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Abstract

Electroencephalography (EEG) is a non-invasive measurement method for brain activity. Due to its safety, high
resolution, and hypersensitivity to dynamic changes in brain neural signals, EEG has aroused much interest in scien-
tific research and medical fields. This article reviews the types of EEG signals, multiple EEG signal analysis methods,
and the application of relevant methods in the neuroscience field and for diagnosing neurological diseases. First,
three types of EEG signals, including time-invariant EEG, accurate event-related EEG, and random event-related EEG,
are introduced. Second, five main directions for the methods of EEG analysis, including power spectrum analysis,
time—frequency analysis, connectivity analysis, source localization methods, and machine learning methods, are
described in the main section, along with different sub-methods and effect evaluations for solving the same problem.
Finally, the application scenarios of different EEG analysis methods are emphasized, and the advantages and disad-
vantages of similar methods are distinguished. This article is expected to assist researchers in selecting suitable EEG
analysis methods based on their research objectives, provide references for subsequent research, and summarize
current issues and prospects for the future.
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Introduction

Neuroscience, also called brain science, is a discipline
that explores the structure and function of the brain [1].
It is a typical inter-discipline that involves multiple disci-
plines, such as biology, psychology, information science,
medicine, engineering, and artificial intelligence. Neu-
roscience has been developed for about 100 years and
extensively applied to diagnose neurological disorders.
With the development of research methods, the focus
of neuroscience has gradually transitioned from brain
structure to brain function in the past decade [2—4]. The
brain nerve response is known as the core of cognitive
production. Accurate identification of the brain nerve
response can contribute to identifying important human
cognitive functions, developing intelligent algorithms,
and advancing medical developments regarding neuro-
logical diseases [3].

With the development of research tools for neuro-
science, multiple neuroimaging tools are available for
exploring brain function, including electroencephalogra-
phy (EEG)/intracranial electroencephalography (iEEG),
functional magnetic resonance imaging (fMRI), magne-
toencephalography (MEG), positron emission tomog-
raphy, and optogenetic techniques [4—7]. Among these
methods, EEG/iEEG has been the most widely used
tool for functional brain imaging due to its excellent
temporal resolution and low equipment cost [8]. From
the perspective of neurophysiology, EEG/iEEG reflects
postsynaptic potential, which is generated when neuro-
transmitters bind to receptors on the postsynaptic mem-
brane [9]. These postsynaptic potentials generate electric
fields around neurons. Once sufficient neurons are acti-
vated, electroneurographic signals with specific patterns
can be captured through a voltage amplifier. Owing to
the shorter spatial distance between iEEG and neuronal
groups, iEEG has higher accuracy and signal-to-noise
ratio compared to EEG [9]. The electric signals captured
by EEG have poor spatial resolution and signal-to-noise
ratio since they are passed through the skull. However,
EEG is a non-invasive technology, so it can be applied in
a wider range of scenarios [8]. The information captured
by both methods is the discharge of neuronal groups, so
the capture equipment in both cases is a voltage ampli-
fier, and the captured signals have basically the same
manifestation. Hitherto, EEG/iEEG has been extensively
applied to research diverse aspects of brain function,
including attention [10], memory [11], language [12],
emotions [13], and brain function disorders [14].

Although EEG/iEEG has good practicality, its applica-
tion requires a certain foundation in signal processing
technologies due to the complex representation of EEG
signals; this leads to a problem in that some researchers
lack clarity in selecting and applying analytical methods
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for EEG/iEEG. Therefore, we attempted to provide a
brief introduction to commonly used EEG signal pro-
cessing methods in this article. In this review, we first
comprehensively classified EEG signals based on their
characteristics. Next, we introduced commonly used ana-
lytical methods for EEG in terms of characteristics such
as power spectrum and connectivity, and presented their
adaptability to various types of EEG to assist researchers
in method selection. We also summarized current issues
and prospects for the future, which is expected to expe-
dite the application of EEG/iEEG in brain science and
neurological disease research.

Types of EEG signals

Generally, in research articles, especially those on neu-
rological disease, EEG is classified based on the research
subjects. For instance, in sleep study, EEG is classified
into EEG during wakefulness and sleep EEG [15]; in
epilepsy-related study, EEG is sub-divided into interic-
tal EEG, preictal EEG, ictal EEG, and postictal EEG [16];
and in research on event-related potentials, EEG is cat-
egorized into resting-state EEG and task-state EEG [17].
In addition, it can be classified according to the shape of
the EEQG itself. For example, it can be divided into delta,
theta, and alpha based on frequency [18, 19] or slow
wave, fast wave, sharp wave, and spike wave based on
shape.

