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ABSTRACT
Objectives  Early identification of fracture risk in patients 
with osteoporosis is essential. Machine learning (ML) has 
emerged as a promising technique to predict the risk, 
whereas its predictive performance remains controversial. 
Therefore, we conducted this systematic review and meta-
analysis to explore the predictive efficiency of ML for the 
risk of fracture in patients with osteoporosis.
Methods  Relevant studies were retrieved from four 
databases (PubMed, Embase, Cochrane Library and Web 
of Science) until 31 May 2023. A meta-analysis of the C-
index was performed using a random-effects model, while 
a bivariate mixed-effects model was used for the meta-
analysis of sensitivity and specificity. In addition, subgroup 
analysis was performed according to the types of ML 
models and fracture sites.
Results  Fifty-three studies were included in our meta-
analysis, involving 15 209 268 patients, 86 prediction 
models specifically developed for the osteoporosis 
population and 41 validation sets. The most commonly 
used predictors in these models encompassed age, BMI, 
past fracture history, bone mineral density T-score, history 
of falls, BMD, radiomics data, weight, height, gender and 
other chronic diseases. Overall, the pooled C-index of ML 
was 0.75 (95% CI: 0.72, 0.78) and 0.75 (95% CI: 0.71, 
0.78) in the training set and validation set, respectively; 
the pooled sensitivity was 0.79 (95% CI: 0.72, 0.84) and 
0.76 (95% CI: 0.80, 0.81) in the training set and validation 
set, respectively; and the pooled specificity was 0.81 (95% 
CI: 0.75, 0.86) and 0.83 (95% CI: 0.72, 0.90) in the training 
set and validation set, respectively.
Conclusions  ML has a favourable predictive performance 
for fracture risk in patients with osteoporosis. However, 
most current studies lack external validation. Thus, 
external validation is required to verify the reliability of ML 
models.
PROSPERO registration number  CRD42022346896.

INTRODUCTION
Osteoporosis is a systemic metabolic bone 
disease characterised by decreased bone 
mass and degraded bone microarchitec-
ture, leading to an increased risk of bone 
fragility fracture.1 Due to high disability and 
morbidity rates, high treatment costs and 
low quality of life of patients, it has emerged 
as a global health concern.2 According to 
the WHO, osteoporosis is the second most 

serious health issue after cardiovascular 
diseases.3 This condition may cause fragility 
fractures that commonly occur in the wrist, 
spine and hip. Spine and hip fractures may 
lead to disability, which not only affects the 
quality of life and longevity of patients but 
also causes enormous medical expenses and 
a heavy burden of care.4 5

Machine learning (ML), a subfield of artifi-
cial intelligence, enables computers to ‘learn’ 
through programmes. Compared with tradi-
tional statistical methods, ML emphasises 
more on the accuracy of prediction and can 
detect regularities in multi-dimensional data 
sets. ML algorithms can be basically divided 
into supervised learning and unsupervised 
learning.6 ML has been applied in the field 
of osteoporosis, providing a novel method 
for the prediction of fracture risk. A review 
by Ferizi et al7 (2019) summarised relevant 
studies on the application of artificial intel-
ligence to the prediction of osteoporosis. It 
drew a conclusion that ML methods for auto-
matic image segmentation and fracture risk 
prediction showed a promising clinical value. 
A systematic review by Smets et al8 (2021) 
reviewed the state-of-the-art ML methods and 
their application in osteoporosis diagnosis 
and fracture prediction. Another review by 
Anam et al9 (2021) explored the prediction 
performance of MRI for osteoporosis in 
trabecular bone from a methodology-driven 
and application perspective. Most studies 

STRENGTHS AND LIMITATIONS OF THIS STUDY
	⇒ The latest systematic review and meta-analysis 
conducted to assess machine learning (ML) models 
for fracture risk.

	⇒ We performed a quantitative synthesis to enhance 
the comparability of ML models.

	⇒ C-index, sensitivity and specificity were performed 
to evaluate the performance of ML models.

	⇒ Several studies were included in the systematic re-
view but excluded from subsequent meta-analyses.

	⇒ Most of the included studies lack external validation.
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focused on the role of ML in the prediction of osteopo-
rosis indicators, such as bone mineral density (BMD), or 
in the automatic segmentation of the images of patients 
at risk of osteoporosis. However, the efficiency of ML in 
predicting osteoporotic fractures is understudied.

