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A B S T R A C T   

Background: Inflammation is associated with cognitive functioning and dementia in older adults, but whether 
inflammation is related to cognitive functioning in youth and whether these associations are causal remains 
unclear. 
Methods: In a population-based cohort (Avon Longitudinal Study of Parents and Children; ALSPAC), we inves-
tigated cross-sectional associations of inflammatory markers (C-reactive protein [CRP], Interleukin-6 [IL-6] and 
Glycoprotein acetyls [GlycA]) with measures of cold (working memory, response inhibition) and hot (emotion 
recognition) cognition at age 24 (N = 3,305 in multiple imputation models). Furthermore, we conducted one- 
sample and two-sample bidirectional Mendelian randomization (MR) analyses to examine potential causal ef-
fects of genetically-proxied inflammatory markers (CRP, GlycA, IL-6, IL-6 receptor, soluble IL-6 receptor) on 
cognitive measures (above) and on general cognitive ability. 
Results: In the ALSPAC cohort, there was limited evidence of an association between standardised inflammatory 
markers and standardised cognitive measures at age 24 after adjusting for potential confounders (N = 3,305; beta 
range, − 0.02 [95 % confidence interval (CI) − 0.06 to 0.02, p = 0.27] to 0.02 [95 % CI − 0.02 to 0.05, p = 0.33]). 
Similarly, we found limited evidence of potential effects of 1-unit increase in genetically-proxied inflammatory 
markers on standardised working memory, emotion recognition or response inhibition in one-sample MR using 
ALSPAC data (beta range, − 0.73 [95 % CI − 2.47 to 1.01, p = 0.41] to 0.21 [95 % CI − 1.42 to 1.84, p = 0.80]; or 
on standardised general cognitive ability in two-sample MR using the latest Genome-Wide Association Study 
(GWAS) datasets (inverse-variance weighted beta range, − 0.02 [95 % CI − 0.05 to 0.01, p = 0.12] to 0.03 [95 % 
CI − 0.01 to 0.07, p = 0.19]). 
Conclusions: Our MR findings do not provide strong evidence of a potential causal effect of inflammatory markers 
(CRP, IL-6, IL-6 receptor, GlycA) on the cognitive functions examined here. Given the large confidence intervals 
in the one-sample MR, larger GWAS of specific cognitive measures are needed to enable well-powered MR an-
alyses to investigate whether inflammation causally influences specific cognitive domains.   
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1. Introduction 

Cognitive function predicts many important life outcomes including 
educational attainment (Deary et al., 2007; Strenze, 2007), occupation 
status (Schmidt & Hunter, 2004; Strenze, 2007) health-related mortality 
(Calvin et al., 2017), and quality of life (Cumming et al., 2014). 
Cognitive dysfunction is a core feature of many mental health disorders 
including depression, schizophrenia and Alzheimer’s disease (Bolt et al., 
2019; Dalili et al., 2015; Fusar-Poli et al., 2012; Nikolin et al., 2021; 
Rock et al., 2014), and is highly prevalent in physical illnesses including 
cancer and long COVID (Janelsins et al., 2014; Van Dyk & Ganz, 2021). 
Despite this, there are few treatments which effectively address cogni-
tive dysfunction (see (Pan et al., 2017) for a review), making it an unmet 
clinical need. Instead, some treatments may result in worse cognition 
(Van Dyk & Ganz, 2021). Therefore, there is a need to identify modifi-
able risk factors that may be targets for prevention and treatment of 
cognitive dysfunction. 

One promising intervention target could be inflammation (Khan-
daker et al., 2018). There is some evidence that systemic inflammatory 
markers such as C-reactive protein (CRP) are associated with cognitive 
dysfunction in people with physical or mental health conditions (Mac 
Giollabhui et al., 2020b; Misiak et al., 2018; Morrens et al., 2022). 
Observational studies in the general population have also reported as-
sociations between inflammatory markers, such as CRP, Interleukin-6 
(IL-6) and Glycoprotein acetyls (GlycA), and poorer general cognitive 
ability and specific cognitive domains (Conole et al., 2021; Cullen et al., 
2017; Fard et al., 2022; Kokosi et al., 2021; Mac Giollabhui et al., 2021b; 
Sartori et al., 2012; Shields et al., 2021; Van der Lee et al., 2018) 
although improved cognition has also been reported (Milton et al., 
2021). Regarding the human experimental literature, the effect of acute 
inflammatory challenges (endotoxin and vaccines) on hot (processing of 
emotionally valanced stimuli e.g., emotion recognition (Roiser & 
Sahakian, 2013)) and cold (processing of emotionally neutral stimuli e. 
g., memory of neutral words (Roiser & Sahakian, 2013)) cognitive do-
mains have yielded inconsistent findings (Balter et al., 2018; Bollen 
et al., 2017; Brydon et al., 2008; Handke et al., 2020; Harrison et al., 
2014). For example, a systematic review reported conflicting results 
within cold cognitive domains (attention, executive function, memory), 
with some studies reporting decreased or enhanced performance after an 
inflammatory challenge, whilst others did not (Bollen et al., 2017). In 
contrast, there was more consistent evidence in hot cognitive domains of 
social and emotion processing, where inflammation reduced perfor-
mance (Bollen et al., 2017). However, most experimental studies are 
restricted to males and small sample sizes (N < 50). 

Whilst there is some evidence of an association between inflamma-
tion and cognition, there are gaps in the literature. First, current studies 
are often restricted to small samples (Bollen et al., 2017). Larger studies 
in the general population are needed to provide more reliable evidence. 
Second, few studies have examined the association between inflamma-
tion and cognition in youth (although see (Cullen et al., 2017; Mac 
Giollabhui et al., 2021a; Shields et al., 2021)), instead most studies have 
examined older adults (see (Fard et al., 2022) for a review). Third, the 
direction and causality of association are unknown. Specifically, it is 
unclear whether inflammation affects cognition or if observed associa-
tions are due to residual confounding or reverse causation. Fourth, most 
studies examined commonly measured markers such as IL-6 and CRP 
(Conole et al., 2021; Kokosi et al., 2021; Mac Giollabhui et al., 2021b; 
Shields et al., 2021). Whilst these are useful markers of systemic 
inflammation, their levels vary over time within individuals (Bogaty 
et al., 2013). Investigating novel inflammatory markers such as GlycA, 
which are thought to be more stable and better reflect chronic inflam-
mation (Connelly et al., 2017; Otvos et al., 2015; Ritchie et al., 2015), 
could be more fruitful. Fifth, few studies have examined the effect of 
inflammation on hot and cold cognitive domains. As there is evidence of 
cognitive sub-groups within clinical populations (people experiencing 
deficits in hot cognition, cold cognition, or in both domains) (Dam et al., 

2021), investigating both domains may propose novel treatment targets 
for sub-groups of individuals experiencing specific cognitive 
impairments. 

