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Abstract

Each year, SARS-CoV-2 is infecting an increasingly unprecedented number of species. In the present article, we combine mammalian
phylogeny with the genetic characteristics of isolates found in mammals to elaborate on the host-range potential of SARS-CoV-2.
Infections in nonhuman mammals mirror those of contemporary viral strains circulating in humans, although, in certain species,
extensive viral circulation has led to unique genetic signatures. As in other recent studies, we found that the conservation of the ACE2
receptor cannot be considered the sole major determinant of susceptibility. However, we are able to identify major clades and families
as candidates for increased surveillance. On the basis of our findings, we argue that the use of the term panzootic could be a more
appropriate term than pandemic to describe the ongoing scenario. This term better captures the magnitude of the SARS-CoV-2 host
range and would hopefully inspire inclusive policy actions, including systematic screenings, that could better support the management
of this worldwide event.
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Even before the COVID-19 pandemic, humans had already been
challenged with several emerging viral respiratory infections
with pandemic potential, including two coronaviruses, SARS-
CoV-1 and MERS-CoV. SARS-CoV-2 (species severe acute respira-
tory syndrome-related coronavirus, subgenus Sarbecovirus, genus Be-
tacoronavirus, family Coronaviridae; Coronaviridae Study Group
of the International Committee on Taxonomy of Viruses 2020)
is a virus of zoonotic origin. All known human coronaviruses
(Decaro and Lorusso 2020, Tagliamonte et al. 2020), including re-
cent porcine deltacoronaviruses (Lednicky et al. 2021) and canine
alphacoronaviruses (Lednicky et al. 2022, Vlasova et al. 2022), are
of zoonotic origin. However, SARS-CoV-2 has been unique, in that
it has been able to ignite a pandemic with catastrophic conse-
quences around the globe (CRS 2021). To date, it appears that
the first viral strains of SARS-CoV-2 were detected in Wuhan City
(Hubei Province, China, December 2019) at the Huanan seafood
wholesale market (Liu et al. 2020). The Huanan market, which is
thelargest of its kind in central China, sells many different species
of farm and wild animals and is visited by thousands of people
daily. Globally, as of 16 February 2023, there have been 756,411,740
confirmed cases of COVID-19, including 6,842,468 deaths reported
to the World Health Organization (WHO; https://covid19.who.int).

As the COVID-19 pandemic continues, the number of mam-
mal species that are susceptible to infection with SARS-CoV-2 in-
creases. We are at the beginning of a macrocycle that may be-
come the first documented case of a viral infection with excep-
tional characteristics in terms of host-range susceptibility. Coron-
avirus infections in humans find their origins in viruses circulat-
ing in wildlife—in particular, bats—through cross-species trans-
mission that often includes intermediate hosts, such as alpacas,

palm civets, rodents, cattle, and dromedary camels (Cul et al.
2019). Overall, the transmission of pathogens is not unidirectional;
ecosystem disruptions and alterations to the human-wildlife in-
terface also create opportunities for circulating infectious agents
to undergo reverse zoonotic transmission, or spillback, into domes-
tic and wild animal species. The transmission of pathogens be-
tween different species—that is, crossing species barriers—is an
ecological phenomenon known as host jump, cross-species trans-
mission, zoonotic transfer, pathogen spillover, and zoonotic spillover.
Specifically, spillover can be defined as the “cross-species trans-
mission of a parasite into a host population not previously in-
fected” (Plowright et al. 2017). Usually, spillover refers to the cross-
species transmission of pathogens from wildlife (usually verte-
brates) to humans (Plowright et al. 2017, Wells and Clark 2019),
whereas spillback is defined as the transmission of a pathogen
from humans to wildlife (reverse zoonosis) by direct contact be-
tween species or mediated by vectors (Weaver 2013, Olival et al.
2020, Hendy et al. 2020). Because of the massive spread of SARS-
CoV-2in humans, the direction of spillover events has been mostly
from humans to animals in a zooanthroponotic fashion, although
over time these interspecies transmissions have become anthro-
pozoonotic (animals to humans). Along these lines, the SARS-
CoV-2 pandemic has already set off a series of potential spill-
back risk scenarios and venues for transmission, because many
domesticated pets, mammals in zoos, and livestock are suscep-
tible to SARS-CoV-2 infection (Hobbs and Reid 2021, Qiu et al.
2023). For example, tigers in the Bronx Zoo (New York, New
York, in the United States) acquired SARS-CoV-2 infection possi-
bly from zookeepers (McAloose et al. 2020), and mink farms in the
United States, as well as in Europe, have reported outbreaks of
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SARS-CoV-2 linked to human spillback. In addition, there is a doc-
umented event of spillback from human to mink with further
spillover back to humans (Chaintoutis et al. 2021, Eckstrand et al.
2021, Koopmans 2021, Oude Munnink et al. 2021). A similar sce-
nario is currently described in North American white-tail deer
(Kuchipudi et al. 2022, Martins et al. 2022, Pickering et al. 2022)
and in pet hamsters (Yen et al. 2022). The possibility of spillback
is a critical concern, because it could result in an enzootic estab-
lishment (Manes et al. 2020) and future spillover of SARS-CoV-2 to
humans (Fischhoff et al. 2021), both of which have implications for
human and nonhuman mammal health, including wildlife (Gry-
seels et al. 2020, Olival et al. 2020, Audino et al. 2021). There-
fore, understanding the trajectory and dynamics of SARS-CoV-2
in mammals is of utmost importance. In this study, we investigate
the potential of SARS-CoV-2 to infect additional species to those
already reported by combining virological data and inferences of
mammalian species susceptibility obtained by mapping infection
and angiotensin-converting enzyme 2 (ACE2) receptor conserva-
tion onto a phylogenetic tree of mammal species. We hope that
the results in the present article can guide policy to support sys-
tematic screening of wildlife to monitor SARS-CoV-2 circulation
and evolution in mammals, preserve endangered species, and fur-
ther prevent virus spillover to humans.