The present study evaluated the predictive perfor-
mance of ML for fracture risk in osteoporosis patients, 
providing an evidence-based medical basis for the appli-
cation of ML in clinical practice.

MATERIALS AND METHODS
This study was conducted in accordance with the Preferred 
Items of Systematic Review and Meta-Analysis (PRISMA) 
statement (online supplemental table S1).10 The protocol 
was registered on the international prospective register 
of systematic reviews (PROSPERO) (Registration No. 
CRD42022346896). Relevant studies were retrieved from 
Pubmed, Embase, Cochrane Library and Web of Science, 
and the retrieval was as of 31 May 2023. Two researchers 
independently searched the literature. The search 
strategy is shown in online supplemental table S2.

Inclusion criteria were as follows: (1) patients were diag-
nosed with osteoporosis; (2) ML was applied to predict 
fracture risk; (3) at least one measure of model perfor-
mance (discrimination or calibration) was reported; (4) 
study population included adult patients older than 18 
years, mainly including adults, older people and post-
menopausal women. Exclusion criteria were as follows: 
(1) studies that only analysed risk factors without building 
complete ML models; (2) studies that only included oste-
oporosis but did not mention fracture risk; (3) studies 
without available full text (or only abstract available) or 
data; (4) meta-analyses, reviews, case reports, editorial 
materials, letters, protocols, errata, and notes.

Two researchers independently extracted data using 
standardised tables. Any studies excluded after full-
text review have been recorded with reasons for their 
exclusion. The list of extracted items was based on the 
CHARMS checklist,11 and two data extraction sheets 
were prepared for developed and validated models, 
respectively. Finally, the extracted data included 
the first author, year of publication, country, study 
design, data source, population group, gender, age, 
fracture sites, types of predictive models, number of 
predictors and outcomes. The risk of bias was assessed 
using the Prediction Model Risk of Bias Assessment 
Tool (PROBAST). The PROBAST contained a large 
number of questions in four distinct domains: partic-
ipants, predictors, outcomes, and statistical analysis, 
reflecting the overall risk of bias and applicability.12

Meta-analysis of C-index, sensitivity and specificity 
was performed to evaluate the performance of ML 
models. If the C-index did not report 95% CIs and 
SEs, we estimated the SEs in reference to the study by 
Debray et al.13 A C-index of 0.5 indicates low discrim-
ination; 0.6 to 0.7 indicates modest discrimination; 
0.71 to 0.8 indicates very good discrimination; and 

greater than 0.8 indicates strong discrimination.14 
When original studies did not report the accuracy, we 
calculated it based on the sensitivity, specificity, the 
number of samples in each subgroup and the number 
of modelling samples.13 Given the differences in 
variables, ML algorithms and parameters across the 
studies, the random-effects model was preferred for 
the meta-analysis of C-index, and the bivariate mixed-
effects model was used for the meta-analysis of sensi-
tivity and specificity. Heterogeneity was quantified 
using I2 statistics. Sensitivity analysis was performed 
to further identify the source of heterogeneity by 
removing each study and re-calculating the pooled 
effect size of the remaining studies. The meta-analysis 
was performed using the software Stata V.15.1 (Stata 
Corporation) and R V.4.2.0 (R Development Core 
Team, Vienna, http://www.R-project.org). A p value 
less than 0.05 was considered statistically significant.

Patient and public involvement
No patients involved.

RESULTS
A total of 12 468 studies were searched from the 
databases, including 2409 from PubMed, 4387 from 
Embase, 170 from Cochrane Library and 5502 from 
Web of Science. After removing duplicates and 
screening titles and abstracts, 378 articles remained. 
According to a full-text review, 53 articles13–67 were 
included. Fifty-three articles presented the devel-
opment of one or more prediction models for oste-
oporotic fracture, while 26 articles described the 
validation of one or more models. The search process 
is shown in figure 1.

Fifty-three studies were ultimately included in 
our meta-analysis, involving 15 209 268 patients. 
Many studies originated from USA (n=11), Europe-
an(n=11) and China (n=8). Most studies were cohort 
studies (n=46), and the rest were case–control studies 
(n=7). The median age of osteoporosis patients was 
68.8 years (ranging from 48.5 to 84 years). The study 
population in most studies covered women (n=24). 
The fracture sites included multi-site (n=26), vertebra 
(n=14), hip (n=12) and femur (n=1). Most studies 
were based on clinical hospital data (n=19), while 
some used questionnaire collection data (n=10), oste-
oporosis registry data (n=9), electronic health records 
(n=7) and administrative data (n=6). Only 13 articles 
elucidated the cross-validation method. The baseline 
characteristics of the included studies are shown in 
online supplemental table S3.