In this study, we investigated the role of inflammation in cognition, 
both a broad measure of general cognitive ability and specific cognitive 
domains. We first examined associations between inflammatory markers 
(CRP, GlycA and IL-6) and cold (working memory and response inhi-
bition) and hot (emotion recognition) cognitive measures within a large 
population-based cohort (Avon Longitudinal Study of Parents and 
Children; ALSPAC). To better assess causality, we then used Mendelian 
randomization (MR). MR is a genetic epidemiological method that helps 
to overcome the limitations of observational studies (particularly, re-
sidual confounding and reverse causation) by using genetic variants 
(Single Nucleotide Polymorphisms, SNPs) strongly associated with an 
exposure (identified in genome-wide association studies, GWAS) as 
proxies for the exposure (Davey Smith & Ebrahim, 2003; Sanderson 
et al., 2022). This approach is less susceptible to these limitations 
because genetic variants are randomly assigned during gamete forma-
tion and conception (making them less likely to be associated with 
confounders) and fixed at conception (precluding reverse causation) 
(Davey Smith & Ebrahim, 2003). MR can be conducted using SNP- 
exposure and SNP-outcome effect sizes from the same sample (one- 
sample MR) or from two samples (two-sample MR) (Lawlor, 2016; 
Sanderson et al., 2022). Whilst each approach has its own strengths and 
limitations, they are conceptually similar. See (Sanderson et al., 2022) 
for a recent review. Here, we conducted one-sample MR to examine 
associations between inflammatory markers (CRP, IL-6, IL-6 receptor 
[IL-6R], soluble IL-6R [sIL-6R], GlycA) and the same cognitive domains 
within ALSPAC. Inflammatory exposures were selected based on their 
well-studied associations with mental health conditions (CRP, IL-6). We 
also included GlycA as it is thought to provide a more stable marker of 
chronic inflammation (Connelly et al., 2017; Otvos et al., 2015; Ritchie 
et al., 2015). To increase statistical power, we used two-sample MR to 
examine potential causal relationships between the same inflammatory 
markers and general cognitive ability (GCA). As there were no large 
GWAS on specific cognitive domains, we focused on the broader 
construct of GCA in the two-sample MR. Given the possibility that the 
relationship between inflammation and cognition could be in either 
direction, we also conducted bidirectional analyses which tests both 
possibilities. Triangulating across multiple methods (non-genetic 
observational analysis and Mendelian randomization) which have 
different sources of bias will enable more robust conclusions to be drawn 
(Hammerton & Munafò, 2021; Lawlor et al., 2016). Based on previous 
research, we hypothesised that higher levels of inflammation would be 
associated with poorer cognition. 

2. Materials and methods 

This study was pre-registered (Open Science Framework: https://osf. 
io/892wr/), with deviations justified (Supplementary Table S26). Ethics 
approval was obtained in original studies. 

2.1. Cross-sectional analysis in the ALSPAC cohort 

2.1.1. Cohort description 
ALSPAC is a longitudinal population-based birth cohort which 

initially recruited 14,541 pregnant women in the Avon area (UK) with 
expected delivery dates between 1st April 1991 and 31st December 1992 
(Boyd et al., 2013; Fraser et al., 2013; Northstone et al., 2019). There 
were 14,062 live births and 13,988 children who were alive at age one. 
An attempt was made to increase the original sample size when the 
eldest children were approximately aged seven. This resulted in a total 
sample size of 15,454 pregnancies (14,901 alive at 1 year of age) when 
using data after age seven. A vast range of variables are available 
including data on genetics (Supplementary methods 1.1), mental and 
physical health, and cognition. The study website contains details of the 
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available data through a fully searchable data dictionary and variable 
search tool: https://www.bristol.ac.uk/alspac/researchers/our-data/. 
Although the ALSPAC cohort is broadly representative of the general 
population in Britain in 1991, it is important to note that the cohort is 
less representative of less affluent families (e.g., living in rented ac-
commodation, not having a car) and ethnic minority mothers. For 
further details, see: https://www.bristol.ac.uk/alspac/researchers/coh 
ort-profile/. 

2.1.2. Inflammatory exposures at age 24 
High sensitivity CRP, GlycA (mainly a1-acid glycoprotein) and IL-6 

were assessed in blood samples collected from participants after fast-
ing for at least 6 h. CRP (mg/l), GlycA (mmol/l) and IL-6 (normalised 
protein expression [NPX] values on log2 scale) were quantified using an 
immunoturbidimetric assay (Roche Diagnostics), 1D proton (1H) Nu-
clear Magnetic Resonance spectroscopy-based platform (Nightingale 
Health, Helsinki, Finland), and Olink Proteomics assay, respectively. For 
intra-assay coefficient of variance for CRP and IL-6, see Supplementary 
methods 1.2. 

2.1.3. Cognitive outcomes at age 24 
Working memory, the ability to temporarily store and manipulate 

information, was assessed using the N-back task (two-back design) 
(Kirchner, 1958). On each trial, a number is briefly presented (500 ms) 
and participants are asked to report whether this number is the same or 
different from the number presented two trials earlier. This task consists 
of 48 trials with no feedback (8 trials are matches). Prior to this, there 
are 12 practice trials with feedback. The primary outcome is discrimi-
nability index (d’) which provides an overall performance estimate. A 
higher d’ indicates better working memory. Individuals who either did 
not respond on > 50 % trials or had a negative d’ were removed from 
analyses (N = 78). 

Emotion recognition, the ability to identify emotion expressions, was 
assessed using the Emotion Recognition Task (Penton-Voak et al., 2012). 
On each trial, a face displaying one of six basic emotions (happy, sad, 
anger, fear, disgust, or surprise) is briefly presented (200 ms) and then 
immediately covered up. Following this, participants report which 
emotion was displayed using the six labels. For each emotion, there are 
eight levels of intensity. This task consists of 96 trials (each emotion 
presented 16 times). The primary outcome is hits (i.e., number of 
emotion expressions correctly identified), with a higher score indicating 
better emotion recognition. 

Response inhibition, the ability to suppress a prepotent response, 
was assessed using the Stop-Signal Task (Logan et al., 1984). On each 
trial, a letter (X or O; 1,000 ms) is presented and participants are asked 
to report which letter was displayed, as quickly as possible. However, on 
25 % trials a tone is presented after the letter (“stop signal”). Participants 
are asked to inhibit responding on these trials. The task consists of 256 
trials (four blocks of 64 trials). The primary outcome is stop-signal re-
action time (SSRT). A lower SSRT indicates better response inhibition. 