Tracking coronaviruses

Coronaviruses possess the largest genomes of any RNA viruses,
27.6-31 kilobases (kb) in size (other RNA viruses are typically
10 kb in size; Belshaw et al. 2007). The 5'-most (i.e., from the initi-
ation point) two-thirds of the genome includes the replicase gene,
which consists of two overlapping open reading frames (ORF), 1a
and 1b. Located downstream of ORF1b are four ORFs that code for
a set common to all coronaviruses of structural proteins: spike,
envelope, membrane, and nucleocapsid proteins. Coronavirus en-
try into host cells is mediated by its transmembrane spike glyco-
protein that forms homotrimers protruding from the viral surface
(Tortorici and Veesler 2019). The spike glycoprotein includes two
functional subunits responsible either for binding to the host cell
receptor (S1 subunit including the receptor-binding domain; RBD)
or for fusion of the viral and cellular membranes (S2 subunit). The
ACE2, previously identified as the cellular receptor for SARS-CoV-
1 (Hamming et al. 2004), also acts as a receptor for SARS-CoV-2
(Yan et al. 2020). In particular, the SARS-CoV-2 spike protein is ac-
tivated by TMPRSS2 protease expressed at the apical surface of
the airway epithelium to mediate fusion (Hoffmann et al. 2020).
The ACE2 receptor was first reported in 2000 (Imai et al. 2008),
with a sequence of approximately 800 amino acids. It is found in
various species and in multiple tissues, including the small and
large intestines, kidneys, testes, heart (Sun et al. 2021a), and brain
(Xu and Lazartigues 2020).

Since the start of the COVID-19 pandemic, virus genomic se-
quences have been generated and shared at an unprecedented
rate, with more than 15 million SARS-CoV-2 sequences avail-
able via the Global Initiative on Sharing All Influenza Data
(GISAID; www.gisaid.org), permitting near real-time surveillance
of the pandemic (Meredith et al. 2020). The use of pathogen
genomes on this scale to track the spread of the virus interna-
tionally (Di Giallonardo et al. 2020), study local outbreaks (Amato
et al. 2022), and inform public health policy signifies a new age in
virus genomic investigations. To further understand the epidemi-
ology, sequencing enables the identification of emerging SARS-
CoV-2 variants and mutations potentially linked to changes in vi-
ral properties, tissue and host-species tropism, and adaptation.
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Since late 2020, SARS-CoV-2 variants circulating globally that pose
an increased risk to global public health have been classified as
variants of interest and variants of concern to prioritize global moni-
toring and research efforts (WHO 2021). These variants are char-
acterized by specific multiple genomic mutations with respect to
the Wuhan-Hu strain, and this characterization may cause diag-
nostic detection failures and reduced efficacy of treatments (CDC
2023).

Documented susceptibility of mammals to

SARS-CoV-2 infection and conservation
concerns

To review the status of known SARS-CoV-2 infection in mammals,
we surveyed the cases noted by the National Veterinary Services
around the world. The National Veterinary Services are responsi-
ble for collecting, managing, and reporting SARS-CoV-2 infections
in mammals to the World Organization for Animal Health (WOAH;
founded as the Office International des Epizooties). The tripartite
of WOAH, WHO, and the Food and Agriculture Organization of the
United Nations have emphasized the importance of monitoring
wildlife populations for SARS-CoV-2 infection as a means of early
detection of potential reservoir species. A case in point was the
detection of SARS-CoV-2 in white-tail deer (Chandler et al. 2021,
Kuchipudi et al. 2022) and mule deer (WOAH 2022a) in the United
States and Canada based on the monitoring efforts of those coun-
tries. Conversely, routine or systematic testing for SARS-CoV-2 in
domestic animals has only been recommended under very spe-
cific conditions (WOAH 2022b). Itis important to stress that the ac-
tive monitoring for SARS-CoV-2 in wildlife varies depending on the
country. Some countries, such as the United States, have estab-
lished a systematic surveillance plan for targeted species (USDA
2023), whereas other countries lack a proper surveillance strat-
egy, which makes it difficult to quantify the surveillance efforts.
Limited disease surveillance (not only SARS-CoV-2) in wildlife is
a common problem in several countries, because of the lack of
funding and to prioritization of activities in domestic animals
(Delgado et al. 2023). Considering the above, data on SARS-CoV-
2 infection officially reported to the WOAH were coupled with
gray literature (e.g., newspaper articles) and references in scien-
tific journal articles in our compilation reported in the present
article. In particular, the study of Meekins and colleagues (2021)
was used as an initial reference to outline SARS-CoV-2 suscepti-
bility and disease course in different mammal species on the basis
of both experimental and natural infections.