However, from the perspective of EEG analysis, we
believe that EEG can be classified into the following three
categories. (1) An EEG in which the functional state of
the brain remains unchanged over time is called a time-
invariant EEG for short [20]. In this type of EEG, the state
of the brain does not show significant changes during the
capture process, for example, a resting-state EEG without
psychological activity [16]. Alternatively, some changes
in brain characteristics are not included among the main
features to be studied. For example, in epilepsy research,
researchers pay more attention to the pathological EEG;
in this case, the interictal period without epileptic dis-
charge can also be considered a time-invariant EEG [16].
Figure 1 is an example of sleep EEG. During sleep, the
EEG is in a stable state for a long time. Figure 1a shows an
EEG of a 5-s period of sleep, while Fig. 1b shows a 150-s
sleep EEG. Although the EEG is unstable, relatively stable
data segments can be found within the unstable EEG by
analyzing these two segments. (2) Accurate event-related
EEG can be regarded as an extension of event-related
potentials; it refers to the EEG induced by a certain event
where the induction time of the event is definite. EEG
with time-varying characteristics caused by stimuli with
a definite time, such as visuoauditory, transcranial mag-
netic stimulation, and electrical cortical stimulation [17].
Figure 2 is an example of event-related potential. Events
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a Sleep EEG data (short-time segment)
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Fig. 1 Example of time-invariant electroencephalogram (EEG) based on sleep EEG. The data come from the C3, C4, O1, and O2 channels (10-20
system). a EEG data for a short sleep time of 5 s. b EEG data for a long sleep time of 150 s

will appear at a clear time, so accurate brain electrical
responses can be obtained through time. Figure 2a is a
section of an EEG containing event-related potentials,
which marks the exact moment when the event occurred.
Figure 2b shows the EEG response after superimposing
multiple event-related potentials with the event as the
0 moment. Figure 2c shows the EEG response after the
superposition of multiple event-related potentials, with
the reaction time as the 0 moment. (3) Random event-
related EEG refers to an EEG induced by a certain event
in which the induction time of the event is random and
cannot be determined. In research on diseases such as
epilepsy or Parkinson’s disease, pathological EEG is trig-
gered by abnormal neural activity in the lesion area, but
the timing of pathological induction is difficult to deter-
mine, resulting in a time-varying EEG [19]. Figure 3 dis-
plays the EEG signals of an epilepsy patient. Figure 3a
shows the EEG signal during the interictal period, while
Fig. 3b, c show the EEG signal in the early and late stages
of the seizure, respectively. Figure 3d shows the EEG sig-
nal of the entire seizure process. Epilepsy is a random
event, so the time of occurrence of the event needs to
be retrospectively located after event onset, which poses
challenges to the real-time analysis of epilepsy EEG data.
However, Fig. 3a, ¢ show that epileptic EEG is still rela-
tively stable within a period. In Fig. 3d, the data observed
during the interictal and postictal periods, which repre-
sent two stable stages, reveals a significant difference.

It should also be noted that the main classification cri-
teria for these three types of EEG were based on the EEG
features to be analyzed, and specific analysis is required
according to the features of interest. In sleep disor-
der research, we can consider stage N1 EEG as a time-
invariant EEG. However, if the study target is a dream
or memory, the main characteristics to be studied may
also change during the N1 phase, and this EEG should
be classified as a random event-related EEG. Therefore,

researchers should accurately identify the target features
to be studied before selecting an analytical method.

Common EEG analysis methods

In this section, the extraction methods of common brain
functional features based on the characteristics of EEG
signals are introduced.

Power spectrum analyses

The power spectrum is a very common analytical method
in EEG analysis that can analyze the energy changes
of various frequency components in EEG signals. This
method can be applied in studies on brain science
and neurological diseases that can trigger EEG energy
changes upon state changes, such as sleep stage changes,
seizures, and emotional changes. Multiple power analy-
sis methods are available for selection, such as the fast
Fourier transform (FFT), Welch, and autoregressive (AR)
model, with different characteristics and usage limita-
tions. The articles in Table 1 covered a range of topics
related to EEG analysis, including sleep onset, transi-
tions between sleep stages, classification of neurological
disorders, detection of post-stroke EEG signals, analysis
of EEG background activity in autism and dyslexia, and
the impact of various factors such as focused ultrasound
stimulation, cognitive impairment in diabetes, and neu-
rofeedback training in autism [20—41].