All exposure and outcomes are continuous measures. For distribu-
tions of variables, see Supplementary Table S2. Of the 15,645 partici-
pants in ALSPAC, 3,305 individuals had data on all three cognitive 
measures (working memory, emotion recognition, response inhibition) 
at age 24. 

2.1.4. Potential confounders 
Potential confounders were chosen based on evidence that these 

variables may be risk factors for inflammation (O’Connor et al., 2009) 
and cognition and thus may confound the inflammation-cognition as-
sociation. Potential confounders included sex, ethnicity, BMI (age 24), 
maternal education (Degree, A level, O level, Vocational or CSE), 
maternal socioeconomic status (SES), smoking status (age 24), alcohol 
use (age 24) and IQ (age 8). For more details, see Supplementary 
methods 1.3. 

2.1.5. Statistical analysis 
Prior to analysis, exposure and outcome variables were standardised. 

Data were analysed using Stata 16 (StataCorp, 2019) using mvreg com-
mand. Linear regression models examined the cross-sectional associa-
tion between inflammation (CRP, GlycA and IL-6) and cognitive 
measures at age 24. An unadjusted model was first examined (model 1); 
followed by models adjusted for sex, ethnicity, and BMI at age 24 (model 
2); additionally adjusted for maternal education and SES (model 3); 
additionally adjusted for smoking and alcohol use at age 24 (model 4); 
additionally adjusted for IQ at age 8 (model 5). We conducted a sensi-
tivity analysis excluding ALSPAC participants who had CRP ≥ 10 mg/l, 
an indicator of current infection, at age 24 (N = 114); see (Mac Giol-
labhui et al., 2020a) for a review on using this cut-off as an indicator of 
current infection. Working memory was not normally distributed and 
natural log transforming this variable did not correct for this. As such, 
the untransformed raw variable was used in analyses. For complete case 
and sensitivity analyses, see Supplementary Table S4–S9. 

2.1.5.1. Dealing with missing data. Given the possibility that data are not 
missing completely at random (MCAR) in ALSPAC (Taylor et al., 2018), 
we conducted multiple imputation (MI). The rationale for using MI is (1) 
to improve power in the complete case analyses by imputing covariates 
and exposures (N range in fully adjusted complete case models: 
1,686–1,902), (2) we assume the outcome is missing at random (MAR) 
given the variables in the analysis model, and (3) we assume every 
exposure and covariate is MAR given the variables in the imputation 
model. Participants who had data on all three cognitive outcomes at age 
24 were included in the analysis (N = 3,305). Exposures (inflammatory 
markers) and potential confounders were imputed. For each set of im-
putations, 100 datasets were imputed using chained equations. We 
included the standardised exposures, standardised outcomes, potential 
confounders, and auxiliary variables in all models. To increase the 
plausibility that data are MAR, auxiliary variables were included in the 
MI (Madley-Dowd et al., 2019; White et al., 2011). These were chosen 
based on their association with incomplete variables (Supplementary 
methods 1.4). For each exposure, we report linear regression models 
with imputed data as our primary analysis. For more detail on the MI 
and variables included in the imputation models, see Supplementary 
methods 1.4 and Table S1. 

2.2. Genetic Mendelian randomization (MR) analysis 

MR is a method used to assess causality (Davey Smith & Ebrahim, 
2003; Sanderson et al., 2022). Genetic variants strongly associated with 
an exposure are used as proxies for the exposure; which makes this 
method less susceptible to reverse causation and confounding (Davey 
Smith & Ebrahim, 2003). The validity of causal inferences drawn from 
MR relies on three key assumptions: (1) genetic variants are robustly 
associated with the exposure, (2) genetic variants are not associated 
with potential confounders, (3) genetic variants are associated with the 
outcome only via the exposure. Here, we conducted one-sample MR 
within the ALSPAC cohort and two-sample MR using publicly available 
GWAS. Given the possibility that the relationship between inflammation 
and cognition could be in either direction, we conducted bidirectional 
analyses to investigate both possibilities. For more details, see Supple-
mentary methods 1.5. 

2.2.1. One-sample bidirectional Mendelian randomization in the ALSPAC 
cohort 

One-sample MR assessed whether there is a potential causal rela-
tionship between the same inflammatory markers and cognitive mea-
sures reported in the cross-sectional analysis (N range: 1,677–2,193). 

2.2.1.1. Data sources. The GWAS listed in Table 1 were used to identify 
genetic variants (Single Nucleotide Polymorphisms; SNPs) associated 
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with inflammation (CRP, IL-6, IL-6R, sIL-6R and GlycA) and cognition 
(working memory, emotion recognition, response inhibition) (Ahluwa-
lia et al., 2021; Han et al., 2020; Kettunen et al., 2016; Ligthart et al., 
2018; Mahedy et al., 2021; Rosa et al., 2019; Sarwar et al., 2012; 
Swerdlow et al., 2012). For details on GWAS (including any overlap with 
ALSPAC) and accessing data, see Supplementary methods 1.6, 
Tables S11 and S13. For number of genetic variants included in each 
SNP set, see Table 1. 

2.2.1.2. Extracting genetic variants for inflammation and cognition. SNPs 
were extracted from GWAS full summary statistics based on the 
following criteria: (1) p-value threshold for inflammatory markers (p <
5 × 10-8) and for cognitive measures (p < 5 × 10-6; due to no SNPs 
meeting criteria at 5 × 10-8), (2) linkage disequilibrium (LD) clumping 
(r2 = 0.01, kb = 1000) using ld_clump() in the ieugwasr package and (3) 
minor allele frequency > 0.01. LD clumping ensures that SNPs are not 
highly correlated with each other and are therefore independent. For 

ease of interpretation, all effect alleles refer to the exposure-increasing 
allele. Where possible, SNPs were divided into cis variants (SNPs +/- 
1mB from protein coding gene based on Genome Reference Consortium 
Human Build 37 or 38, see Supplementary Table S14 footnote for 
location of protein coding genes) and genome-wide variants (SNPs that 
met statistical criteria based on p-value and LD thresholds). Cis variants, 
due to their proximity to the protein coding gene, are less likely to be 
pleiotropic (i.e., less likely to influence the outcome via pathways other 
than the exposure) and therefore may provide more valid instruments. 
Genome-wide variants may increase statistical power in the analyses 
due to the larger number available. The primary analysis was performed 
using cis SNPs extracted from the largest available GWAS, except for 
GlycA which does not have a protein coding gene. Instead, we used the 
largest GlycA GWAS to date in the primary analysis. Secondary analyses 
used smaller GWAS/instruments. For number of SNPs available after 
applying each criterion, see Supplementary Table S14. 