Overall, 51 nonhuman mammal species from 22 taxonomic
families were identified as having SARS-CoV-2 infection (table 1).
We found 24 species with natural infection, 20 with experimen-
tal infection and found to be susceptible, and 8 with experimen-
tal infection and not found to be susceptible. Remarkably, differ-
ences were evident within a family. For example, in Procyonidae,
the South American coati (Nasua nasua) has shown natural infec-
tion, whereas raccoons (Procyon lotor) have been experimentally in-
fected and found to be not susceptible. In addition, in the Canidae,
wolves (Canis lupus) have been shown to be naturally infected by
SARS-CoV-2, whereas the common raccoon dog and the red fox
(Nyctereutes procyonoides and Vulpes vulpes, respectively) have only
shown susceptibility through experimental infection, and coyotes
(Canis latrans) are not susceptible through experimental infection.

Of the mammalian species infected and susceptible to SARS-
CoV-2, almost 30% (15 species) belong to the Threatened cate-
gories specified by the International Union for Conservation of
Nature (IUCN). These categories identify species threatened with
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Figure 1. Diversity of SARS-CoV-2 in animals. The plot shows the distribution of SARS-CoV-2 variants of concern or interest and lineages assessed by
full genome sequences obtained from infected animals worldwide across time. The lineages with frequency less than 0.005 have been collapsed into

the “Other” category.

global extinction and are Vulnerable, Endangered, and Critically
Endangered. This observation is not surprising given that 27%
of all assessed mammal species are endangered (IUCN Red List,
www.iucnredlist.org); however, it is worth noting how alarming
disease spread can be if it occurrs in populations whose existence
is already threatened. The repeated occurrence of natural infec-
tion in species known to be susceptible to SARS-CoV-2 is concern-
ing from a conservation standpoint. Western lowland gorillas (Go-
rilla gorilla), for example, were found to be susceptible to COVID-
19 infection, with some individuals developing severe respiratory
symptoms such as pneumonia (Gibbons 2021). Gorillas are Criti-
cally Endangered, and an outbreak in wild populations could be
catastrophic for the conservation of the species. Moreover, four
species of big cats, ranging in categories from Vulnerable to En-
dangered, are susceptible to infection and exhibit severe clinical
signs (McAloose et al. 2020, Ferndndez-Bellon et al. 2021, Giraldo-
Ramirez et al. 2021, Mishra et al. 2021, Mahajan et al. 2022). Tigers
(Panthera tigris) in captivity have shown symptoms ranging from
intermittent cough to audible wheezing (McAloose et al. 2020).
Such a clinical condition can be treated and managed in captive
mammals but could be fatal in the wild. It is therefore essential
that we gain knowledge on the susceptibility to SARS-CoV-2 of en-
dangered species that are at risk of infection.

We mapped the geographic distribution of SARS-CoV-2 nat-
ural infection in domestic mammals and wildlife on the basis
of the definition of the WOAH (2020; supplemental figure S1,
supplemental table S1). The geographic distribution was plotted
using the countries’ centroids and the point displacement tool in
QGIS version 3.16 (QGIS 2022). Global administrative boundaries
were retrieved from the Database of Global Administrative Areas
(https://gadm.org/index.html). The maps showed an uneven dis-

tribution of domestic and wild mammal species reported with a
SARS-CoV-2 infection, with the majority of the species reported in
the United States and Europe. Most likely, this observation reflects
an increased surveillance effort for SARS-CoV-2 in some countries
rather than a deterioration of the epidemiological situation of the
disease. In this sense, it is not surprising that the virus has been
reported in 15 different mammal species in the United States, be-
cause the USDA Animal and Plant Health Inspection Service be-
gan implementing active surveillance (proactive testing) of SARS-
CoV-2 in animals soon after the start of the pandemic. Conversely,
other countries (such as Brazil) have reported SARS-CoV-2 natural
infection in zero species.

