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Abstract

Diabetic macular edema (DME) is a common vision threatening complication of diabetic 

retinopathy. In a large scale screening environment DME can be assessed by detecting exudates 

(a type of bright lesions) in fundus images. In this work, we introduce a new methodology 

for diagnosis of DME using a novel set of features based on colour, wavelet decomposition 

and automatic lesion segmentation. These features are employed to train a classifier able to 

automatically diagnose DME. We present a new publicly available dataset with ground-truth 

data containing 169 patients from various ethnic groups and levels of DME. This and other 

two publicly available datasets are employed to evaluate our algorithm. We are able to achieve 

diagnosis performance comparable to retina experts on the MESSIDOR (an independently 

labelled dataset with 1200 images) with cross-dataset testing (e.g., the classifier was trained 

on an independent dataset and tested on MESSIDOR). Our algorithm is robust to segmentation 

uncertainties, does not need ground truth at lesion level, and is computationally efficient, as it 

generates a diagnosis on an average of 9.3 seconds per image on an 2.6 GHz platform with an 

unoptimised Matlab implementation.
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1. Introduction

Diabetic retinopathy (DR) is the most common cause of preventable blindness in working 

age populations in the industrialized world. The World Diabetes Foundation estimates that 

there will be over 438 million people with diabetes worldwide by 2030. Diabetic macular 

edema (DME) is a complication of DR and is the most common cause of vision loss and 

blindness (Singer et al., 1992). DME is defined as swelling of the retina in diabetic patients 

due to leakage of fluid within the central macula from microaneurysms (dilated small blood 

vessels) that form as the result of chronic damage due to elevated blood sugar levels. The 

presence of clinically significant DME is an important indication for the initiation of laser 

treatment. Early diagnosis and treatment are essential to prevent vision loss, but the large 

and growing number of diabetic patients and costs of current office-based detection methods 

(by eye care specialists) are a barrier to achieving the recommended screening compliance in 

at-risk populations. Instead, an automated system which uses computer vision and machine 

learning to diagnose retina images for the detection of DR and DME is a potential solution 

to this problem. The image analysis research community has shown the potential of such 

systems and is actively working on their development as has been shown in recent large 

studies by Abramoff et al. (2008), Philip et al. (2007) and Fleming et al. (2009).

One particular characteristic of DME is thickening of the retina, which cannot be directly 

quantified from a single fundus image because of the lack of 3-D information. Instead, 

ophthalmologists can infer the presence of the fluid that causes the retina thickening from 

2-D images, by the presence of accompanying lipid deposits called exudates, which appear 

as bright structures with well defined edges and variable shapes. In this paper we address 

the problem of automated detection of DME through three aspects: the dataset, exudate 
segmentation and the DME diagnosis.

The first aspect we address in this work is the dataset. In the medical imaging field, there 

are some publicly available annotated datasets of retinal images which have different goals, 

characteristics, and levels of completeness. We are aware only of six of them: STARE 

(Hoover and Goldbaum, 2003), DRIVE (Niemeijer et al., 2004), ARIA (ARIA, 2006), 

DIARETDB1 (Kauppi et al., 2007), MESSIDOR (Messidor, 2010) and ROC (Niemeijer 

et al., 2010). Their aims include vessel segmentation, DR diagnosis and microaneurysm 

localisation. Whenever a single common dataset has been employed by different research 

groups the advantages and disadvantages of different proposed methods were easily 

measurable and comparable as shown in Niemeijer et al. (2010). Unfortunately the majority 

of methods for exudate detection found in the literature were tested on independent datasets 

with various characteristics, and with very different evaluation methods. In addition, the 

only dataset containing manually segmented exudates is DIARETDB1, but this dataset 

suffers from a lack of ethnic variability (88 of its 89 images show the pigmentation 

typical of Caucasians, which represents only a small percentage of the population requiring 

mass screening throughout the world). This is problematic, especially considering that the 

pigmentation of the human retina is significantly variable, especially between different 

ethnic groups as well as from person to person. The MESSIDOR dataset is composed 

of 1200 images and it contains the diagnosis for diabetic retinopathy, including DME. 

Although it does not provide a reference standard for the exudate segmentation, it is an 
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important resource given the number of images available and the independent diagnosis. 

To contribute to the development of better image analysis methods, we introduce a new 

public dataset, the Hamilton Eye Institute Macular Edema Dataset (HEI-MED). This dataset 

contains high quality fundus images of patients from different ethnic backgrounds. In 

addition, a manually produced ground-truth lesion map and other meta-data are provided.

The second aspect we address is the automated detection of exudates. In the literature, the 

majority of approaches to diagnose DME are based solely on exudate segmentation. The 

confidence level of one or more lesions is employed for the diagnosis. The technique by 

Agurto et al. (2010) is one of the few exceptions where the lesion map is not employed 

directly, but rather inferred by a set of frequency domain based features that describe 

the image as a whole. However, the technique described is for the diagnosis of DR not 

of DME. The other approaches for exudation detection can be roughly divided into four 

different categories. Thresholding methods base the exudate identification on a global or 

adaptive grey level analysis. A first attempt was presented by Phillips et al. (1993) and 

recently a more sophisticated method based on image normalisation and distribution analysis 

was presented by Sanchez et al. (2009). Region growing methods segment the images 

using the spatial contiguity of grey levels; a standard region growing approach is used by 

Sinthanayothin et al. (2002), which is computationally expensive by being employed to 

the whole image. Li and Chutatape (2004) limit the computational issues by employing 

edge detection to decrease the size of regions. Morphology methods employ greyscale 

morphological operators to identify all structures with predictable shapes (such as vessels). 