Table 1 
GWAS and instruments used to extract SNPs for inflammation (CRP, IL-6, IL-6R, sIL-6R, GlycA) and cognition (working memory, emotion recognition, response 
inhibition).  

Phenotype GWAS/Instrument N SNP location N SNP 1SMR 2SMR 

Inflammation   
Primary analysis   
CRP Ligthart et al. (2018) 204,402 CRP gene cis SNPs      6 6 6 

Han et al. (2020) 418,642 CRP gene cis SNPs   20 18 13 

IL-6R Ahluwalia et al. (2021) 52,654 IL6R gene cis SNPs  2 2 2 

sIL-6R Rosa et al. (2019) 3,301 IL6R gene cis SNPs 34 34 22 
GlycA Borges et al. (2020) 115,078 Genome-wide SNPs  87 82 82  

Secondary analysis   
CRP Ligthart et al. (2018) 204,402 Genome-wide SNPs  78 76 77 

Han et al. (2020) 418,642 Genome-wide SNPs  552 520 494 

IL-6  Ahluwalia et al. (2021) 52,654 Genome-wide SNPs   3 3 3 

IL-6R Sarwar et al. (2012) 27,185 IL6R gene cis SNPs 1 1 1 
Swerdlow et al. (2012) ≤ 4,479/ 

SNP 
IL6R gene cis SNPs 3 3 3 

GlycA Kettunen et al. (2016) 19,270 Genome-wide SNPs  10 10 10  

Cognition   
Working memory Mahedy et al. (2021) 2,471 Genome-wide SNPs       3 3 N/A 

Emotion recognition Mahedy et al. (2021) 2,560 Genome-wide SNPs  6 6 N/A 

Response inhibition Mahedy et al. (2021) 2,446 Genome-wide SNPs  6 6 N/A 

General cognitive ability Lam et al. (2021) 373,617 Genome-wide SNPs 250 N/A Range: 219–250 

N, number of participants; SNP location (Genome-wide SNPs [independent significant genome-wide SNPs] or cis SNPs [SNPs within +/- 1mB from protein coding gene]), N, number of 

SNPs identified from each GWAS/instrument (see section 2.2.1.2 for criteria applied); 1SMR, Final N SNPs included in genetic risk scores (including proxies) for one-sample MR; 2SMR, Final N SNPs included in 

instruments (including proxies) for two-sample MR; CRP, c-reactive protein; IL-6, interleukin-6; IL-6R, interleukin-6 receptor, sIL-6R, soluble interleukin-6 receptor; GlycA, glycoprotein acetyls. Note: genetic variants for 

some instruments were pre-selected: Rosa et al. (2019) selected independent SNPs (r2 < 0.1) located within 250kb from IL6R; Sarwar et al. (2012) selected one SNP (rs2228145) located within IL6R; Swerdlow et al. 

(2012) selected independent SNPs located within 55kb from IL6R. For CRP, we pre-specified the Ligthart et al. (2018) GWAS in our pre-registration; however, as a larger GWAS was available (Han et al., 2020), we 

included this GWAS to increase statistical power. For location of protein coding gene, see Supplementary Table S14 footnote. 
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2.2.1.3. Creating genetic risk scores for inflammation and cognition. Ge-
netic and phenotypic data were available for 8,130 ALSPAC partici-
pants. For one-sample MR, identified SNP sets (Table 1) were combined 
into a weighted genetic risk score for inflammatory (CRP, IL-6, IL-6R, 
sIL-6R, GlycA) and cognitive (working memory, emotion recognition, 
response inhibition) phenotypes for each ALSPAC participant (Purcell 
et al., 2007). Specifically, risk alleles were weighted by the effect size 
(beta) reported in the GWAS and then summed to provide a risk score. 
Unrelated individuals were kept, withdrawals of consent were removed, 
missing genotypes were not imputed. For SNPs not available in ALSPAC, 
proxies were identified that had: r2 > 0.8 (using LDproxy_batch function 
in EUR population in R), rsID available, SNP available in full summary 
statistics and ALSPAC. For number of SNPs included in each genetic risk 
score and quality checks, see Table 1, Table S15 and Supplementary 
methods 1.7. 

2.2.1.4. Data analysis. Outcome variables (not exposures) are stand-
ardised for direct comparison. Analyses were carried out in R 4.1.1 (R 
Core Team, 2020). Genetic risk scores were created in Plink v1.90 and 
two-stage least squares regressions were conducted using the AER 
package (Kleiber & Zeileis, 2008). Exposures were CRP (mg/l, age 24), 
GlycA (mmol/l, age 24), IL-6 (pg/ml, age 9). Models included top 10 
genetic principal components to adjust for genetic ancestry. As CRP and 
IL-6 were highly skewed, they were log transformed. 

2.2.1.5. Two-sample bidirectional Mendelian randomization. Two-sample 
MR assessed whether there is a potential causal relationship between the 
same inflammatory markers and general cognitive ability. For sample 
sizes, see Table 1. 

2.2.1.6. Genetic instruments. For inflammatory markers, we extracted 
SNPs from the same GWAS/instruments used in the one-sample MR 
(Table 1). For GCA, we used the largest combined GWAS on GCA to date 
(N = 373,617) (Lam et al., 2021), see Supplementary methods 1.6 for 
more detail. SNPs for GCA were identified using the same criteria out-
lined in 2.2.1.2, identifying 250 SNPs. Proxies were identified for SNPs 
not available in the outcome GWAS using the following criteria: R2 >

0.8, SNP with highest R2 available in both the exposure and outcome 
summary statistics. For final N SNPs used in each instrument, see 
Table 1, Supplementary Tables S19 and S22. 

2.2.1.7. Additional MR assumption. The same assumptions for one- 
sample MR apply, with the additional assumption that samples are 
non-overlapping but come from the same population (Lawlor, 2016). 
Whilst it is difficult to determine the exact percentage of overlap, there is 
overlap between most exposure and outcome GWAS due to the use of 
large data sources (cohorts in CHARGE consortium and UK Biobank). 
Consequently, some advantages (e.g., weak instruments biasing results 
towards the null) of two-sample MR may be reduced (Burgess et al., 
2016; Lawlor, 2016), although the main advantage of increased statis-
tical power remains (Lawlor, 2016). Nevertheless, recent work suggests 
that sample overlap may not bias MR results as much as previously 
thought (Burgess et al., 2016; Sanderson et al., 2022). 