Phylogenetic analysis of SARS-CoV-2
highlights spillback potential and the need
for viral surveillance

The global data set of mammal-related SARS-CoV-2 genome se-
quences obtained from GISAID consists of data from 41 coun-
tries, with 18 PANGO lineages (Phylogenetic Assignment of Named
Global Outbreak Lineages; O'Toole et al. 2022) that have a fre-
quency greater than 0.5% (supplemental table S2). The dynam-
ics of the lineages over time in nonhuman mammals mirror the
waves of variants that have been seen in the human popula-
tion (figure 1). In the first year of the pandemic, both human
and nonhuman mammal infections were caused by a mix of low-
frequency lineages, none of which was from variants of concern.
Early variants of concern, such as Alpha and Delta, were found
in nonhuman mammals well after infection was reported in hu-
mans (January 2021 and May 2021, respectively). In fact, humans
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were predominantly infected with the Alpha variant (PANGO
lineage B.1.1.7), which was first reported in September 2020 in
the United Kingdom and then was exported worldwide. Subse-
quently, humans were infected by the Delta variant (PANGO lin-
eage B.1.617.2), which was first detected in India in October 2020
and rapidly dominated human infections globally. While Delta
was still spreading across the globe (in November 2021), a new
variant of concern, Omicron (PANGO lineage B.1.1.529), quickly
emerged and replaced Delta. The Omicron variant was found in
nonhuman mammals soon after the onset of infection in humans.
In addition, it has been suggested that Omicron emerged either as
the result of a spillback into humans after evolving in a nonhu-
man mammal host (e.g., mouse) or as a result of evolution in im-
munocompromised human host (Wei et al. 2021, Du et al. 2022).
Specifically, the 45 point mutations unique to the Omicron lin-
eage have evolutionary markers similar to mouse-adapted lin-
eages. Indeed, most of these mutations cluster within the spike
gene sequence, where many mutations overlap with mutations
arising from chronic SARS-CoV-2 infection in mice (Wei et al.
2021) that increase the binding affinity to mouse ACE2 (mACE2;
Cameroni et al. 2022). In the United Kingdom, the dominant strain
detected in domestic cats also appears to have trailed the emer-
gence of each variant of concern into the human population
(Tyson et al. 2023). Although the theory of spillover from mice to
humans has never been refuted, the origin of this variant remains
mysterious.

A set of 1527 complete genomes of SARS-CoV-2 strains col-
lected from mammals (other than humans) and available on
GISAID (www.gisaid.org) was aligned as previously described
(Magalis et al. 2022a). Briefly, we used viralMSA (Moshiri 2021)
and the SARS-CoV-2 genome (NIH 2020) as a reference to align
the sequences. Mutations that were potentially associated with
contamination, recurrent sequencing errors, or hypermutability
were masked using a VCF filter provided by De Maio and col-
leagues (2020). A maximum likelihood phylogenetic tree was built
using IQ-TREE, with the best-fitting evolutionary model chosen
according to Bayesian information criteria and ultrafast boot-
strap approximation used to provide support (Minh et al. 2013,
Nguyen et al. 2015). The presence of sufficient phylogenetic sig-
nal was evaluated by performing a likelihood mapping analysis
in IQ-TREE. Migration analysis (i.e., mapping of ancestral traits on
nodes and branches through phylodynamic maximum-likelihood
reconstruction) was carried out using TreeTime (Sagulenko et al.
2018) and the maximum-likelihood tree obtained with IQ-TREE
with rooting on the MN908947.3 reference isolate. As TreeTime
requires a rooting method, the MN908947.3 isolate was chosen
for rooting of the timed tree corresponding to the oldest sample
within the SARS-CoV-2 genomes and to the theoretical last com-
mon ancestor of all taxonomic units included in the tree, there-
fore allowing assessment of valid evolution of clades within each
tree. MN908947.3 has been largely accepted as the reference in the
context of SARS-CoV-2 when modeling evolution without dating
the tree in time (Tagliamonte et al. 2022, Magalis et al. 2022b).

When we examined the phylogenetic relationships across iso-
lates from several parts of the world, we found that isolates clus-
ter by variants, forming monophyletic groups (figure 2a). When
comparing the location and host of origin, no clear patterns were
observed, especially in the case of the Delta and Omicron clades.
The host of origin is also intermixed as per the early B.1.2 lin-
eage that was circulating in North America (figure 2b). By com-
paring the dynamics across continents, it is striking that the
multiple outbreaks in mink appear to be monophyletic by vari-
ant rather than host. The phylogeny also suggests multiple spill-
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back events to mink or deer populations in the Americas and in
Europe (figure 2b) on the basis of the presence of multiple inde-
pendent SARS-CoV-2 lineages in mink and deer. Moreover, their
rather large clades also show a high degree of diversity within
each clade, likely evidencing viral evolution within the nonhuman
mammal populations.

When looking at the number of genome sequences by con-
tinent, we noticed that surveillance of nonhuman mammals
in Asia and Africa was limited compared with the Americas
(with most sequences from North America) and Europe (figure 2,
supplemental tables S2 and S3). This is likely because of differ-
ences in surveillance infrastructure between the Global North and
Global South. As we expected, our study reveals that nonhuman
mammals have become infected with strains that were circulat-
ing in humans. In the case of early variants, spillback from hu-
mans into new animal hosts was detected following extensive cir-
culation in humans. This was not the case for Omicron, which,
instead, was identified in multiple species shortly after its emer-
gence. Whether this is linked to a sampling bias or to a greater
spillback potential remains unclear.

