Skip to main content
. 2023 Dec 8;13(12):e071430. doi: 10.1136/bmjopen-2022-071430

Table 2.

Results of subgroup analysis of C-index by fracture site and machine learning type

Subgroup Training dataset Validation dataset
N C-statistic (95% CI) N C-statistic (95% CI)
Fracture site
 Vertebral fracture 15 0.80 (0.74, 0.87) 6 0.87 (0.71, 1.00)
 Hip fracture 20 0.76 (0.72, 0.81) 9 0.73 (0.65, 0.81)
 Multi-site fracture 31 0.70 (0.67, 0.72) 17 0.71 (0.65, 0.76)
Model type
 LR 26 0.75 (0.72, 0.78) 7 0.80 (0.73, 0.87)
 ANN 4 0.73 (0.64, 0.82) 3 0.66 (0.62, 0.70)
 CNN 2 0.95 (0.94, 0.96) 1 0.98 (0.94, 1.00)
 RF 3 0.70 (0.68, 0.72) 3 0.66 (0.59, 0.73)
 SVM 5 0.72 (0.60, 0.85) 3 0.78 (0.59, 0.96)
 DT 2 0.78 (0.56, 0.99) 1 0.69 (0.67, 0.70)
 NB 2 0.74 (0.39, 1.00)
 kNN 1 0.51 (0.46, 0.55)
 Survival model 13 0.70 (0.69, 0.74) 9 0.68 (0.67, 0.69)
 Boosted tree 5 0.71 (0.69, 0.74) 3 0.70 (0.69, 0.71)
 Ensemble learning 1 0.72 (0.71, 0.73)
 Other DL 2 0.97 (0.96, 0.97) 1 0.82 (0.77, 0.87)
Overall 66 0.75 (0.72, 0.78) 32 0.75 (0.71, 0.78)

ANN, artificial neural network; CNN, convolutional neural network; DL, deep learnimg model; DT, decision tree; kNN, k-nearest neighbour; LR, logistic regression; NB, Naive Bayes; RF, random forests; SVM, support vector machine.