2.2.1.8. Data analysis. Two-sample MR was conducted using the Two-
SampleMR Package 0.5.6 (Hemani et al., 2018) in R 4.1.1 (R Core Team, 
2020). For each instrument, this package harmonises the SNP-exposure 
and SNP-outcome data. Palindromic SNPs were excluded if the strand 
could not be inferred from the minor allele frequency (>0.42), if 
available. The primary analysis used either the inverse-variance 
weighted (IVW) method (>1 SNP available) or Wald ratio (1 SNP 
available). Sensitivity analyses included MR-Egger (Bowden et al., 
2015), weighted median (Bowden et al., 2016), weighted mode (Hart-
wig et al., 2017), and MR Pleiotropy RESidual Sum and Outlier (MR- 
PRESSO) (Verbanck et al., 2018). As these MR methods have different 

assumptions regarding the validity of the genetic instruments, we can be 
more confident in our causal inferences if the relationship between 
inflammation and cognition is observed across methods. Some MR 
methods require a minimum number of SNPs; therefore, sensitivity an-
alyses are reported when enough SNPs are available. For details on each 
method, see Supplementary methods 1.9. Additional sensitivity analyses 
included Steiger filtering to check that SNPs have a stronger association 
with the exposure than the outcome (Hemani et al., 2017), checking for 
heterogeneity (Cochran’s Q-statistic), checking for pleiotropy (Egger 
intercept). 

3. Results 

Fig. 1 presents an overview of the analyses conducted in this study. 
For descriptive statistics on cognitive measures, inflammatory markers, 
and confounders in ALSPAC, see Supplementary Table S2. For correla-
tions between variables of interest, see Supplementary Table S3. 

3.1. Association between standardised inflammatory markers and 
standardised cognitive function at age 24 in the ALSPAC cohort estimated 
using multivariate regression 

There was limited evidence of an association between CRP and 
cognitive measures (ps ≥ 0.32; Table 2). GlycA was associated with 
poorer working memory (β = − 0.08, 95 % CI = − 0.11 to − 0.04, p 
<.001), emotion recognition (β = − 0.05, 95 % CI = − 0.09 to − 0.01, p 
=.007) and response inhibition at age 24 (β = 0.05, 95 % CI = 0.01 to 
0.08, p =.011) (Table 2), but these associations did not persist after 
adjusting for potential confounders. IL-6 was also associated with poorer 
working memory (β = − 0.05, 95 % CI = − 0.08 to − 0.01, p =.017), 
emotion recognition (β = − 0.05, 95 % CI = − 0.09 to − 0.02, p =.003) 
and response inhibition at age 24 (β = 0.03, 95 % CI = − 0.004 to 0.07, p 
=.084) (Table 2), but associations did not persist after adjusting for 
confounders. For MI sensitivity analyses, see Supplementary results 1.1. 
This is broadly consistent with complete case analyses and sensitivity 
analyses (removing individuals with possible infection) (Supplementary 
Table S7–S9). 

3.2. One-sample bidirectional Mendelian randomization in ALSPAC 

3.2.1. MR assumptions 
Regression models examined whether genetic risk scores, based on 

the SNP instrument set, predicted the relevant exposures (circulating 
levels of inflammatory markers and cognitive performance) in ALSPAC. 
All instruments had F-statistics > 10 (range:15.8 to 112.1), indicating 
adequate instrument strength (Table 3) (Burgess & Thompson, 2011; 
Staiger & Stock, 1997). re-running the analysis removing individuals 
with high CRP levels (>10 mg/l) did not substantially change the re-
sults, suggesting that these individuals are not driving associations. 

Separate regression models examined whether genetic risk scores 
were associated with potential confounders (Davies et al., 2018; Yang 
et al., 2022) (Supplementary Table S16). Top 10 genetic principal 
components were added to all models to adjust for genetic ancestry. 
There was evidence that one CRP instrument (Han-genome-wide) was 
associated with maternal education (p=.00006) and alcohol use (p 
=.015); and one cognition instrument (Mahedy-emotion recognition) 
was associated with maternal SES (p =.013). This violates one of the MR 
assumptions and thus caution should be taken when interpreting find-
ings using these two instruments. Evidence for other instruments was 
weak (Supplementary Table S16). 

3.2.2. Potential causal relationships between inflammatory markers and 
cognitive measures 

We did not find strong evidence of a causal effect of genetically- 
proxied CRP, IL-6, IL-6R, sIL-6R or GlycA on standard deviation 
change in cognitive measures in ALSPAC at age 24 in our primary 
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analysis using cis variants and larger GlycA GWAS (beta range: − 0.73 
[95 % CI − 2.47 to 1.01, p =.41] to 0.21 [95 % CI = − 1.42 to 1.84, p 
=.80]) or secondary analysis using genome-wide significant variants 
and smaller GWAS (beta range: − 0.73 [95 % CI = − 2.67 to 1.21, p =.46] 
to 1.54 [95 % CI = − 0.34 to 3.42, p =.11]; N range: 1,677 to 2,193; 
Fig. 2 and Supplementary Table S17;). There was also not strong evi-
dence of a causal effect of genetically-proxied cognition on standard 
deviation change in inflammatory markers (ps ≥ 0.19; Supplementary 
Table S18). 

3.3. Two-sample bidirectional Mendelian randomization 

3.3.1. Effect of inflammatory markers on general cognitive ability 
In the primary analysis, there was not strong evidence for a causal 

effect of genetically-proxied inflammatory markers (CRP, IL-6R, sIL-6R 
and GlycA) on standard deviation change in GCA (IVW estimates range: 
− 0.02 [95 % CI = − 0.05 to 0.01, p =.12] to 0.03 [95 % CI = − 0.01 to 
0.07, p =.19]; Fig. 3 and Supplementary Table S20). However, there was 
a pattern towards CRP increasing GCA and GlycA decreasing GCA, 
which was consistent amongst most sensitivity analyses. In the second-
ary analyses, there was some evidence for a causal effect of genetically- 
proxied IL-6R (Swerdlow 3 SNP instrument) on higher cognition (IVW 
estimate: 0.05 [95 % CI = 0.02 to 0.09, p =.006]) and CRP on poorer 
cognition (IVW estimate: − 0.03 [95 % CI = − 0.04 to − 0.01, p =.01), 
although the direction of effects did not replicate across different MR 
methods (Fig. 4; Supplementary Table S20). Steiger filtering showed 
that one CRP instrument (Han – 494 genome-wide SNPs) had four 
invalid variants (i.e., variants had stronger associations with the 
outcome than the exposure). re-running the analysis with these variants 
removed did not substantially change the results. 