These structures are removed from the image so that exudates can be identified (Walter et 

al., 2002; Sopharak et al., 2008). Classification methods build a feature vector for each pixel 

or pixel cluster, which are then classified by employing a machine learning approach into 

exudates or not exudates (Gardner et al., 1996; Osareh et al., 2003; Garcia et al., 2009) or 

additional types of bright lesions, such as drusen and cotton wool spots (Niemeijer et al., 

2007; Fleming et al., 2009). In this work we discuss a method for exudate detection first 

described by Giancardo et al. (2011) which is summarised here for completeness.

Finally, we present the main contribution of this paper: a new method for the diagnosis 

of DME. We do not attempt to grade DME using a precise scale like the one presented 

by Gangnon et al. (2008) or the three levels of International Clinical DME Severity Scale, 

but rather provide an automated “DME/no DME” grading. The diagnosis simulates what 

a retina expert would normally attempt with a single fundus image, i.e. inferring the 

presence of DME from the exudates. We approach the detection of DME with a hybrid 

technique: first an exudate segmentation map is generated with a method that falls into the 

category of thresholding methods, then we compose a feature vector based on the image as 

whole by employing different colour spaces, wavelet analysis and the exudate segmentation 

likelihood. Such image based approach to feature vector composition accommodates the 

fact that the segmented lesions might have some errors. This approach to feature extraction 

seems to be applicable not only to this problem domain, but also to all classification tasks 

that are based on an uncertain segmentation map. Our algorithms can be trained uniquely 

with the diagnosis as ground truth, i.e. no lesions need to be manually segmented; this is 

possible thanks to the exudate segmentation algorithm. This technique does not use machine 

learning methods to classify candidate exudates into true positives and false positives, which 
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require extensive ground truth segmentations by experts which is problematic to attain. As 

an example, in images with many lesions often the ophthalmologist will omit some which 

can cause confusion to an automated lesion level classifier.

We would like to emphasize that our algorithm development was conducted on the HEI-

MED dataset, but we also used two of the available public datasets, MESSIDOR and 

DIARETDB1 for comparison testing. We believe our experiments, as presented, show that 

our methods generalize well to other data sets which is a common problem in automatic 

retina image processing.

This paper begins with a description of the compiled dataset in Section 2. Then, Section 3 

summarises the characteristics of the other datasets used for testing. Section 4 introduces the 

techniques employed for the automated DME diagnosis. Section 5 presents the final results 

for the diagnosis on the various datasets and the comparison with two retina experts. Finally, 

the paper concludes in Section 6 with some discussion of the results and approach.

2. The HEI-MED Dataset

2.1. Teleophthalmology Network

Since 2005, our group has been designing and developing a semi-automated, HIPAA-

compliant, teleophthalmology network for the screening of diabetic retinopathy and related 

conditions in under served regions of the Mid-South of the United States of America. 

Currently, five clinics are provided with Zeiss Visucam PRO fundus cameras appropriately 

modified to automatically send pictures and patients’ metadata to our central server for a 

diagnosis. The current telemedicine network is described by Li et al. (2009). In January 

2010, the server stored 1907 images of which 75% were healthy and the remaining 25% 

had some form of retinal condition which required referral to an ophthalmologist. The 

images were acquired from 910 patients in 971 sessions. This wealth of images are of 

particular interest for research purposes because it provides an appropriate testbed for lesion 

segmentation and diagnosis stratification algorithms required for a fully automated eye 

screening system. We believe that the creation of a dataset based on this pool of data, 

obtained under true clinical conditions with a broad-based screening protocol, has several 

advantages over existing datasets as described below.

2.1.1. Section removed: A Priori Data Distribution

2.1.2. Diverse Ethnicity—The clinics employing the telemedicine network are mainly 

located in the Mid-South of the USA, where the ethnic groups are heterogeneous and 

where retinal pigmentation covers the spectrum generally found in diverse populations. It 

is important to emphasize this aspect because the appearance of the retinal fundus varies 

greatly depending on the pigmentation of the retinal pigment epithelium, which is correlated 

to the ethnic group and eye colour. Depending on this pigmentation, lesions or other type of 

structures are more or less apparent which makes the development of lesion segmentation 

and diagnosis algorithms that work on a broad spectrum of patients more challenging as 

shown in Fig. 1.
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2.1.3. Image Consistency—All the images are captured with the Zeiss Visucam PRO 

fundus camera, at a resolution of 2196×1958 pixels and with a 45° Field of View (FOV)1.

2.1.4. Quality Assessment—The image capturing process is vetted by an automatic 

quality assessment algorithm based on the Elliptical Local Vasculature Density features 

(ELVD) (Giancardo et al., 2010) that generates a numeric quality metric between 0 and 

1. Every time an image is captured the algorithm is run and the result is shown to 

camera operators, giving them the chance of taking a new image if required. This process 

statistically increased the overall quality of the images submitted to the system as shown by 

Karnowski et al. (2009).