There were 86 prediction models specifically devel-
oped for the osteoporosis population and 41 vali-
dation sets. Ninety-eight ML models reported the 
C-index or the area under the receiver operating 
characteristic curve (AUC), ranging from 0.50 to 
0.98. Online supplemental table S4 shows all studies 

https://dx.doi.org/10.1136/bmjopen-2022-071430
https://dx.doi.org/10.1136/bmjopen-2022-071430
http://www.R-project.org
https://dx.doi.org/10.1136/bmjopen-2022-071430
https://dx.doi.org/10.1136/bmjopen-2022-071430


3Wu Y, et al. BMJ Open 2023;13:e071430. doi:10.1136/bmjopen-2022-071430

Open access

on the development and validation of ML models for 
outcome prediction in patients with osteoporosis. 
Among all the identified prediction models, the 
logistic regression (31.4%) was the most commonly 
used algorithm, followed by the survival model (18%).

The most commonly used predictors in ML models 
were age (n=72), body mass index (BMI) (n=40), past 
fracture history (n=35), BMD T-score (n=33), history 
of falls (n=29), BMD (n=28), radiomics data (n=25), 
weight (n=24), height (n=23), gender (n=20), and 
other chronic diseases (n=20) (table 1).

The risk of bias assessment of the included studies 
is summarised in figure  2. More than half of these 
studies had a high risk of bias (67%). The risk of 
bias in most studies was low in terms of participants, 
predictors and outcome. However, a high or unclear 
risk of bias in the statistical analysis was observed in 
all studies. More details are shown in online supple-
mental table S5.

Sixty-six training datasets and 32 validation data-
sets were included in the meta-analysis of the 
C-index. Since substantial heterogeneity was present, 
we performed subgroup analyses based on frac-
ture site and model type. Table  2 shows the results 

of the meta-analysis of C-index of ML models in 
predicting osteoporosis. Logistic regression is the 
most widely used method. The forest plot of C-index 
is presented in online supplemental figures S1 and 
S2. The pooled C-index was 0.75 (95% CI: 0.72, 0.78) 
(I2=99.7%, p<0.001) in the training set and 0.75 (95% 
CI: 0.71, 0.78) (I2=99.8%, p<0.001) in the validation 
set. In the training set, other deep learning method 
showed the highest predictive performance (pooled 
C-index=0.97), followed by convolutional neural 
network (CNN) (pooled C-index=0.94), decision trees 
(pooled C-index=0.78) and logistic regression (pooled 
C-index=0.75). Furthermore, models for vertebral 
fracture (pooled C-index=0.80) and hip fracture 
(pooled C-index=0.76) outperformed those for multi-
site fracture (pooled C-index=0.70). However, in the 
validation set, CNN (pooled C-index=0.98) showed 
the best performance, closely followed by other deep 
learning method (pooled C-index=0.82), logistic 
regression (pooled C-index=0.80) and support vector 
machines (SVMs) (pooled C-index=0.78). Models 
for vertebral fracture (pooled C-index=0.87) outper-
formed those for hip fracture (pooled C-index=0.73) 
and multi-site fracture (pooled C-index=0.71). Across 

Figure 1  The flow chart of retrieval process.
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these studies, we extracted 57 estimates of balanced 
accuracy (the average of the reported sensitivity and 
specificity), ranging from 0.46 to 1.00. As presented 
in table  3, the mean sensitivity and specificity of 
models were 0.79 (95% CI: 0.72, 0.84) (I2=99.2%, 

p<0.001) and 0.81 (95% CI: 0.75, 0.86) in the training 
set (I2=99.9%, p<0.001) and 0.76 (95% CI: 0.80, 0.81) 
(I2=98.9%, p<0.001) and 0.83 (95% CI: 0.72, 0.90) in 
the validation set (I2=99.9%, p<0.001), respectively. 
The results of sensitivity analysis show that ML models 
built for different fracture sites have stable perfor-
mance in the training and validation sets (online 
supplemental figures S3–S8).