FFT
FFT is a fast algorithm for computing discrete Fourier
transform (DFT) [42]. DFT:

N-1
X (k) = Z x(m)e ZkIN  —0,... ,N—1

n=0

(1)

Here, X (k) denotes the DFT, N represents the length
of the available data, x(n) refers to the input signal in
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a Continues EEG data
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Fig. 2 Example of time-invariant electroencephalogram (EEG) based on event-related potentials. a A 5-second period of continuous EEG data
with an event marker. b Corresponding event-related potentials of all channels obtained by superimposing EEG signals with all “Event” markers
taken as the zero time. ¢ Corresponding event-related potentials of all channels obtained by superimposing EEG signals with all “Reaction time”

markers taken as the zero time

the time domain, e signifies the exponential operation,
i denotes the imaginary part, and k represents the sam-
pling frequency. The calculation process of Equation (1)
is known as the FFT algorithm. Using the symmetric and
periodic nature of the exponential factor in the DFT cal-
culation equation, FFT can reduce repetitive calculations

[42]. FFT calculations have a high-frequency resolu-
tion but are also easily affected by EEG signal noise,
so an average period method has been proposed for
improvement.

The average period method splits the original signal
into N non-overlapping consecutive segments and then
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Fig. 3 Example of time-invariant electroencephalogram (EEG) based on epilepsy EEG data. a A 5-second period of EEG data between epileptic
seizures. b A 5-second period of EEG data in the early stage of an epileptic seizure. ¢ A 5-second period of EEG data in the late stages of an epileptic
seizure. d A 150-second period of EEG data from all stages of an epileptic seizure
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calculates the periodogram of each segment individually,
all of which are finally averaged [43]. Through the window
technique, averaging N periodograms can reduce the vari-
ance of the power spectral density estimation, but spectral
leakage easily occurs because signal segmentation leads to
increased boundaries of the data, while Fourier transform
has a poor ability to process these data boundaries [44].

Welch

The Welch method has two improvements that enhance
resolution and reduce errors in results compared to the
average period method. First, this method allows overlap
between data segments. Second, the Hamming window
function is used for each segment instead of the rectan-
gular window function, which ameliorates the potential
distortion caused by too many rectangular windows [45].
{x;(m)},l=1,...,S refer to data segments, and M repre-
sents the length of each segment. The overlapping coef-
ficient is usually set as 50% (M/2). The Welch spectrum
estimate is given by the following equation:

M 2

Z v(n)xy(n)e 2

n=1

Bilf) = - ©

Pulf) = 5 Do) ®

Here, P (f ) represents the periodogram estimate of seg-
ment [ and v(n) denotes the window function. P refers to
(P =1/MEM |2,
fies the exponential operation, i denotes the imaginary
part, f represents the sampling frequency, Py, (f) refers to
the Welch power spectral density estimate, and S signifies
the number of segments.

Currently, Welch’s method is one of the most widely
used power spectrum analysis methods because it
reduces the influence of boundary effects on the power
spectrum, providing more stable power spectral results
than FFT/short-time Fourier transform (STFT) methods.

, e signi-

the general average of ‘v(zn)

Multitaper

Multitaper can solve the bias and variance problems of
nonparametric spectral estimation simultaneously in an
optimal manner [46]. Windowing the signal using differ-
ent tapers allows multiple independent estimates to be
derived from the same signal since the different windows
are uncorrelated with each other.

Assuming that X = {x} ;%04 - - - ,xp,k}T is the signal
sequence, where p denotes the number of channels and k
signifies the length of the sequence, the multitaper of the
channel /, m is calculated as follows:
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Smt (¢) _ 18 S0
IL,m )_ EZ IL,m ) (4‘)
i=1

Sim(f) =2

N-1 ) N-1 )
Z h/((l)xl’ke—t2n/g‘A‘| [Z h/(:)xmyke—ﬂnka‘|
k=0 k=0

(5)

Here, K refers to the cross-spectrum estimate, N repre-
sents the sequence length, Sl(l) (f ) signifies the kth direct

S
cross-spectrum estimate of the channel /, m, A indicates
the sampling interval, f represents the sampling fre-

quency, e signifies the exponential operation, i denotes

the imaginary part, and h,(f) represents taper. Since the
final result is obtained by processing multiple tapers, the
problem of information loss caused by single-scale analy-
sis can be reduced.