Variants continue to evolve and adapt in
nonhuman mammal hosts

The repeated interspecies transmission of a virus presents the po-
tential for the acceleration of viral evolution and a possible source
of novel strain emergence. This potential was demonstrated by re-
verse zoonosis of SARS-CoV-2 from humans to mink (zooanthro-
ponosis), followed by selection in mink and spillback into humans
(anthropozoonosis; Oreshkova et al. 2020, Eckstrand et al. 2021,
Lu et al. 2021, Oude Munnink et al. 2021, Li et al. 2022a). Using
the same set of complete genomes described above of SARS-CoV-
2 collected from nonhuman host species (GISAID), we extracted
sequences from mink (n = 1067) and deer (n = 138) and used them
to identify occurrences of mutations with respect to the refer-
ence genome circulating in humans. Mink and deer were selected
because they have the highest numbers of related SARS-CoV-2
genomes present in GISAID. For each identified mutation, we cal-
culated the difference between the percentage obtained from hu-
man samples and from the two nonhuman mammal species un-
der investigation. Because an analysis at a global scale may be
biased by sampling and availability of data on GISAID, compar-
isons were made by country. Accordingly, for human sequences,
we selected from GISAID sequences belonging to the same lin-
eage detected in mink and deer for each country with evidence of
infection in nonhuman mammals, including PANGO lineages B.1,
B.1.160, B.1, B.1.2, B.1.50, B.1.594 for mink and B.1, B.1.119, B.1.2,
B.1.311, B.1.58, and B.1.596 for deer (Pangolin COVID-19 Lineage
Assigner; https://pangolin.cog-uk.io). As for the lineage origin, we
used the country or US state most represented by the sample
numbers, including The Netherlands, Denmark, Oregon, Wiscon-
sin, Michigan, and Utah for mink and Ohio and Iowa for deer. The
percentages of samples with a mutation of interest in mink and
deer in different countries were compared using a Bayesian ap-
proach with a beta distribution g(n + 1, n —s + 1), where n is the
total number of tested sequences in each species or country and
s is the number of samples with the mutation.

While taking into consideration the limits of this analysis due
to the relatively low number of sequences from mink when com-
pared with human sequences, we identified mink-specific mu-
tations (Spike_Y453F, NS3_H182Y, and NSP3_N1263del) with sta-
tistical support, apparently only in the outbreaks in Denmark
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Figure 2. (a) Global phylogeny of SARS-CoV-2 sequences obtained from infected animals. The maximum likelihood tree is rooted in the first genome of
SARS-CoV-2 obtained from a human case in Wuhan, China. The branches are colored on the basis of the ancestral state reconstruction using PANGO
lineages or variants as traits. (b) Continent specific phylogenetic reconstruction of SARS-CoV-2 sequences obtained from infected animals. The
phylogenetic trees with branches are colored on the basis of variant of SARS-CoV-2 sequences and heatmap depicting host of origin (the infected

animal from which the genome was obtained).

and The Netherlands (figure 3a, 3b). Mutations Spike_V70del,
Spike_H69del, N_S194L, NSP1_M85del, and NSP12_T739I are
unique to Denmark, whereas NS3_Q57H was only found in the
outbreak in The Netherlands. Sequences from deer in Ohio
and lowa also share a common set of deer-specific mutations,
including N_P67S, NS3_G172V, NS3_Q57H, NSP5_L89F, N_P199L,
NSP16_R216C, and NS8_S24L (figure 3c, 3d).

The findings in mink and deer are of great interest given that
they are the only two species for which we have documented evi-
dence of sustained intraspecies transmission, although in two dif-
ferent biological landscapes, farm (mink) and free range (deer).
In both cases, our analysis identified genetic signatures, scat-
tered in structural and nonstructural viral proteins, that have
been acquired by deer- and mink-adapted strains regardless of
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Figure 3. SARS-CoV-2 mink (a and b) and deer (c and d) specific mutations. The percentage equals the number of samples that contain each mutation.
The percentages of samples with mutation in the two species in different countries were compared with those of humans using a Bayesian approach
with beta distribution g(n + 1, n —s 4+ 1), where n is the total number of tested sequences in each species or country and s is the number of samples
with mutation. Abbreviations: LCL, lower control limit; UCL, upper control limit.

the infecting lineage or the country (or US state) where they were
identified.

SARS-CoV-2 evades the human immune system in several
ways, such as accumulating mutations on the spike protein that
reduce binding to host antibodies. Significantly, many sites of mu-
tations in variants of concern are located on the RBD that en-
gages ACE2. Mutations that endow the ability for the spike pro-
tein to evade antibodies in humans may also play an additional
role by influencing ACE2 binding specificity and host range. Muta-
tion Y453F, located in the RBD of the spike protein, occurs in the
mink outbreaks in both Denmark and The Netherlands; however,
in sequences from The Netherlands, it is only present in a limited
number of sequences that are divergent from the rest of the group.
In the Danish group, the same mutation occurs in all sequences
except one, which was one of the earliest collected samples.