DISCUSSION
ML is a popular research method that provides new 
tools for early detection of diseases. This study systemat-
ically explored the application of the latest ML methods 
in predicting fracture risk in osteoporosis. The most 
commonly used predictors in ML models are age, BMI, 
past fracture history, BMD T-score, history of falls, BMD, 
radiomics data, weight, height, gender and other chronic 
diseases. In general, most predictors included in model 
development studies are traditional risk factors. A recent 
study showed that the most common risk factors for fragility 
fractures encompassed decreased BMD, age, gender, low 
BMI, history of fragility fractures, family history of hip 
fractures, history of glucocorticoid therapy, smoking, 
excessive alcohol consumption, lack of vitamin D, early 
menopause and immobility.68 This is consistent with some 
common fracture predictors identified in our study. Our 
study also finds that radiomics data are frequently used 
as a fracture predictor in ML models for osteoporosis. A 
retrospective, single-centre, preliminary investigation by 
Lim et al69 reported that ML based on radiomics features 
and abdomen–pelvic CT for diagnosing osteoporosis 
showed high predictive performance, with accuracy, spec-
ificity, and negative predictive value exceeding 93%.

The present study found that ML methods commonly 
used in the field of osteoporosis included logistic regres-
sion, decision tree, random forest, survival model, SVM, 
ensemble learning, artificial neural network (ANN), 
CNN and the latest deep learning technology. ML has a 
good performance in the prediction and identification 
of osteoporosis and fracture. In terms of the models in 
the training sets, the prediction efficiency of other deep 
learning method is optimal, followed by CNN, decision 
trees and logistic regression. In the validation sets, CNN 
showed the best performance, closely followed by other 
deep learning method, logistic regression and SVM. Deep 
learning is more powerful than traditional ML algorithms, 
with a wide range of coverage. Its performance increases 
with the amount of data.70 Deep learning has been success-
fully applied to assist in the diagnosis and prediction of 
osteoporotic fractures.34 63 CNN, a core algorithm of deep 
learning, is widely used in the field of data analysis and 
disease prediction with high accuracy.71 CNN techniques 
can effectively predict the risk of osteoporotic fractures, 
enabling clinicians to take timely treatment measures, 
thereby reducing the occurrence of fractures.19 23 47 Addi-
tionally, logistic regression is an efficient, simple and easy-
to-operate ML method that outputs calibrated predicted 

Table 1  Main sorts of predictors included in developed 
models for osteoporosis patients

Predictors Number of models

Demographics

 � Age 72

 � History of falls 29

 � Sex 20

 � Women’s menopause age 8

 � Family genetic history 6

 � Race 5

Physical examination

 � Body mass index 40

 � BMD t-score 33

 � BMD 28

 � Weight 24

 � Height 23

 � Motor ability 10

Lifestyle

 � Alcohol consumption 13

 � Smoking 11

 � Physical activity 10

 � Lack of physical exercise 7

 � Daily activities 5

 � Limited physical activity 4

 � Frequent sun exposure 3

Comorbidity

 � Past fracture history 35

 � Other chronic diseases 20

 � Osteoporosis 8

 � Rheumatoid arthritis 7

 � Genetic risk score 5

 � Fracture type 4

 � Backache 2

Drug and nutrient intake

 � Use of hormonal drugs 8

 � Calcium intake 8

 � Nutritional status 6

 � Intake of other drugs 4

Radiomics

 � Radiomic data 25

Mental state

 � Cognitive performance 3

 � Anxiety/depression 2

Note: BMD (g/cm2).
BMD, bone mineral density.
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probabilities. An article on prediction models for the 
outcomes in patients with chronic obstructive pulmo-
nary disease revealed that logistic regression was the most 
frequently used modelling method.72 This is the same as 
recent findings reported by Silva et al.73 Their ML models 
based on logistic regression outperformed those based on 
random forest and decision trees. Moreover, SVM adapts 
well to small samples and high-dimensional data with a 

low misclassification rate, and therefore can be used for 
classification and regression analysis.74

Most included studies report multiple outcomes, such 
as sensitivity, specificity, AUC and ROC. The mean sensi-
tivity of the models in the training set model is 0.79 (95% 
CI: 0.72, 0.84) greater than that of the models in the vali-
dation set. Most models are internally validated in the 
same population database and lack external validations 

Figure 2  Risk of bias assessment (using Prediction Model Risk of Bias Assessment Tool) based on four domains across all 
machine learning models.