The multitaper method is a modified Welch’s method
that provides features similar to those of the STFT and
Welch’s methods, but its stability is improved and the num-
ber of parameters to be determined is reduced because it
uses multiple tapers for superposition. For instance, in the
well-known tool Fieldtrip, multitaper is employed as the
major power spectrum analysis method [47].

AR model

The AR model can achieve the linear prediction
modeling of the original signal as with the signal
x(n),0 <n < (N —1) deemed as white noise with a
mean value of 0 and a variance equal to o2. The signal’s
amplitude during a specific period is determined by
aggregating the various amplitudes from preceding sig-
nals and incorporating the estimation error. The model’s
order, or filter, is contingent upon the quantity of AR
coefficients employed.

p
x(n) ==Y _ a(k)x(n — k) +w(n) ©6)

k=1

Here, a(k) represents the coefficients of the AR
model, w(n) signifies white noise with a variance equal
to 02, and p refers to the model order. The AR(P)
model can be characterized in terms of parameters
{a[l], al2],...,alp], 02}. Power spectral density:

o2

Pl) = r ”

A(f) =1+ arexp(—j2nf) + - + apexp(—j27nfp). AR
model parameters can be derived using Burg or least

squares [48]. The AR model can process the short-term
signal in contrast to the FFT. The AR model is less used
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because of its high coefficient requirement, but its scal-
ability is so excellent that it has been used in many
researches [37-41].

Time-frequency analyses

Since the EEG of human beings in a task state shows
time-dependent changes, a time—frequency analysis is
quite suitable for EEG analysis. For short-term signals,
time—frequency analysis can replace power spectrum
analysis to characterize the signals in two dimensions.
The commonly used methods for time—frequency analy-
sis include STFT, the wavelet transform (W'T), empiri-
cal mode decomposition (EMD), and the Wigner-Ville
distribution (WVD). The articles in Table 2 investigated
various methods for EEG signal analysis, including the
use of rational discrete STFT and deep learning for epi-
leptic seizure classification, a hybrid approach for alco-
hol and control EEG signal classification, connectivity
analysis in autism disorders using STFT and coherence
values, drowsiness detection based on relative band
power and STFT, automatic sleep stage classification
using time—frequency images, and detection of deception
using smoothed pseudo WVD, among other techniques
[49-68].

STFT

The STFT is a technique that divides long-term signals
into shorter segments of uniform length. It then com-
putes the Fourier transform separately for each of these
shorter segments. The Fourier transform is defined as
follows:

F(w, 1) = / fOU*E — r)e_iwtdt (8)

f(¢) refers to the original signal, T signifies the transla-
tion parameter, ¥ *(¢t — 7) denotes the window function
(usually Hamming window), and when the window func-
tion uses a Gaussian function, the STFT is called a Gabor
transform. Moreover, e signifies the exponential opera-
tion, i denotes the imaginary part, ¢ refers to time, and w
represents frequency. The STFT has a limitation in that
its fixed time window results in a fixed time—frequency
resolution [69].

wvD

The WVD is a classical method for time—frequency anal-
ysis that excels in handling non-stationary signals. Unlike
STFT, the WVD remains unaffected by leakage effects.
This distribution represents a secondary energy density,
derived by correlating the signal with time and frequency
translations along with their complex conjugates. The
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instantaneous autocorrelation function of the signal f(¢)
is as follows:

T T
Ret o =1 (e+5 )" (e+5) ©)

t refers to time, 7 signifies the time-lag correlation coef-
ficient, * denotes the complex conjugate, and the WVD of
S (t) refers to the Fourier transform of R¢ (¢, T) about .

+00 .
W(t,w) = / Re(t,T)e /T dt

—00

(10)

e signifies the exponential operation, j denotes the
imaginary part, and w represents frequency.