2.1.5. Metadata—In all the images, additional information is supplied. In addition to 

the ethnicity and quality metric, age of the patient at image capture, patient gender, 

type of diabetes, the machine segmented vasculature (employing the method of Zana and 

Klein (2001)) and a manually generated location of the Optic Nerve (ON). None of this 

information is employed in our technique, but it is an addendum which is likely to be useful 

in other type of experiments.

2.2. Public Dataset

From the pool of images collected on the server, we have randomly extracted a set of 169 

images representative of various degree of DME. We have verified that all images are of 

sufficient quality, no patient is duplicated, and a reasonable mixture of ethnicity and disease 

stratification is represented. Table 1 shows the distributions of the ethnicity, DME diagnosis, 

ELVD quality, diabetes type and patients’ age in the dataset.

Although our algorithm does not use machine learning methods to classify lesions into 

true positives and false positives, for the purposes of algorithm development each image 

of the dataset was manually segmented by one of the co-authors (E. Chaum, a practising 

Retina specialist). He identified all the exudation areas and other bright lesions such as 

cotton wool spots, drusen or clearly visible fluid occurring in fundus images. The manual 

segmentation and grading of each image was performed on a 17 inch tablet device that 

can be operated with a stylus, in order to increase the labelling precision and throughput. 

The software used to perform the task was internally developed with the look and feel of 

ordinary bitmap painting software. It allows segmentation of the different lesions, revision of 

already processed images by viewing or amending the existing segmentation, and zooming 

views. The zooming capability can be somewhat problematic, for while it allows the user 

to define the contour of the lesion very precisely, it might greatly burden the grader when 

many very small lesions are clustered together. Therefore, it was agreed to segment clusters 

of small lesions as a single one if the lesions are not discernible at the first zoom level (a 

complete view of the image at a resolution of 1280×1024 pixels).

We have decided to release the dataset to the research community on the website: http://

vibot.u-bourgogne.fr/luca/heimed.php.

1Some clinics in our network use a 30° FOV. However, the images used to create the HEI-MED dataset do not contain any image of 
this type.
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3. Other Public Datasets

Besides HEI-MED, the only two publicly available datasets that can be used to evaluate 

our algorithm are MESSIDOR and DIARETDB1. While the former provides the DR/DME 

diagnosis for each image only, the latter provides a lesion map generated by four different 

ophthalmologists but no explicit diagnosis. Hence, for the DIARETDB1 case, the DME 

diagnosis was generated by analysing the exudation ground truth map. Each image having 

more than 75% chance of having exudates (according to the four ophthalmologists) is 

diagnosed with DME (the labels are available in the electronic annexes of this journal). 

Table 1 shows also some details of these two datasets.

In all the datasets used in this work, all the images were captured with a 45° FOV using 

different fundus cameras (even throughout the same dataset). In the MESSIDOR dataset, the 

images were obtained by a variety of research groups based in France. The heterogeneity, 

the substantial number of images, the public availability and the independence make these 

datasets ideal for an unbiased validation of our algorithms.

4. Methods

The method proposed for the DME diagnosis is based on the classification of single 

feature vector generated for each image. The feature vector is based on three types of 

analysis: the Exudate probability map (which is computed using the background subtraction 

technique described in the Preprocessing), the Colour Analysis and the Wavelet Analysis. 

The rationale and approach for the feature computations is described in Section 4.5, which 

is followed by a description of the classifier used and the automatic techniques adopted to 

select the subsets of features that are employed in our experiments.

4.1. Preprocessing

Our approach uses the green channel Ig of the image and the Ii channel from the HSI colour 

space. First, we resize the image to a height of 752px maintaining the original height/width 

ratio. We then estimate the background with a large median filter, whose size is 1
30  the height 

of the fundus image on Ii. This approach has been used previously (Niemeijer et al., 2005; 

Fleming et al., 2006) and has considerable computation performance advantages over other 

methods (Foracchia et al., 2005). In other median filtering normalisation techniques, the 

background is subtracted from the original image in order to obtain a normalised version. 

Instead, in our approach, we enhance the normalisation with morphological reconstruction 

(Vincent, 1993) as opposed to the more common practise of subtracting the median filtered 

result, which improves the removal of nerve fibre layer and other structures at the edges of 

the optic nerve (ON). This is because the shape of the estimated background is more adapted 

to the original image. The pseudocode of Algorithm 1 illustrates this step.

Giancardo et al. Page 6

Med Image Anal. Author manuscript; available in PMC 2023 December 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2(b) shows an example of the estimated background bgEst2. The subsequent step is to 

normalise the image by subtracting bgEst2 from the original image with signed precision, 

obtaining InoBg as shown in Fig. 2(c). In InoBg, the highest peak of the histogram is always 

centred on zero regardless of the ethnicity of the patient or disease stratification (as shown 

in the second row of Fig. 3(a,b)). The histogram shows a clear distinction between dark 
structures and bright structures. The former represent the vasculature, macula, dark lesions 

and other structures and their distribution varies depending on the ethnicity or pigmentation 

of the patient. Bright structures are found in the positive side of the histogram and include 

bright lesions, nerve fibre layer reflections and other structures as shown in Fig. 3(c,d). The 

distribution is fairly constant across different ethnicities.