3.3.2. Effect of general cognitive ability on inflammatory markers 
There was some evidence of a causal effect of higher GCA on lower 

CRP (Ligthart IVW estimate: − 0.11, 95 % CI = − 0.16 to − 0.07, p 

<.0001]; Han IVW estimate: − 0.02, 95 % CI = − 0.04 to − 0.01, p 
=.005), IL-6 (Ahluwalia IVW estimate: − 0.05, 95 % CI = − 0.09 to 
− 0.002, p =.039) and GlycA (Borges IVW estimate: − 0.21, 95 % CI =
− 0.27 to − 0.16, p <.0001) (Fig. 5; Supplementary Table S23). Effect 
estimates were broadly consistent across sensitivity analyses. These 
findings are consistent with Steiger filtered results (Supplementary 
Table S25). 

3.3.3. Assessment of heterogeneity and horizontal pleiotropy 
For most instruments, there was evidence of heterogeneity based on 

Cochran’s Q-statistic (range: 0.4 to 1634). There was limited evidence of 
horizontal pleiotropy for inflammation (ps ≥ 0.42) and cognition (ps ≥
0.048) instruments based on the Egger intercept, although this was not 
always consistent with MR-PRESSO Global Test results (Supplementary 
Table S21, S24). Instruments used in secondary analyses revealed evi-
dence of horizontal pleiotropy using the Egger intercept, highlighting 
the importance of using cis variants which may be less likely to be 
pleiotropic and therefore may provide more valid instruments. For MR 
sensitivity plots, see Supplementary Figures S1–S15. 

4. Discussion 

We examined associations between inflammatory markers and 
cognition using a large population-based cohort and complementary MR 
analyses. Our cross-sectional analyses show that GlycA and IL-6, but not 
CRP, are associated with poorer working memory, emotion recognition, 
and response inhibition at 24 years. However, this association was fully 
explained by potential confounders, namely sex, ethnicity, BMI, 
maternal education, maternal SES, smoking and alcohol use, childhood 
IQ. In one-sample MR, there was limited evidence of a causal relation-
ship between inflammatory markers (CRP, IL-6, IL-6R, sIL-6R, GlycA) 
and the same cognitive measures in ALSPAC, although confidence in-
tervals were large. In two-sample MR, we did not find strong evidence of 
a causal effect of the same inflammatory markers on GCA. However, 

Fig. 1. Overview of analyses performed in this study. Note: MR was run bidirectionally. Manhattan plot image taken from Ligthart et al. (2018).  

C. Slaney et al.                                                                                                                                                                                                                                  



Brain Behavior and Immunity 110 (2023) 30–42

36

there was a pattern towards CRP being associated with higher GCA and 
GlycA being associated with poorer GCA. There was evidence that 
higher GCA may be causally related to lower inflammation, with the 
strongest evidence for GlycA. 

4.1. Comparison with previous studies 

4.1.1. Inflammatory markers and specific cognitive domains 
Our MR analyses found limited evidence of a causal relationship 

between inflammatory markers and cold cognitive domains (working 
memory and response inhibition) in early adulthood. Recent observa-
tional studies report that CRP and IL-6 (age 9) predict working memory 
performance one year later in ALSPAC (Kokosi et al., 2021; Shields et al., 
2021). Unlike the current study, these studies focused on associations in 
childhood; although there are other differences which may also account 
for the discrepant findings (e.g., confounders included, a larger sample 
size). Consistent with our findings, Proitsi and colleagues (2018) did not 
find associations between GlycA and a related cognitive domain (short- 
term memory) in late midlife after adjusting for potential confounders 
(Proitsi et al., 2018). Moreover, experimental studies did not find 
consistent evidence that acute inflammatory challenges influence 
working memory in early adulthood (Bollen et al., 2017). As for 
response inhibition, to our knowledge, few observational studies have 
examined its association with inflammation. Experimentally, there is 
limited evidence that acute inflammation influences response inhibition 
in early adulthood, as assessed by the Stroop and Go/No-Go tests (Bollen 
et al., 2017; Handke et al., 2020). In relation to the overarching domain 
of executive functioning, Mac Giollabhui and colleagues (2021) re-
ported that CRP was associated with reduced executive functioning in 
43,896 individuals aged 18–93 after adjusting for confounders (Mac 
Giollabhui et al., 2021b). Importantly, effect sizes were small (as noted 
by the authors) and performance on the task used may also reflect 

Table 2 
Linear regression models of cross-sectional associations between inflammatory 
markers (CRP, GlycA and IL-6) and cognitive measures at age 24 in ALSPAC (N 
= 3,305; multiply imputed models).  

Models b 95 % CI p 

C-reactive Protein (CRP, mg/l) 
Outcome: Working memory 
Model 1  -0.02 -0.05 to 0.02  0.32 
Model 2  -0.0002 -0.04 to 0.04  0.99 
Model 3  0.001 -0.04 to 0.04  0.95 
Model 4  0.006 -0.03 to 0.04  0.74 
Model 5  0.01 -0.02 to 0.05  0.48  

Outcome: Emotion recognition 
Model 1  -0.003 -0.04 to 0.04  0.88 
Model 2  0.007 -0.03 to 0.05  0.73 
Model 3  0.008 -0.03 to 0.05  0.68 
Model 4  0.01 -0.03 to 0.05  0.53 
Model 5  0.02 -0.02 to 0.05  0.33  

Outcome: Response inhibition 
Model 1  0.02 -0.02 to 0.05  0.36 
Model 2  -0.004 -0.04 to 0.03  0.85 
Model 3  -0.003 -0.04 to 0.03  0.87 
Model 4  -0.009 -0.05 to 0.03  0.63 
Model 5  -0.01 -0.05 to 0.02  0.45  

Glycoprotein Acetyls (GlycA, mmol/l) 
Outcome: Working memory    
Model 1  -0.08 -0.11 to -0.04  <0.001 
Model 2  -0.05 -0.09 to -0.01  0.019 
Model 3  -0.04 -0.08 to 0.002  0.062 
Model 4  -0.03 -0.07 to 0.01  0.15 
Model 5  -0.02 -0.06 to 0.02  0.28  

Outcome: Emotion recognition    
Model 1  -0.05 -0.09 to -0.01  0.007 
Model 2  -0.01 -0.05 to 0.03  0.57 
Model 3  -0.001 -0.04 to 0.04  0.97 
Model 4  0.006 -0.04 to 0.05  0.79 
Model 5  0.01 -0.03 to 0.05  0.53  