The WVD has a series of good properties such as con-
jugate symmetry, time-marginal properties, frequency-
marginal properties, and energy distribution properties.
However, when the signals have multiple frequency com-
ponents, the WVD is affected by cross terms, that is, it is
easily affected by noise [70].

wTt

The WT overcomes the time—frequency resolution limi-
tation observed in the STFT algorithm. This is achieved
by introducing varying time—frequency resolutions in the
outcomes through the translation and scaling of wavelets.
Wavelets:

V() = (%)w (t - b)

Y (¢) refers to the mother wavelet, v, ;(¢) signifies the
sub-wavelet, a, b refer to the modulation and translation
parameters, respectively, and the WT of the signal f(¢) is
as follows:

1 o0 —-b
Wyf(a,b) = ﬁ/— foy* (:)d’f

Now, there are many optional mother wavelet functions
(such as morse, morlet, db, and Harr), which include dis-
crete and continuous wavelets. For EEG signal analysis,
discrete wavelets are commonly used for signal decom-
position, and continuous wavelets are commonly used for
signal presentation. Thus far, although continuous wave-
lets cause massive data redundancy, they have been the
preferred time—frequency analysis method, with more
accurate and smooth time—frequency representation [69].

(11)

(12)

EMD
EMD is a self-adaptive multiresolution technique that
decomposes the original signals into components of
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different resolutions and can analyze non-linear and non-
smooth signals [71]. EMD decomposes the input signals
into several intrinsic mode functions (IMFs) and a residual:

M
I(n) = IMF () + Resp(n)

m=1

(13)

I(n) refers to a multi-component signal, IMF y;(n)
signifies the Mth IMF, and Res;;(n) denotes the corre-
sponding residual intrinsic modes. The IMF components
usually extract time—frequency features using the Hilbert
spectral analysis. EMD is characterized by self-adaptabil-
ity and high efficiency. However, it may exhibit aliasing
effects due to the presence of IMFs that contain signifi-
cantly different characteristic time scales or when similar
characteristic time scales are dispersed across different
IMFs. EMD does not rely on the primary function of the
fixed frequency, so the time—frequency results obtained
by EMD are affected by Gibs; however, its positioning
performance to the frequency is poor [72].

Connectivity analyses

Connectivity analysis of EEG is an analytical method that
has gained much attention in recent years and is funda-
mental to research on brain networks and connectivity.
Connectivity analysis includes multiple types, such as sig-
nal morphology-based, signal phase-based, statistics-based,
and information-based analyses. Different correlation anal-
ysis methods are oriented to different principles and the
obtained results express different characteristics. Hence,
it is important to accurately choose suitable connectivity
analysis methods during brain network research. We intro-
duce several common connectivity analysis methods here.
Table 3 summarized some articles that explored various
aspects of EEG signal analysis, including analysis for differ-
ent severities of obstructive sleep apnea, synchrony meas-
ures for early Alzheimer’s disease diagnosis, correlation
between EEG abnormalities and symptoms of autism spec-
trum disorder, EEG channel correlation for emotion recog-
nition, quantitative EEG in ischemic stroke correlation with
functional status, variability of EEG functional connectivity
in young attention deficit hyperactivity disorder subjects,
and the identification of causal relationships between EEG
activity and intracranial pressure changes in neurocritical
care patients, among other topics [73-106].

Correlation (CORR)

CORR measures the similarity between two signals by
calculating the variance of signals [107]. The CORR for
each given frequency is as follows:
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Cag(x)
(Caa(x)Cap(x))

Cap(x) represents the cross-covariance between signal
A and signal B, and Cq4(x) and Cpg(x) refer to the auto-
covariance of signal A and signal B, respectively. CORR is
sensitive to both phase and polarity.

Corr(x) = (14)

Coherence (COH)

COH measures the similarity between two signals by cal-
culating the power spectral density [108]. The COH for
each given frequency is:

Sap(x)[*
(Saa(x)Spp(x))

Sap(x) represents the cross-spectrum between sig-
nal A and signal B, and S44(x) and Spp(x) refer to the
auto-covariance of signal A and signal B, respectively.
Because COH is calculated through cross-spectrum
and auto-spectrum, it is very sensitive to the phase
changes of the signal but is little affected by energy
changes.

COH (x) = (15)

Wavelet coherence (WTC)
WTC can represent the time-varying relationships
between different signals in the time—frequency domain
by producing different time—frequency resolutions
through wavelet translation and dilation [109].