Because of the characteristics of the normalized image, we can select all the exudate 

candidates Icand with a hard threshold thcand. This has obvious computational advantages 

in comparison with model fitting operations which are also more sensitive to suboptimal 

background subtraction (Sanchez et al., 2009). In our case we use thcand = 3 simply by 

empirically choosing a value slightly above 0 in order to accommodate small background 

estimation errors. Fig. 2(e) shows an example of the candidates selected. Note that although 

all the lesions are identified, there are other lesion candidates corresponding to false 

positives such as nerve fibre layer reflections and other noisy background structures.

The area outside the viewing aperture (the black area around the fundus image) is identified 

with a fast method (16 milliseconds per image) based on region growing with four seeds 

placed at the corners of a downsampled version of the image. This approach is described in 

Giancardo et al. (2010) and it permits to identify the effective area occupied by the image, 

i.e. the circular area not masked out by the black FOV.

The pre-processing step of ON removal seems to be common to all methods in the literature. 

This is understandable given the potential colour resemblance between ON and exudates in 

fundus images. Tobin et al. (2007) described a Bayesian approach for the location of the 

centre point of ON and macula. The method uses three features of the segmented vascular 

tree (vessel thickness, orientation and density) and the intensity level of the green plane of 

the fundus image to create a 4D feature set. Regions of optic nerve and non-optic nerve are 

characterized by a Gaussian distribution in this feature space. We have trained this algorithm 

on internal set of 164 images which were not present in any of the public dataset and 

employed its output as a mean to remove the ON from Icand by masking out a region slightly 
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larger than the average ON size. The size of this region was conservatively estimated to be 

0.125 times the width and the height of effective retina area.

4.2. Exudate probability map

From the exudate candidate map, an initial exudate detection is performed by assigning a 

score for each candidate. The exudate candidates are selected by running a 8-neighbour 

connected component analysis on Icand.

We seek to take advantage of the outer edge values of exudates in comparison to non-

exudate structures with Kirsch’s Edges (Kirsch, 1971), which seeks to capture the external 

edges of the lesion candidates. This edge detector is based on the kernel k (shown below) 

evaluated at 8 different directions on Ig. The kernel outputs are combined together by 

selecting the maximum value found on each pixel output. The result is stored in the final 

Ikirsch image, an example is shown in Fig. 2(d).

k =

5
15 − 3

15 − 3
15

5
15 0 − 3

15
5
15 − 3

15 − 3
15

(1)

The average edge outputs of Ikirsch under each lesion cluster of Icand are calculated and 

assigned to the lesion in their entirety. The result is stored in a image IkCand. In this way 

we measure the prominence of the candidate’s border, which is highly correlated with the 

probability of having a true exudate (based on our assumption). IkCand is scaled in order to 

create an exudate probability map IexProb that represents P(isExudate|I).

P isExudate ∣ I =

0,  if px < tℎlow

1,  if px > tℎℎigℎ

px − tℎlow

tℎℎigℎ − tℎlow
,  otherwise

(2)

where px is a pixel of IkCand; thlow and thhigh are respectively: the lower boundary below 

which it is unlikely to identify any significant exudate, and the average upper boundary 

that can be identified in images with exudates. While thhigh does not substantially influence 

the performance of the algorithm, thlow needs to be carefully selected in order to maintain 

most of the lesions without an excessive amount of false positives. In a recent publication 

(Giancardo et al., 2011), we have evaluated this exudate segmentation technique on the 

HEI-MED dataset and compared it to two other segmentation techniques (Sopharak et al., 

2008; Sanchez et al., 2009). Based on these results we have picked a thlow of 4.5 that 

corresponds to a Sensitivity/Positive Predictive Value of 0.81/0.50 and a thhigh of 30 which 

is where the Free-response Receiver Operating Characteristic (FROC) curve levels out. The 

Sensitivity was calculated as the average ratio of lesions found in an image, i.e. a Sensitivity 
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of 0.81 means that, on average, 81% of the lesions were identified on each image. Fig. 2(f) 

shows an example of the final exudate probability map IexProb.

4.3. Colour Analysis

Cree et al. (2005) devised a method to significantly reduce the inter-patient colour 

variability. They assume that a background-less fundus image has colours normally 

distributed. Hence, the image can be characterized by the scalar mean (μ) and standard 

deviation (σ) across the entire image. By taking a reference image and calculating these 

two parameters, it is possible to equalise the colours of the new image to the reference 

one in a more effective way than by simple histogram equalisation. The background is 

estimated by a large median filter, whose size is 1
30  the height of the fundus image (however, 

unlike the exudate candidate detection, no morphological reconstruction step is applied). 

The description of the process for a single colour plane follows.