Outcome: Response inhibition    
Model 1  0.05 0.01 to 0.08  0.011 
Model 2  0.007 -0.03 to 0.05  0.73 
Model 3  0.002 -0.04 to 0.04  0.94 
Model 4  -0.01 -0.05 to 0.03  0.62 
Model 5  -0.02 -0.06 to 0.02  0.43  

Interleukin-6 (IL-6, normalized protein expression on log2 scale) 
Outcome: Working memory    
Model 1  -0.05 -0.08 to -0.01  0.017 
Model 2  -0.02 -0.06 to 0.03  0.43 
Model 3  -0.01 -0.06 to 0.03  0.52 
Model 4  -0.001 -0.04 to 0.04  0.95 
Model 5  0.001 -0.04 to 0.04  0.97  

Outcome: Emotion recognition    
Model 1  -0.05 -0.09 to -0.02  0.003 
Model 2  -0.02 -0.06 to 0.02  0.38 
Model 3  -0.02 -0.06 to 0.02  0.45 
Model 4  -0.005 -0.05 to 0.04  0.82 
Model 5  -0.003 -0.04 to 0.04  0.90  

Outcome: Response inhibition    
Model 1  0.03 -0.004 to 0.07  0.084 
Model 2  -0.004 -0.04 to 0.04  0.83 
Model 3  -0.006 -0.05 to 0.03  0.79 
Model 4  -0.02 -0.06 to 0.02  0.31 
Model 5  -0.02 -0.06 to 0.02  0.27 

Multiply imputed models (100 imputations). N = 3,305 individuals who had 
data on all three cognitive measures at age 24 in ALSPAC. 95 % CI = 95 % 
Confidence Interval. Model 1: unadjusted; Model 2: adjusted for sex, ethnicity, 

and BMI at age 24; Model 3: additionally adjusted for maternal education and 
SES; Model 4: additionally adjusted for smoking and alcohol use at age 24; 
Model 5: additionally adjusted for IQ at age 8. Exposure and outcome are 
standardised. 

Table 3 
Association between genetic risk scores and exposures within ALSPAC.  

Outcome Instrument F R2 N 

Inflammation 
Primary analysis 
Log CRP (mg/l, age 24) Ligthart et al. (cis)  26.7  1.2 % 2,222 

Han et al. (cis)  15.8  0.7 % 2,222 
Log IL-6 (pg/ml, age 9) Ahluwalia et al. (cis)  87.6  2.1 % 4,184 

Rosa et al. (cis)  76.1  1.8 % 4,184 
GlycA (mmol/l, age 24) Borges et al. (genome- 

wide)  
65.7  2.7 % 2,392  

Secondary analysis 
Log CRP (mg/l, age 24) Ligthart et al. (genome- 

wide)  
99.9  4.3 % 2,222 

Han et al. (genome-wide)  79.9  3.5 % 2,222 
Log IL-6 (pg/ml, age 9) Ahluwalia et al. (genome- 

wide)  
77.3  1.8 % 4,184 

Sarwar et al. (cis)  87.9  2.1 % 4,184 
Swerdlow et al. (cis)  95.4  2.2 % 4,184 

GlycA (mmol/l, age 24) Kettunen et al. (genome- 
wide)  

51.8  2.1 % 2,392  

Cognition 
Working memory (age 

24) 
Mahedy et al.  59.7  2.3 % 2,534 

Emotion recognition (age 
24) 

Mahedy et al.  112.1  4.1 % 2,626 

Response inhibition (age 
24) 

Mahedy et al.  112.1  4.3 % 2,508  

C. Slaney et al.                                                                                                                                                                                                                                  



Brain Behavior and Immunity 110 (2023) 30–42

37

processing speed (Kuiper et al., 2017). 
In relation to hot cognition, our MR analyses found limited evidence 

in support of a causal relationship between inflammatory markers and 
emotion recognition. To our knowledge, there are few observational 
studies that have examined the association between inflammation and 
emotion processing. Experimentally, there is some evidence that in-
flammatory challenges are associated with poorer social and emotional 
processing (Balter et al., 2018; Bollen et al., 2017). In a double-blind 
placebo controlled cross-over design, Balter and colleagues (2018) re-
ported that acute inflammation induced via a Typhoid vaccination 
reduced accuracy on the Reading the Mind in the Eyes Test ~ 6 h post- 
injection (Balter et al., 2018). However, it is important to note that these 
studies typically involve higher acute doses of inflammation, which 

differ from low-grade inflammation examined here. 
Collectively, whilst there is evidence of an association between in-

flammatory markers (CRP, IL-6, GlycA) and poorer cognition (working 
memory, response inhibition, emotion recognition), our MR analysis did 
not find strong evidence of causality in young adults. However, given the 
large confidence intervals in our MR analyses and the small effect sizes 
observed (consistent with previous studies) (Mac Giollabhui et al., 
2021b), our study may be underpowered to detect these effects (see 
Supplementary methods 1.8 for power calculation). There is therefore a 
need to further interrogate causality. This requires large GWAS on 
specific cognitive domains (for well-powered MR studies) and experi-
mental studies with larger sample sizes. Further studies are also required 
that test causality using different cognitive tasks, inflammatory markers, 

Fig. 2. One-sample MR: effect of genetically-proxied inflammatory markers on (A) working memory, (B) emotion recognition, and (C) response inhibition 
at age 24 years. Outcomes are standardised, exposures are not standardised. Points represent beta estimates and 95 % CI. For values, see Supplementary Table S17. 

Fig. 3. Two-sample MR (primary analysis - cis variants for CRP, IL-6R and sIL-6R; larger GlycA GWAS): causal effect of genetically-proxied inflammatory 
markers on standardised general cognitive ability. Points represent beta estimates and 95 % CI. 
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and at different ages in the lifespan. 

4.1.2. Inflammatory markers and general cognitive ability 
Our MR analysis did not find strong evidence that inflammatory 

markers examined here have a causal effect on GCA across a broad age 
range. Nevertheless, the pattern of associations consistently showed 

genetically proxied CRP to be associated with higher GCA and geneti-
cally proxied GlycA to be associated with poorer GCA, warranting 
further research. A previous study including 13,000 individuals reported 
that GlycA was associated with poorer GCA after adjusting for car-
diometabolic correlates of cognition (Van der Lee et al., 2018). In 
addition, Conole and colleagues (2021) report that a DNA methylation 

Fig. 4. Two-sample MR (secondary analysis – genome-wide significant variants and smaller GWAS): causal effect of genetically-proxied inflammatory 
markers on standardised general cognitive ability. Points represent beta estimates and 95 % CI. 