The WT of signal x is a function of time and frequency,
defined as the convolution of an input with a wavelet
family 0 (u):

Wi (6,f) = /

With given input signals x and y, the wavelet cross-
spectrum around time ¢ and frequency f can be derived
through the WT of x and y:

CWay(t.f) = /

o0

x(u)@t*f (u)du (16)

t+8/2

Wx(r,f) W; (r,f)dr
t—8/2

(17)

Here, * represents the complex conjugate, and §
denotes the scalar dependent on the frequency. The
WTC of time ¢ and frequency f is represented by
CWix (t,f), and CW), (t,f) refers to the Fourier trans-

form of the autocorrelation function of signal x and
signal y. WTC can view the phase correlation between
signals on the time spectrum and reduce the interfer-
ence of energy.
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Phase lag value/index (PLV/PLI)

PLV and PLI are commonly applied to acquire the
strength of phase synchronization [110]. The instantane-
ous phase of signal x() is generated using the following
formula:

T(t) = arcmnﬂ

x
0 (18)

Here, x(f) signifies the Hilbert transform of x(¢),
defined as follows:

* x(7)

_ 1
X(t) = ;PV/_oot —dr (19)

PV refers to the Cauchy principal value. The PLV of two
signals is defined as follows:

N-1

PLV — % e l(2xG80)-2,Ga0)

j=0

(20)

Here, At denotes the sampling period, N represents the
number of samples per signal, j refers to the imaginary
part, and e signifies the exponent. PLV signifies phase
synchronization, with values ranging from 0 to 1. A value
of 0 indicates a lack of synchronization, while 1 repre-
sents strict phase synchronization. On the other hand,
PLI characterizes the asymmetry in the phase difference
distribution between two signals. It is computed based
on the relative phase difference between the two signals:

PLI = |E[sign(A@(t))]| (21)

E represents expectation, the result value is located
within the interval [0, 1], and a higher value indicates a
higher phase synchronization.

Mutual information (M)

MI is designed based on information theory, which pre-
sents how one signal provides information for another
signal [109]. P(x;) and P(y;) are the probability distribu-
tions of signal X = {x;} and signal Y’ = {y;}, respectively.
The entropy of X and Y is defined as follows:

H(X) = — ij(x;)log (P (%)) (22)
HO = 3Pyl (P() 2

N signifies the window length. H(Y|X) and H(X,Y)
refer to the conditional entropy and joint entropy
between X and Y, respectively, which are defined as:
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H(X,Y) = —Ex[Ey|[logP(X, Y)]] (24)

H(Y|X) = —Ex[Ey[logP(Y|X)]] (25)

Here, E denotes the expected value function. The MI of
signal X and signal Y is calculated as follows:

MIX,Y)=HX)+HY)-HX,Y)=H()—-H(Y|X)
(26)
MI can simultaneously detect the linear and nonlinear

correlations between two signals, but it requires mass
data.

Granger causality (GC)

GC is a linear vector AR model based on random time-
series data, which can estimate effective interactions
from time-series data [111]. For this method, if the past
value of the signal Xj(¢) contains information that con-
tributes to the prediction of X,(f), which exceeds the
information contained only in the past value of Y, the
signal X7 (£) “Granger causes” the signal X(¢). Therefore,
the bivariate AR model is as follows:

p p
X1(t) = ZAn,le (t—j)+ ZAn,sz(t —Jj) + E1(t)

j=1 j=1
(27)
p p
Xo(t) =D AgiXa(t—j) + > AnjXa(t —j) + Ea(t)
=1 j=1
(28)

p refers to the maximum number of delayed observa-
tions, j denotes the lag coefficient, the matrix A repre-
sents the contribution of each delayed observation to the
predicted signal value, and E;(t), E2(t) signify the resid-
ual of each time series. GC can only provide information
on the linear characteristics of the signal and cannot ana-
lyze nonlinear situations.

Cross-frequency analysis (CFA)

CFA is a kind of rapidly developing connectivity analysis
method, which mainly includes cross-frequency coupling
(CFC) and cross-frequency directionality (CFD).