Iref
2 = Iref  − medianFilter Iref 

μref = mean Iref 
2

σref = std Iref 
2

Inew
2 = Inew − medianFilter Inew

μnew = mean Inew
2

σnew = std Inew
2

Inew
3 = Inew

2 − μnew ÷ σnew

Inew
4 = Inew

3 × σref + μref 

(3)

where Iref is the reference image, Inew is the image to be equalised and Inew
4  is the equalised 

image. We have applied this process to the three planes of the RGB colour space using a 

single good quality reference image for all the datasets. With this equalisation we aim to 

increase the reliability of colour based features which normally have a significant variability 

given the patient ethnicity, camera settings and image quality. Fig. 4 shows an example of 

the equalisation of an image with a given reference image. Even if the two initial images 

have different ethnic backgrounds and quality levels (Fig. 4(c) is slightly blurred), the 

resulting images (Fig. 4(b,d)) have very similar colours, particularly with respect to areas of 

exudation. Finally, we also generate features using the YCbCr and HSI colour spaces, using 

unequalised images.

4.4. Wavelet Analysis

Wavelet analysis is a powerful multi-resolution signal analysis technique that has many 

applications, such as denoising or compression. In comparison to a traditional Fourier 

analysis, a wavelet approach has many advantages, the most prominent being the fact that 

wavelet functions are localized in space and that their scale can vary. In order to analyse 

an image (or any other signal), a mother wavelet needs to be chosen. From this mother 

wavelet a series of scaling and wavelet functions are derived which are able to decompose 

the image at different scales. In 1-D, two approximation signals are generated for each scale 

level: one containing the details and the other the basis. In 2-D, apart from the basis, three 

different details are generated for each scale level: vertical, diagonal and horizontal. For 

more information, Mallat (1999) provides an introduction on the topic of wavelet analysis.
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Quellec et al. (2008) proposed a method for the detection of retina microaneurysms in the 

wavelet space. We try to capture the strong peak at the centre of exudates by developing a 

method that employs a similar wavelet analysis, but that evaluates the results in image space. 

A stationary Haar wavelet analysis is performed up to the second level on Ii (I channel of the 

HSI colour space of the original image). The process is inverted maintaining the last vertical, 

diagonal and horizontal details only (see Fig. 5(a–c)), as these are the wavelet coefficients 

that seem to contain most of the foreground structures. By transforming back to the image 

space we obtain a background-less image Iwav (see Fig. 5(d)). It is interesting to notice 

that the distribution of Iwav has similar properties as the image obtained during the image 

normalisation phase (i.e. centred at 0 and with the exudates located on the positive side of 

the histogram). Hence, we set to 0 all the reconstructed pixels that correspond to the negative 

side of the histogram. As it can be seen in Fig. 5(e,f), we are able to enhance the response of 

exudates particularly at their central areas. This can be better appreciated by comparing Fig. 

5(f) with Fig. 2(d) which are magnification of the same image area.

4.5. DME Feature Vector

The selection of the appropriate feature vector to diagnose DME is a challenging problem. 

We want to characterise an image with a feature vector that has a fixed number of 

dimensions derived from a variable number of lesions, which might or might not be properly 

segmented. Other authors avoid this problem by providing a classification at lesion level, 

where a set of features is generated for each lesion which is then classified as false or 

true positive. The diagnosis can be subsequently generated by combining the likelihood 

of the lesions. This approach requires a set of training images labelled at a lesion level, 

which implies more work to the reader who has to manually draw exudates and other 

lesions/pigmentation changes for each image. This might be troublesome for a classifier 

susceptible to outliers or when the samples in the dataset are not enough to average out 

the human error, which is inevitable since it is not a straightforward to identify all lesions 

(when there are many) and precisely define their edges. Instead, we are able to describe 

the lesions segmented as a whole by analysing the exudate probability map, the colour and 

the wavelet properties of the detected lesion set previously described. Two approaches have 

been examined, in the first one, the exudate probability map is converted to two binary 

masks which are overlaid on the colour and wavelet analysis outputs; in the second one, the 

exudate probability map is used to weigh the analysis outputs at a pixel level.

Fig. 6 shows an example of two binary masks, one is generated by considering all the areas 

that have at least some chance of being exudative (P(isExudate|I) > 0), the other is generated 

by considering the areas where P(isExudate|I) = 0. The masks are applied to the following 

image planes:

• Wavelet: The Iwav plane (see Sec. 4.4).

• CreeRGB: The three RGB channels after the retinal colour normalisation 

described in Sec. 4.3.

• YCbCr: The three channels of the YCbCr colour space.

• HSI: The saturation channel of the HSI colour space.
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For each set of pixels extracted, the following statistics are calculated: mean, median, 

standard deviation, maximum and minimum. With these five measures we attempt to capture 

the correlation between the colour/wavelet analysis and the exudate probability map. This 

allows us to automatically identify problematic images which might have a high number 

of false positives because of consistent fibre layer reflection artefacts (which have a diffuse 

whitish colour and have different density in the wavelet analysis) or other unwanted false 

detections. By employing a mask where P(isExudate|I) = 0, we analyse also the areas not 

explicitly identified by the exudate segmentation. This appears to have a positive effect on 

the global classification, particularly on the images with a substandard exudate segmentation 

due to a noisy image or overexposed image.

The statistical measures described so far do not make full use of exudate probability map. 

To address this important aspect of the detection, we also use an approach where the 

same binary masks, image planes and statistical measures are employed, but each pixel in 

the image planes previously described is weighted on P(isExudate|I) before the statistics 

computation.

