of at least 2500 and less than 50,000