A recent study by Porter and colleagues (2023), through an el-
egant evolutionary approach, confirmed the importance of the
Y453F mutation as a signature of adaptation to the mink host
and further analyzed additional mutations in the spike protein
of mink-related sequences, including S1147L, F486L, and Q314K
not evidenced in our analysis but apparently showing an in-
creased evolutionary rate. Although the biological role is known
for some of these mutations, such as Y453F, which enhances in-
teraction with the mink ACE2 receptor and resistance to conva-

lescent serum (Bayarri-Olmos et al. 2021, Ren et al. 2021, Zhou
et al. 2022), further experiments are warranted for the others.
Systematic screening of viral sequences obtained from mammals
and analyses inferred on a global scale are therefore essential to
confirm host-specific mutations and to immediately identify any
clusters in humans related to any nonhuman mammal species.
From a practical perspective, understanding the prompt identifi-
cation of novel sequences may allow us to study viral properties in
vivo using animal models, correlate with pathology or transmis-
sion in humans or animals, and develop (or update) diagnostic
assays.

Taking into account the global spread of the Omicron lineage
and its offspring, a recent study also highlighted residues on the
spike protein that increase the number of interactions with the
murine ACE2, including N501Y, Q493R, G496S, and Q498R (Niet al.
2023). This structural observation is consistent with literature re-
ports that spike mutations N501Y, Q493H, and K417N increase
binding to ACE2 from mice (mACE2) and other species (Dinnon
III et al. 2020, Sun et al. 2021b, Li et al. 2022b). Structural data
and binding analysis of mACE2 to SARS-CoV-2 variant of con-
cern highlight how mutations that lead to evasion of the im-
mune response in humans may have an impact on the binding
to ACE2 receptors of other species, possibly increasing host sus-
ceptibility. Binding assays and structural analysis also identified
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four of the mutations found in SARS-CoV-2 spikes and known
to be associated with immune escape, including N501Y, E484A,
Q493R, and Q498R, because critical mutations involved in high-
affinity binding of variant of concern spikes to the mACE2 recep-
tor, and as such potentially allowing for expansion of SARS-CoV-2
host range.

Phylogenetic mapping of ACE2 receptor
does not correlate with infection

Previous attempts to predict species susceptible to SARS-CoV-
2 have compared sequences of ACE2 orthologs across species
(Damas et al. 2020), modeled the structure of the spike protein
bound to ACE2 orthologs (Lam et al. 2020, Rodrigues et al. 2020), or
combined structural modeling with machine learning of species
ecology and biology (Fischhoff et al. 2021). In the present arti-
cle, to use phylogenetic relatedness, we mapped two traits asso-
ciated with SARS-CoV-2 onto a recently published phylogenetic
tree of mammals to predict potential susceptibility for infection in
species for which infection has not yet been reported. The “DNA-
only,” maximum clade credibility tree with a nearly complete sam-
pling of 4098 mammal species from Upham and colleagues (2019)
was downloaded and used for character mapping analyses, as
recommended. The phylogeny was time calibrated using 17 fos-
sils placed at nodes and one root constraint. Two traits of inter-
est were mapped to the phylogeny: infection and conservation of
the ACE2 receptor. Infection was determined using the literature
search described above, distinguishing between natural and ex-
perimental infection. The ACE2 receptor data were compiled from
Damas and colleagues (2020), specifically figures 1 and 2 in which
the authors group species into very high, high, medium, low, and
very low conservation relative to humans. For our analyses, 248
species (out of 252 described in Damas et al. 2020) were also found
in the phylogeny, belonging to 101 families across the mammal
tree of life. In particular, 19 have very high conservation, 27 have
high conservation, 56 have medium conservation, 47 have low
conservation, and 99 have very low conservation of ACE2. Most
families have the same ACE2 receptor conservation designation
(i.e.,all Hominidae have very high ACE2 receptor conservation), al-
though some families such as Heteromyidae, represented by Ord’s
kangaroo rat (Dipodomys ordii), Stephens’s kangaroo rat (Dipodomys
stephensi), and the little pocket mouse (Perognathus longimembris),
are heteromorphic in having low, high, and medium ACE2 receptor
conservation, respectively. Remarkably, only 28 species had both
infection and ACE?2 information, again highlighting the concern-
ing lack of effort that has gone into systematic screening of non-
human mammals. Species without data were scored as N for “no
data.” These two traits are summarized in supplemental table S4.
Using the ace function in Ape v.5.6.2 (Paradis et al. 2004), likelihood
scores for a one parameter equal rates model, a symmetric model
with forward and reverse transitions between states constrained
to be equal, and an all-rates different matrix were compared for
best fit. Model selection was determined using the Akaike infor-
mation criterion (supplemental table S5). Following model choice,
ancestral character estimation was also performed using Phy-
tools v. 1.0.3 (Revell 2012) to compare stochastic character map-
ping methods (SIMMAP; Bollback 2006; make.simmap with 10,000
simulations).