By combining the weighted and unweighted statistical measures, we obtain a total number 

of 80 features per image. The total number of features is pretty substantial with the risk 

of suffering of the “curse of dimensionality” during the classification phase. Hence, they 

underwent an automatic feature selection process. There are many techniques available to 

perform feature selection. In this work we utilize Information Gain, an approach that seem to 

be relatively independent of the classifier used and that show reproducible results.

Information theory (Yang and Pedersen, 1997) provides us a straightforward way to apply 

conditional entropy to evaluate the significance of a feature as follows: information gain 

= H(Class) − H(Class|Attribute), where H(X) is the entropy and H(Y|X) is the conditional 

entropy.

H(X) = − ∑
i = 0

n
p vi log2 p vi

IG(Y , X) = ∑
i = 0

n
p X = vi H Y ∣ X = vi

(4)

where IG(Y, X) is the information gain, p(x) is the probability of x (i.e. the frequency), n is 

the number of samples and vi is the value of a sample. We have employed this technique to 

reduce the full feature set (weighted and unweighted) to a number of 48 as shown in Table 2. 

This number was chosen by selecting only the features that had an average IG > 0.

In this section, the test has been run by splitting the HEI-MED dataset into three folds. The 

feature selection was performed on each of these three subsets. Each feature receives a final 

score that is the average between the three folds. This allows to select features that do not 

“overfit” the dataset, so that any test on the MESSIDOR or the DIARETDB1 dataset would 

not have any chance of being tainted by the feature selection process.
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4.6. DME Diagnosis Classification (This whole section has been completely modified)

In order to select the most appropriate classification strategy, we have run a series of tests 

with different combinations of classifiers/feature sets. The feature sets used are: all the 

unweighted features, all the weighted features, the combination of the two sets and the 

features selected with Information Gain. As far as classifiers are concerned, we decide to 

cover the three different classification families described by Jain et al. (2000): probabilistic, 

geometric and tree-based. For the probabilistic family we tested the Naive Bayes classifier 

with two ways of estimating the prior probabilities, by assuming a Gaussian distribution 

of the data and by employing the Parzen Window approach. For the geometric family, two 

Support Vector Machines (SVMs) were tested, one with a linear kernel and one with the 

radial basis function as implemented in libSVM (Chang and Lin, 2001). For the tree-based 
family, the Random Forest algorithm with 10 trees was chosen (Breiman, 2001). In order to 

have a baseline, we reported the result of a nearest neighbour classifier which is likely to be 

the simplest classification method available (Duda et al., 2001).

The classifiers comparison tests are based on a Receiver Operating Characteristic (ROC) 

analysis with a Hold-One-Out (HOO) approach uniquely on the HEI-MED dataset. In HOO, 

the classifier is trained once for each image, each time holding out a different image which 

is used for testing. We want to avoid any type of optimization on the other two databases 

(Messidor and DIARETDB1) which will be used in the following section for an unbiased 

ROC analysis. Table 3 contains all the results for the classifiers comparison. The best Area 

Under the ROC Curve (AUC) for each feature set is highlighted in bold.

4.6.1. Section ”Feature selection” removed, part of the text moved to Section 4.5

5. Results (This whole section has been heavily modified)

We have evaluated our automatic diagnosis system using three datasets. The results are 

presented as ROC curves where a positive image is an image showing signs of DME, and a 

negative image does not present any sign of this disease (but it might have other conditions). 

Based on the results of Table 3 we picked the SVM with a linear kernel since it showed the 

best performance for three out of the four feature set evaluated for the HEI-MED dataset. 

The ROC curves are calculated by varying the threshold on the output positive diagnosis 

probability generated by the SVM classifier.

Fig. 7 shows the curves for the classification performed employing the two feature sets 

that had the best AUC in Table 3: the full unweighted set and the features selected with 

Information Gain (InfoGain). In each of the plots, three different tests are shown. Each test 

is represented by two ROC curves, one for each feature sets. The first test is a HOO, which 

should generally show the best performance since it is trained with images coming from the 

same dataset as the tested image. The other two are cross validation tests: the classifier is 

trained on each of the other dataset and tested on the current one. This type of test simulates 

very well the predicted performance of the system on a real environment because it is trained 

on datasets with a different number of images, captured by a different camera/operator and 

labelled by a different expert than the current test set.
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In Fig. 7(a) the performance on the HEI-MED dataset are shown. While the HOO tests reach 

considerable AUCs for both feature sets (0.94 and 0.93), the cross validation tests follow not 

so closely behind (although they are still acceptable). This suggests that HEI-MED dataset, 

albeit small, has a representation of fundus appearance and conditions that might not be so 

obvious in the other datasets. This hypothesis is supported by the fact that in Fig. 7(b,c), the 

performance difference between HOO and cross validation tests is less significant (at least 

for the InfoGain features).

In Fig. 7(b) the performance on the Messidor dataset are shown. The InfoGain features 

perform consistently regardless of the type of test (AUC between 0.88 and 0.89). This 

is particularly encouraging in the validation of our technique because the HEI-MED and 

DIARETDB1 datasets have a significantly lower number of images than Messidor (169 and 

89 vs. 1200). Interestingly, the weighted features have not performed as well: the AUC goes 

from 0.9 to 0.54. The reason is probably due to a subset of features that do not discriminate 

the same aspect of the disease in the different datasets. This stress the importance of feature 

selection and cross validation tests.