Table 2  Results of subgroup analysis of C-index by fracture site and machine learning type

Subgroup

Training dataset Validation dataset

N C-statistic (95% CI) N C-statistic (95% CI)

Fracture site

 � Vertebral fracture 15 0.80 (0.74, 0.87) 6 0.87 (0.71, 1.00)

 � Hip fracture 20 0.76 (0.72, 0.81) 9 0.73 (0.65, 0.81)

 � Multi-site fracture 31 0.70 (0.67, 0.72) 17 0.71 (0.65, 0.76)

Model type

 � LR 26 0.75 (0.72, 0.78) 7 0.80 (0.73, 0.87)

 � ANN 4 0.73 (0.64, 0.82) 3 0.66 (0.62, 0.70)

 � CNN 2 0.95 (0.94, 0.96) 1 0.98 (0.94, 1.00)

 � RF 3 0.70 (0.68, 0.72) 3 0.66 (0.59, 0.73)

 � SVM 5 0.72 (0.60, 0.85) 3 0.78 (0.59, 0.96)

 � DT 2 0.78 (0.56, 0.99) 1 0.69 (0.67, 0.70)

 � NB 2 0.74 (0.39, 1.00) –

 � kNN 1 0.51 (0.46, 0.55) –

 � Survival model 13 0.70 (0.69, 0.74) 9 0.68 (0.67, 0.69)

 � Boosted tree 5 0.71 (0.69, 0.74) 3 0.70 (0.69, 0.71)

 � Ensemble learning 1 0.72 (0.71, 0.73)

 � Other DL 2 0.97 (0.96, 0.97) 1 0.82 (0.77, 0.87)

Overall 66 0.75 (0.72, 0.78） 32 0.75 (0.71, 0.78)

ANN, artificial neural network; CNN, convolutional neural network; DL, deep learnimg model; DT, decision tree; kNN, k-nearest neighbour; LR, logistic regression; NB, Naive Bayes; RF, 
random forests; SVM, support vector machine.
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in other populations. Only ML models in six articles were 
externally validated.32 34 36 48 55 67 Therefore, external vali-
dations of ML models for predicting fracture risk are 
needed. However, a single performance measure such as 
AUC or ROC is insufficient to recommend the applica-
tion of ML models into clinical practice,8 and multiple 
measures of performance should be combined.

This systematic review and meta-analysis summarised a 
large number of studies to comprehensively evaluate the 
predictive performance of ML for fracture risk in patients 
with osteoporosis. The characteristics of the established 
and validated models were described. We performed a 
quantitative synthesis that was never done in previous 
studies to compare these models. Furthermore, the meta-
analysis of C-index was performed using the random-
effects model, since the C-index was reported in most 
predictive models.72 75 Meanwhile, the bivariate mixed-
effects model was used for the meta-analysis of sensitivity 
and specificity. In the training dataset, the sensitivity of 
hip fracture was the highest, closely followed by multi-site 
fracture and vertebral fracture. For patients with hip frac-
tures, radiographs may cause missed diagnosis and misdi-
agnosis, leading to poor prognosis.76 ML models have 
been increasingly used to identify hip fracture risk with 
high accuracy.31 ML has a stronger power to recognise 
images and can assist inexperienced clinicians in a highly 
accurate diagnosis.

Some limitations still need to be considered in the 
present study. Due to incomplete reporting of indicators, 
several studies were only included in the systematic review 
and were excluded from subsequent meta-analyses.61 63 

Studies conducted in either Western or Asian populations 
lack external validation, and thus external validations in 
other populations are needed to widen the application of 
ML models. The risk of bias assessment demonstrated that 
most studies (67%) had a high risk of bias, regardless of 
whether they involved the development or external vali-
dation of a prediction model for the osteoporosis popu-
lation. The main bias came from the statistical analysis 
because most studies did not properly handle continuous 
and categorical variables and reported no method for 
processing missing values. Only three articles reported 
the use of median imputation or multiple interpolation 
method to deal with missing values,15 31 66 while others did 
not mention how to deal with missing values. These short-
comings in the methodology may be due to a lack of guide-
lines for the standard reporting of risk prediction studies 
at that time. In addition, some models were reported with 
little information, making it unable for other researchers 
to perform external validation, much less the application 
in clinical practice. For example, only 12 articles used the 
K-fold cross-validation method to improve the accuracy of 
their algorithms,15 16 19 27 30 31 34 36 42 46 47 62 but most of the 
eligible articles did not. Models without stringent valida-
tion cannot be widely applied.73 Many studies have limited 
applicability in clinical practice because of flawed meth-
odologies or unrepresentative data sets. Future research 
should give priority to the development of practical algo-
rithms. Furthermore, we observed large heterogeneity 
in the meta-analysis of C-statistics. Potential sources of 
heterogeneity may be the differences in patients’ char-
acteristics, data sources and analysis methods across 