Both ancestral state reconstruction methods (simmap and ace)
recovered congruent patterns of SARS-CoV-2 infection and the
ACE2 receptor. At the species level—especially for infection—the
limited data points (52 of 4098 species: 24 with natural infec-

tion, 20 susceptible with experimental infection, and 8 not sus-
ceptible with experimental infection) prevented us from having
the statistical power to identify large-scale patterns. Therefore,
we focused on mapping the conservation of the ACE2 receptor
from Damas and colleagues (2020) and secondarily added if a
species had a documented infection (both natural and experi-
mental; supplemental figures S2 and S3). Even with the addi-
tional data (248 of 4098 species), patterns were still difficult to
identify, so we also conducted additional analyses at the family
level.

To generate a family-level tree, the species tree was
collapsed to monophyletic families using custom scripts
(05_Species2FamilyTree.R) to produce a tree that had 159 fam-
ilies. For analyses performed at the family level, states were
combined if species within the family were classified as both
low and medium (i.e, a new state named Low_Medium was
made), and analyses were run as described above. Mapping of
infection was still underpowered for identification of patterns
(22 of 159 families). However, analyses of the ACE2 receptor with
infection mapped at the tips were insightful (101 data points of
159 families). In general, we found that infection is not associ-
ated with receptor conservation. For example, a family could
have low ACE2 receptor conservation and still have SARS-CoV-2
infection. This is true of the Carnivora clade, which has six
natural infections and one experimental infection but is recov-
ered as having very low ACE2 receptor conservation (figure 4,
supplemental figure S4). Conversely, a large clade within the
Artiodactyla composed of Iniidae (river dolphins), Delphinidae
(oceanic dolphins), Phocoenidae (porpoises), Monodontidae (nar-
whals and belugas), Ziphiidae (beaked whales), Physeteridae
(sperm whales, pygmy sperm whales, and dwarf sperm whales),
Balaenopteridae (baleen whales), Eschrichtiidae (gray whales),
Neobalaenidae (pygmy right whales), and Balaenidae (right
whales and bowhead whales) is recovered as having high con-
servation of the ACE2 receptor but no documented SARS-CoV-2
infection. The latter may be linked to very low exposure risk
for these mammals in the wild, although some of these species
are reared in captivity and could have been exposed by infected
caretakers or could be infected through wastewater (Audino
et al. 2021). Perhaps unsurprisingly, a clade within the primates
composed of Cercopithecidae (Old World monkeys), Hominidae
(great apes, including humans), and Hylobatidae (gibbons) is
recovered as having very high ACE2 receptor conservation with
both natural and experimental infection. The sister clade (also in
primates) composed of Aotidae (night monkeys) and four families
of New World monkeys (Atelidae, Cebidae, Callitrichidae, and
Pitheciidae) is modeled as medium conservation and has just
one experimental infection and no natural infections known.
However, experimental infections should be further investigated
as species in the same family may have been inoculated with
different strains or different doses than species with natural
infections. In general, like the results of Fischhoff and colleagues
(2021), our results suggest that within mammalian orders there
is a lot of variation in susceptibility.

To demonstrate the potential of using phylogenetic charac-
ter mapping, additional analyses were performed to investigate
infection using both stochastic mapping (make.simmap) and an-
cestral character estimation (ace) for the Felidae (cat) family
alone, which had densely sampled trait data. We found that two
clades, Panthera and Lynx, have a high probability for infection
(supplemental figures S5 and S6). Currently, five of six species of
Panthera have known SARS-CoV-2 infection, whereas two of four
species of Lynx have documented natural infection.
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(TopoFree_ND; Upham et al. 2019).

Because developing predictive models for SARS-CoV-2 has
proved to be difficult, we had hoped that by including phyloge-
netic relatedness, we could identify patterns that could provide
insights for leading infection surveillance initiatives. Phylogenetic
character mapping methods that aim to reconstruct trait states at
nodes can suffer from issues of sampling bias, missing lineages,
and model inadequacy. This issue, combined with the limited data
for SARS-CoV-2 infection across mammals, suggests that these
methods are not yet well suited for making these predictions.
Sampling bias of captive animals influences the representation
of species in such analyses, because captive populations are more

likely to be surveyed for infection and often experience different
environmental conditions, diets, and social structures compared
with their wild counterparts. If more surveillance data were avail-
able, especially for species outside of captivity, these types of anal-
yses could be powerful tools in the identification of SARS-CoV-
2-susceptible mammals and intermediate host species for SARS-
CoV-2, guide the selection of mammal models of COVID-19, and
assist the conservation of nonhuman mammals in both native
habitats and human care. However, even with our limited data set,
we are able to highlight species in the Felidae that should be mon-
itored and further investigated. Additional nonhuman mammal
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surveillance efforts are needed to enable this type of predictive
research, particularly for conservation efforts.

In addition, ACE2 receptor conservation should not be consid-
ered as the sole major determinant of species susceptibility, but
rather as one of the factors that may contribute to susceptibil-
ity. In our study, ACE2 receptor conservation is not always asso-
ciated with infection. However, we also question how character-
izing ACE2 conservatism related to humans rather than bats, in
particular Rhinolophus bats because those are the presumable nat-
ural hosts of the SARS2 ancestor (e.g., in northern Laos; Temmam
et al. 2022), affects results. Furthermore, recent work has found
that ACE2 does not play a mandatory role in the conformational
activation of the spike protein necessary for infection (Cervantes
et al. 2023).