In Fig. 7(c) the performance on the DIARETDB1 dataset are shown. The performance of 

HOO and cross validation tests with the HEI-MED dataset are very satisfying, particularly 

with the InfoGain features (the AUC is 0.93 in both tests). The cross validation with the 

Messidor training is not as good. This is a constant throughout all the tests and it is 

probably due to some inconsistencies in the Messidor labelling which was confirmed by 

the two ophthalmologists co-authors of this paper. Fortunately, the Messidor dataset has a 

considerable amount of images, so we feel that these errors are averaged out.

The computational performance are evaluated on a Dual Core 2.6 GHz machine with 4 GB 

of RAM with an unoptimised Matlab implementation. The average time to generate the 

exudate probability map is ~1.9 seconds. ~4.9 seconds needs to be added for the localization 

of the optic nerve. The average time to compute the other analysis types and classify the 

image is on average ~2.5 seconds. Therefore, the total time to generate a diagnosis from 

a raw image (without the optic nerve location) is ~9.3 seconds. This time can be reduced 

further by optimizing the optic nerve localization algorithm, which does also calculate the 

macula location with some computationally expensive operations (Tobin et al., 2007).

5.1. Comparison with Experts (This whole section has been heavily modified)

Two retina specialists determined the presence or absence of exudates in order to diagnose 

DME on a random sample of 350 images of the MESSIDOR dataset, with 120 images 

exhibiting ME and 230 exhibiting no ME. We compared the performance of the automatic 

system by creating the ROC Curve and overlaid the Specificity/Sensitivity of the two retina 

specialists as shown in Fig. 8. The reference standard is provided by the MESSIDOR 

dataset. Two ROC curves are shown and represent tests run on the 350 images only. One is a 

HOO test on these image, the other a cross validation test trained on the HEI-MED dataset. 

It can be seen that even if the experts outperform the automatic system in an absolute sense, 

the system manages to obtain a comparable sensitivity with a slightly worse specificity.
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To further quantify these tests, we used Kappa value/AC1-statistics as statistical 

concordance metrics. The Kappa value is a metric widely used in the literature, however 

Gwet (2002) underlines some of the pitfalls, and proposes the AC1-statistics to overcome 

them. In Table 4 and 5, we have compared the diagnosis between the experts, the 

MESSIDOR GT and the algorithm (trained on the HEI-MED dataset and tested on the 

Messidor subset). For the algorithm we have picked 0.22 as threshold, which simultaneously 

maximized both statistics. The diagnosis of the two experts can be downloaded from the 

electronic annexes of this journal.

6. Discussion and Conclusion

In this paper, we have presented a new automatic system for the detection of DME using 

non-stereo fundus images. The method is based on an algorithm able to detect exudates with 

some attached confidence level without the use of machine learning methods to separate 

false positives from true positives, on a colour space analysis and on new methods to 

characterise the lesions by the means of wavelet analysis. To our knowledge, our approach 

for the creation of the feature vector with a inner and outer lesion maps has never been 

attempted before and proved to be quite successful. We are confident that this type of 

approach can be applied to all the problem domains where a diagnosis (or other types of 

classifications) needs to be performed on the basis of an uncertain lesions (or other defects) 

segmentation.

We have tested our system against three different datasets, by HOO and cross-validation. 

By employing the automatically selected feature we have achieved an AUC between 0.88 

and 0.93. We compared this results with the performance of two retina specialist obtaining 

comparable results with different test modalities (ROC, K-value and AC1-statistic). We have 

shown that our newly introduced multi-ethnic database is well suited to train algorithms that 

can be employed on real world images. Additionally, the good computational performance 

make this method suitable as a component for a complete retinal disease screening tool.

A system to diagnose diabetic retinopathy that was tested with the largest dataset 

(approximately 15 000 patients) is presented by Niemeijer et al. (2009). They report an 

AUC of 0.88. In another recent study, Agurto et al. (2010) diagnose diabetic retinopathy 

avoiding the usage of manually segmented lesion too, by employing AM-FM features. They 

have obtained an AUC of 0.84 by considering a subset of 400 images of the MESSIDOR 

dataset. These works prove the feasibility of a fully automated screening system for a 

large population. Although our technique is not directly comparable because it diagnoses 

DME and not diabetic retinopathy, the AUCs presented are comparable or above these two 

systems.