Table 3  Results of subgroup analysis of sensitivity and specificity by fracture site and machine learning type

Subgroup

Training dataset Validation dataset

N Sensitivity (95% CI) Specificity (95% CI) N Sensitivity (95% CI) Specificity (95% CI)

Fracture site

 � Vertebral fracture 10 0.73 (0.61, 0.82) 0.91 (0.86, 0.95) 3 0.87 (0.70, 0.95) 0.97 (0.94, 0.98)

 � Hip fracture 13 0.90 (0.82, 0.94） 0.82 (0.75, 0.88) 5 0.84 (0.77, 0.89) 0.85 (0.80, 0.89)

 � Multi-site fracture 18 0.71 (0.59, 0.81) 0.72 (0.60, 0.81) 8 0.66 (0.61, 0.70) 0.69 (0.53, 0.81)

Model type

 � LR 17 0.70 (0.63, 0.77) 0.73 (0.67, 0.79) 4 0.66 (0.55, 0.75) 0.65 (0.50, 0.77)

 � ANN 4 0.91 (0.70, 0.98) 0.93 (0.75, 0.98) 3 0.78 (0.71, 0.83) 0.85 (0.71, 0.93)

 � CNN 3 0.83 (0.81, 0.84) 0.91 (0.79, 0.96) 1 0.98 0.95

 � RF 1 0.84 0.91 1 0.70 0.46

 � SVM 6 0.81 (0.63, 0.92) 0.63 (0.13, 0.95) 3 0.79 (0.72, 0.85) 0.89 (0.79, 0.94)

 � DT 2 0.97 (0.53, 1.00) 0.70 (0.67, 0.73) –

 � NB 2 0.63 (0.13, 0.95) 0.76 (0.70, 0.81） –

 � kNN 2 0.95 (0.39, 1.00） 0.80 (0.77, 0.83） 1 0.81 0.79

 � Survival model 1 0.81 0.52 –

 � Boosted tree 1 0.59 0.67 1 0.70 0.95

 � Other DL 2 0.81 (0.72, 0.87) 0.96 (0.93, 0.98) 2 0.83 (0.74, 0.90) 0.95 (0.92, 0.97)

Overall 41 0.79 (0.72, 0.84) 0.81 (0.75, 0.86) 16 0.76 (0.80, 0.81) 0.83 (0.72, 0.90)

ANN, artificial neural network; CNN, convolutional neural network; DL, deep learnimg model; DT, decision tree; kNN, k-nearest neighbour; LR, logistic regression; 
NB, Naive Bayes; RF, random forests; SVM, support vector machine.
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the studies. More than 30% of the research data came 
from clinical studies, and clinical data are heteroge-
neous and usually imbalanced. At last, most ML models 
did not report balanced accuracy and lacked calibration 
or external validation or decision curves. Thus, further 
research is required to address these issues, improving 
the generalisation of the models.

Despite the limitations mentioned above, the present 
study can still provide meaningful recommendations for 
future research and practice. First, the major strength 
of our study is the rigorous literature search and meth-
odology to provide reliable estimates. This is the latest 
systematic review and meta-analysis conducted to compre-
hensively assess ML models for fracture risk. Second, 
ML models can provide convincing evidence to assist 
clinicians in making more accurate judgments during 
highly complex decision-making processes, with certain 
clinical application values.74 More rigorous, robust and 
comprehensive research is warranted to assess its clinical 
application and impact on clinicians and patients. Third, 
the advances in emerging technologies such as ML have 
opened a new era of clinical medical research, providing 
new directions for solving intricate problems with clas-
sical statistical methods. However, clinicians currently are 
not skillful in using such emerging technologies. There-
fore, it is advisable for clinicians to improve their ability to 
use ML to make more accurate diagnoses.

In conclusion, ML has a favourable predictive perfor-
mance for fracture risk in patients with osteoporosis 
and can be used as a potential tool for early identifica-
tion of fracture risk in this population. However, most 
current studies lack external validation. Therefore, future 
research is needed to validate and improve the existing 
predictive models for osteoporosis risk rather than devel-
oping new models.
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