Fig. 5. Two-sample MR: causal effect of standardised genetically-proxied general cognitive ability on inflammatory markers. Points represents beta esti-
mates and 95 % CI. 
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signature of CRP was associated with poorer GCA in elderly individuals 
(aged 72) (Conole et al., 2021). Whilst these studies provide evidence 
that CRP and GlycA are associated with poorer GCA, they do not 
establish causality, as noted by the authors. Consequently, it is possible 
that potential confounders or reverse causality may account for these 
findings. A recent MR study that explored a broad range of inflammatory 
markers on cognitive functioning reported three cytokines (Eotaxin, 
Interleukin-8 and Monocyte chemotactic protein 1) were associated 
with higher fluid intelligence and Interleukin-4 associated with lower 
fluid intelligence (Pagoni et al., 2022). Consistent with our MR analyses, 
there was limited evidence to suggest a causal effect of IL-6 on fluid 
intelligence; other inflammatory measures (CRP and GlycA) were not 
examined (Pagoni et al., 2022). Therefore, although MR analyses report 
limited evidence of a causal effect of the inflammatory markers exam-
ined here, there is some evidence for other inflammatory markers. Taken 
together, few studies have examined potential causal effects of inflam-
matory markers on GCA across a broad age range. Given the pattern of 
findings in our study, further studies investigating the role of these in-
flammatory markers on cognition are needed. 

There was evidence that GCA may be causally related to lower 
inflammation, with the strongest evidence for GlycA. Arguably, this is 
not surprising as measures closely related to GCA (higher educational 
attainment and SES) are associated with lower levels of CRP and IL-6 
(Loucks et al., 2010; Muscatell et al., 2018; Nazmi & Victora, 2007; 
O’Connor et al., 2009; Pollitt et al., 2007). One potential mechanism 
through which GCA may impact inflammation is via health-related 
behaviour (e.g., physical activity, smoking): individuals with higher 
GCA may be more likely to engage in healthier lifestyle choices (e.g., less 
likely to smoke) which may result in lower levels of inflammation 
(Davies et al., 2019). Importantly, as GCA is associated with higher SES/ 
education, this may provide people with the means to engage in 
healthier lifestyle choices (e.g., via higher income) (Friedman & Herd, 
2010). An alternative mechanism could involve shared biological 
pathways linking inflammation and cognition (Zuber et al., 2022). 
However, this is less likely as we only observe the effect in one direction 
(GCA on inflammation, not vice versa). A third possible explanation is 
that the results are due to chance (Type I error) and do not reflect a true 
casual effect. Further studies are needed to explore possible mechanisms 
of this relationship. 

5. Strengths and limitations 

A key strength of this study is the triangulation of findings using 
complementary analyses (cohort and MR) which provides increased 
confidence in our inferences drawn. We also used large population- 
based data, increasing statistical power and generalisability of our 
findings. Additionally, we examined several inflammatory markers, 
including a novel marker (GlycA) which may better reflect chronic 
inflammation. Moreover, in the cohort analyses we considered many 
potential confounders and in the MR analysis, we used strong instru-
mental variables making weak instrument bias unlikely and checked key 
assumptions with no primary instruments being associated with poten-
tial confounders. 

A limitation is that similar to other cohorts, ALSPAC is less repre-
sentative of some populations (e.g., less affluent families, ethnic mi-
nority individuals). Future studies should examine whether findings 
generalise in cohorts which have a higher proportion of under- 
represented populations. Also, there is non-random attrition within 
ALSPAC (Wolke et al., 2009), which may lead to bias. For example, if 
inflammation and cognition are related to attrition, results may be 
biased towards the null. Whilst we find some evidence that IQ scores are 
related to attrition, evidence for inflammatory markers is less consistent 
(see Supplementary Table S10). Second, many cognitive tasks (including 
those used here) have poor-to-moderate test–retest reliability therefore 
measurement error may mask potential associations by increasing con-
fidence intervals (Hedge et al., 2018). Third, we relied on single 

measures of inflammatory markers which exhibit high intra-individual 
variability (Conole et al., 2021). However, we did include a novel in-
flammatory marker (GlycA) which is thought to provide a more stable 
measure of inflammation (Connelly et al., 2017; Ritchie et al., 2015). 
Fourth, MR focuses on lifetime effects of inflammation on cognition. 
This is informative for understanding lifetime risk of an exposure, but 
cannot discern effects at specific ages (i.e., potential sensitive periods). 
Experimental research and MR studies with genetic variants associated 
with inflammatory markers at specific ages (e.g., early childhood, 
adulthood) are required to address this temporal aspect. Fifth, we focus 
on a subset of cognitive domains and inflammatory markers. Future 
studies should examine other domains (e.g., executive functioning, 
reward processing) and inflammatory markers (Boyle et al., 2019; Mac 
Giollabhui et al., 2021a). Additionally, some instruments used in the MR 
analyses had few SNPs, displayed evidence of heterogeneity, and/or 
were associated with potential confounders. Nevertheless, there was 
limited evidence of horizontal pleiotropy (MR-Egger intercept) or as-
sociations with potential confounders in primary analyses using cis 
variants. 

5.1. Implications 

Our study highlights the need for large-scale GWAS on specific 
cognitive domains. This will enable well-powered MR studies to 
examine causal relationships between inflammation and specific 
cognitive domains. Additionally, our MR analyses found limited evi-
dence that the inflammatory markers CRP, IL-6, IL-6R, sIL-6R and GlycA 
influence cognition (working memory, response inhibition, emotion 
recognition, GCA); suggesting that they may not be good intervention 
targets for poorer cognition (although further evidence is needed to 
determine this). We also found a potential causal effect of GCA on 
inflammation and highlight the need for mechanistic studies investi-
gating this relationship. Future studies should also examine potential 
moderators of the relationship between inflammation and cognition. For 
example, conditions which impact the immune system, brain, and/or 
pathways linking the peripheral immune system to the brain (e.g., dis-
ruptions to the neural pathway via afferent nerves, humoral pathway, 
blood–brain barrier) (Dantzer et al., 2008). 

6. Conclusions 

In summary, we used cross-sectional association and MR analyses to 
examine the association and potential causal relationship between in-
flammatory markers and cognition (general and domain-specific) using 
data from a large population-based cohort (ALSPAC) and publicly 
available GWAS. The MR analyses did not find strong evidence for a 
causal effect of inflammatory markers (CRP, IL-6, GlycA) on specific 
cognitive domains in young adults in the ALSPAC cohort (working 
memory, response inhibition, emotion recognition) or GCA. There was 
some evidence that GCA may be causally related to lower inflammation. 
There is a need for larger GWAS on specific cognitive domains and 
experimental studies with larger sample sizes to further interrogate 
causality. 
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