The effectiveness of this method in conjunction with other aspects of lesion detection and 

retina processing will be pursued in future work in order to attempt to create a competitive 

diabetic retinopathy screening system able to transparently diagnose the disease state.
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Figure 1: 
Examples of fundus images in our dataset. (a) African American patient showing clear 

exudates; (b) Hispanic patient without signs of DME; (c) African American patient that 

shows choroidal vessels under the pigment epithelium layer and some small exudates; (d) 

Caucasian patient without signs of DME.
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Figure 2: 
(a) Example of a fundus image of the dataset used. The square represents the area shown 

in (d); (b) Estimated background, bgEst2; (c) Image without background, InoBg; (d) Image 

detail of Kirsch’s Edges Image Analysis; (e) Initial exudates candidates, Icand; (f) Exudates 

probability (Ikirsch) overlaid on a enhanced version of the original image (to improve the 

contrast with the probabilities). White corresponds to a probability of 1.0 of being a true 

exudates, black to a probability of 0.
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Figure 3: 
(a,b) The first row contains original images showing different types of pigments and lesions; 

the second row shows the image histograms after the normalisation process; (c) The bright 

structures located on the positive side of the histogram; (d) The dark structures located on 

the negative side of the histogram.
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Figure 4: 
(a) Reference image Iref; (b) Background-less reference image Iref 

2 ; (c) Image to be equalised 

Inew; (d) Equalised image Inew
4 .
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Figure 5: 
Haar stationary wavelet analysis of the image shown in Fig. 2(a). (a,b,c) Respectively 

diagonal, vertical and horizontal coefficients of the 2° level decomposition; (d) Image 

reconstructed using uniquely the coefficients of (a,b,c); (e) Exudate enhanced image by 

histogram thresholding; (f) Details of (e) highlighting an area showing exudation.
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Figure 6: 
It shows the inner and outer binary masks generated from the exudate probability map. In 

the binary masks the black colour corresponds to a pixel which is ignored, the yellow to a 

pixel which should be taken into consideration. (a) Original image; (b) Inner binary lesion 

map; (c) Outer binary lesion map.

Giancardo et al. Page 23

Med Image Anal. Author manuscript; available in PMC 2023 December 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7: 
ROC curves for the DME diagnosis. Cross-datasets and HOO testing are employed on the 

three public datasets with a SVM (linear) classifier.
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Figure 8: 
ROC curves for the DME diagnosis applied on the image subset diagnosed by the two 

experts. The feature set selected by Information Gain with a SVM (linear) classifier is used 

in both cases.
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Table 1:

Characteristics of the three datasets used in this work

HEI-MED Messidor DIARETDB1

DME Diagnosis

Negative 115 (68%) 974 (81%) 51 (57%)

Positive 54 (32%) 226 (19%) 38 (43%)

ELVD Quality Metric

Poor (ELVD < 0.5) 14 (8%) 62 (5%) 3 (3%)

Good (0.5 ≤ ELVD < 0.8) 31 (18%) 356 (30%) 27 (30%)

Excellent (ELVD ≥ 0.8) 124 (74%) 782 (65%) 59 (67%)

Ethnicity

African American 104 (62%)

Caucasian 42 (25%) 88 (98%)

Hispanic 19 (11%)

Unknown 4 (2%) 1 (2%)

Diabetes Type

Type I 160 (95%)

Type II 6 (3.5%)

Unknown 3 (1.5%)

Patients’ Age

age < 26 5 (3%)

26 ≤ age < 43 20 (12%)

43 ≤ age < 61 105 (62%)

age ≥ 61 39 (23%)
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Table 2:

Feature set selected with Information Gain.

wavMed, wavAvg, wavStd, wavMax, cbStd, cbMax, cbMin, crMed, crAvg, crMin, crOutMed, rOutCreeAvg, gCreeStd, gOutCreeAvg, 
bCreeMax, bOutCreeAvg, wavMedW, wavAvgW, wavStdW, wavMaxW, wavOutAvgW, sMedW, sAvgW, sStdW, sMaxW, yStdW, cbMedW, 
cbAvgW, cbStdW, cbMaxW, crMedW, crAvgW, crStdW, crMaxW, rCreeMedW, rCreeAvgW, rCreeStdW, rCreeMaxW, rOutCreeAvgW, 
gCreeMedW, gCreeAvgW, gCreeStdW, gCreeMaxW, gOutCreeAvgW, bCreeAvgW, bCreeStdW, bCreeMaxW, bOutCreeAvgW

the feature names should be interpreted as follows:
<analysis plane><In/Out mask><statistics used>[W for Weighted]
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Table 3:

Cross validation with HEI-MED as testing target.

Classifier╲Feature Set Unweighted Weighted Full Information Gain

Nearest Neighbour 0.692 0.827 0.787 0.86

Naive Bayes (Gaussian) 0.78 0.837 0.864 0.897

Naive Bayes (Parzen Win.) 0.813 0.857 0.876 0.89

SVM (linear kernel) 0.914 0.94 0.919 0.93

SVM (radial kernel) 0.923 0.878 0.904 0.908

Random Forests 0.865 0.888 0.907 0.903

The results are expressed as AUC for the HOO tests on HEI-MED.
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Table 4:

Kappa-value Comparison.

MESSIDOR Expert 1 Expert 2 Algorithm

MESSIDOR x 0.84 0.76 0.71

Expert 1 x x 0.76 0.72

Expert 2 x x x 0.7

Algorithm x x x x

Med Image Anal. Author manuscript; available in PMC 2023 December 19.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Giancardo et al. Page 30

Table 5:

AC1-statistics Comparison

MESSIDOR Expert 1 Expert 2 Algorithm

MESSIDOR x 0.88 0.78 0.76

Expert 1 x x 0.79 0.77

Expert 2 x x x 0.73

Algorithm x x x x
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