Skip to main content
. 2023 Dec 8;13(12):e071430. doi: 10.1136/bmjopen-2022-071430

Table 3.

Results of subgroup analysis of sensitivity and specificity by fracture site and machine learning type

Subgroup Training dataset Validation dataset
N Sensitivity (95% CI) Specificity (95% CI) N Sensitivity (95% CI) Specificity (95% CI)
Fracture site
 Vertebral fracture 10 0.73 (0.61, 0.82) 0.91 (0.86, 0.95) 3 0.87 (0.70, 0.95) 0.97 (0.94, 0.98)
 Hip fracture 13 0.90 (0.82, 0.94) 0.82 (0.75, 0.88) 5 0.84 (0.77, 0.89) 0.85 (0.80, 0.89)
 Multi-site fracture 18 0.71 (0.59, 0.81) 0.72 (0.60, 0.81) 8 0.66 (0.61, 0.70) 0.69 (0.53, 0.81)
Model type
 LR 17 0.70 (0.63, 0.77) 0.73 (0.67, 0.79) 4 0.66 (0.55, 0.75) 0.65 (0.50, 0.77)
 ANN 4 0.91 (0.70, 0.98) 0.93 (0.75, 0.98) 3 0.78 (0.71, 0.83) 0.85 (0.71, 0.93)
 CNN 3 0.83 (0.81, 0.84) 0.91 (0.79, 0.96) 1 0.98 0.95
 RF 1 0.84 0.91 1 0.70 0.46
 SVM 6 0.81 (0.63, 0.92) 0.63 (0.13, 0.95) 3 0.79 (0.72, 0.85) 0.89 (0.79, 0.94)
 DT 2 0.97 (0.53, 1.00) 0.70 (0.67, 0.73)
 NB 2 0.63 (0.13, 0.95) 0.76 (0.70, 0.81)
 kNN 2 0.95 (0.39, 1.00) 0.80 (0.77, 0.83) 1 0.81 0.79
 Survival model 1 0.81 0.52
 Boosted tree 1 0.59 0.67 1 0.70 0.95
 Other DL 2 0.81 (0.72, 0.87) 0.96 (0.93, 0.98) 2 0.83 (0.74, 0.90) 0.95 (0.92, 0.97)
Overall 41 0.79 (0.72, 0.84) 0.81 (0.75, 0.86) 16 0.76 (0.80, 0.81) 0.83 (0.72, 0.90)

ANN, artificial neural network; CNN, convolutional neural network; DL, deep learnimg model; DT, decision tree; kNN, k-nearest neighbour; LR, logistic regression; NB, Naive Bayes; RF, random forests; SVM, support vector machine.