Our findings suggest that evolutionary proximity to species
that have been infected could be useful for developing informed
surveillance programs in the future. As we attempt to establish
the extent of SARS-CoV-2 circulation in mammals, it would seem
reasonable to concentrate and intensify surveillance efforts in
species that are closely related to existing clusters of positivity. In
addition, because ACE2 receptor conservation was determined on
the basis of sequence similarity to human ACE2 binding residues,
the imperfect correspondence with infection perhaps highlights
the danger of using a human-first approach when humans are
just one lineage in the mammal tree of life.

Conclusions

In this study, we highlighted several priorities that should be in-
cluded in future efforts aimed at understanding the host range
and ramifications of multispecies SARS-CoV-2 infection. First, in-
creased surveillance efforts in nonhuman mammal populations
are necessary in Africa, South America, the Indian subcontinent,
and Southeast Asia, all areas that appear to be greatly under-
represented from a surveillance perspective. We want to empha-
size, however, that this data collection should follow both FAIR
(Wilkinson et al. 2016) and CARE (Carroll et al. 2020) principles
for data management and stewardship to support data prove-
nance and equity. In addition, surveillance in nonhuman mam-
mals should be expanded both qualitatively and quantitatively.
Work using host ecology machine learning has been fundamen-
tal in providing susceptibility predictions at the global scale for
emerging pathogens and potential host-pathogen systems to help
direct surveillance programs toward specific geographic regions
and targeted for specific pathogens and hosts (Becker et al. 2022,
Robles-Fernandez et al. 2022). However, we should also develop
surveillance programs that aim to understand the real extent
of infection in wild and domestic mammals, with particular fo-
cus on certain endangered species that are closely related to
species shown to be susceptible to infection. This surveillance ef-
fort should also be able to identify early spillover events caused
by novel variants as well as specific genetic signatures that can
be associated with heavily infected populations. Although we
were not able to infer the likelihood of novel infection of addi-
tional mammal species, other populations will undoubtedly be-
come infected in the years to come, and spillover events with
mammal-adapted viruses could become a serious public health
problem. Surveillance for SARS-CoV-2 has been predominantly
human-centric, with enormous financial and organizational ef-
forts being performed in humans. Our findings suggest that a less
human-centric approach could be developed for this type of emer-
gency. Therefore, surveillance in nonhuman mammal populations
would be an essential component of preparedness and response.

For this reason, we believe that the exceptional circumstances
that could be determined by the expanding host range of SARS-
CoV-2 should be reflected in the terminology we use to describe
this event.

Human diseases caused by animal pathogens are known as
zoonoses. Zoonotic pathogens may cause a variety of outcomes,
from sporadic outbreaks to pandemic events. SARS-CoV-2 has
caused what has been defined as a pandemic. The term pandemic
comes from the two Greek words pan and demos, which mean, re-
spectively, “all” and “people” (Agnelli and Capua 2022). For the sake
of clarity, the term pandemic does not encompass the infection of
all mammals. There is another term that would perhaps be more
suitable to define the magnitude of what we are experiencing, as
was suggested by Gollakner and Capua (2020). The term panzootic,
which literally means “affecting all animals,” has been used only
very rarely to describe extensive multispecies infections by a sin-
gle pathogen (Agnelli and Capua 2022). However, on the basis of
its use to date, it remains unclear how many species, across how
many clades, are required for an event to be considered a pan-
zootic. In addition, Agnelli and Capua (2022) found no reference to
how many species (symptomatic or not) should be included in a
disease defined as a panzootic or whether humans (Homo sapiens)
are included or not in the zootic part of the word. Therefore, we be-
lieve that the most relevant occurrence to ignite a panzootic is in-
fection, whether clinically overt or asymptomatic. Asymptomatic
infections may develop into a clinical illness after adaptation in
a given species. This discourse is relevant not only to Sars-CoV-2
infection, but also to many other zoonotic pathogens, such as, for
example, avian influenza. The latter, because of extensive circu-
lation in wildfowl and domestic poultry, has caused infection of
wild mammals such as foxes and bears, and given its interspecies
transmission potential, it may also be a leading candidate to be
defined as a panzootic.

In the present article, we have generated and analyzed data
that support the fact that infection of mammals in the COVID-19
setting is a relevant component of the global problem. We believe
that, for the sake of clearer communication with the public and
with decision-makers about the complexity of this infection, the
term panzootic could be introduced in the general discourse, and if
animal infections continue to increase, possibly replace the term
pandemic.

Supplemental material

Supplemental data are available at BIOSCI online.

The scripts used for performing character state reconstruction
for the mammal phylogeny can be found at https://github.com/
mmabry/PanzooticProject. The data sets, including tree files and
character matrices used for analyses and for figures, can be found
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