CFC describes the interaction of brain oscillations
across different frequency bands and manifests in four
modes: phase-to-amplitude, power-to-power, phase-to-
phase, and phase-to-frequency interactions. The Kull-
back-Leibler distance serves as an effective metric for
quantifying CFC [112]. Notably, CFC holds significance
in working memory processes [113]. According to the
theta/gamma neural code hypothesis, conserved memory
items are encoded through theta-nested gamma cycles
in sensory regions, facilitating communication between
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different brain cortices during memory and sensory pro-
cesses [114]. A study leveraging iEEG data in epilepsy
patients, coupled with behavioral outcomes, underscore
the association between theta/gamma CFC across diverse
brain regions and working memory performance [115].
Key findings reveal the widespread distribution of theta/
gamma phase amplitude coupling across the cortex, with
increased coupling strength observed in more cognitively
demanding working memory tasks [116].

CFD, measuring information flow direction between
brain regions, involves the modulation of high-frequency
signal amplitude by the phase of a low-frequency signal
[117]. It relies on the phase slope index, quantifying the
phase slope in the cross-spectrum of two signals [117].
CFED has proven valuable for inferring causal relation-
ships and estimating signal delays [118]. Additionally, it
has been employed in exploring information flow direc-
tions between distinct brain regions during various cog-
nitive tasks [117].

Source localization analysis
With the continuous development of EEG and MEG
devices, the number of channels in scalp EEG or MEG
has increased to over 100. Multi-channel and multi-loca-
tion EEG/MEG signals have accelerated the development
of EEG source localization.

First, structural MRI is often used as a prior in source
localization analysis because it provides a high-resolu-
tion three-dimensional (3D) image of the brain’s anat-
omy. This image can be used to create a head model that
accurately represents the geometry and conductivity of
the brain and skull [119]. The head model is then used
to calculate the forward solution, which describes how
electrical activity generated by the brain is measured at
the scalp [120]. By incorporating structural MRI informa-
tion into the forward solution, the accuracy of the source
localization can be improved.

Moreover, structural MRI has the potential to generate
an accurate boundary element model of the head, facili-
tating the computation of the lead field matrix [121]. This
matrix characterizes the propagation of electrical activ-
ity generated by the brain to the scalp electrodes [122].
The utilization of a realistic boundary element model
enhances the precision of lead field matrix calculations,
thereby improving the accuracy of source localization
[123].

The source localization method can infer the intracra-
nial discharge status of the brain through multi-channel
signals from the scalp, human brain physical models,
and finite element calculations. Source localization
methods are commonly employed to localize functional
areas and lesion areas, among others, under non-inva-
sive conditions. Common source localization methods
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are introduced below. The articles in Table 4 explored
EEG source localization techniques, including dipole
analysis, beamforming approaches, and methods like
low-resolution electromagnetic tomography (LORETA)
and standardized LORETA (sLORETA), to study vari-
ous conditions such as epilepsy, visual working memory
tasks, auditory attention, depression, obsessive—compul-
sive disorder, pain perception, age-related hearing loss,
and different neurological disorders, providing insights
into the localization of brain activity in these contexts
[124-151].

Minimum norm estimation
The minimum norm estimation method uses MEG for
analysis and solves the current distribution by estimating
the linear combination of the magnetometer lead field. L;
signifies the vector field at the position i, so the output of
the magnetometer is defined as follows:
Bi()) = / L] (ndV (29)
J(r) denotes the conversion of various energy types
into electrical energy, and the linear relationship among

the magnetometer reading, current distribution, and lead
field is expressed as:

B=1] (30)

Consequently, the shortest current vector needed to
explain the magnetometer output is defined by multiply-
ing the output vector B by the pseudo-inverse of L:

J=L*B (31)

Here, LT = LT(LLT)Jr represents the Moore—Penrose
generalized inverse, predicting minimum norm solu-
tions for pure signals, noise-contaminated signals, and
smoothed noise signals. Due to the harmonic nature of
the minimum norm solution, the method faces chal-
lenges in resolving deep source localization within the
outermost cortex, leading to localization errors [152].

Focal underdetermined system solution (FOCUSS)

FOCUSS is a high-resolution non-parametric technique
that allocates current to each element within a prede-
termined reconstruction region using a forward model
[153]. The weighted minimum norm method is used to
perform mathematical calculations in the recursive steps
in focusing. The calculation formula for the unknown
current element [ is as follows:

-1
I=WGW)tB=wwTGT (GWWTGT) B
(32)
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Here, W is an » x n matrix that refers to a constraint
on the results to strengthen some elements in I, B
denotes the measured value of the radial magnetic field,
and G signifies the spatial weight of the element:

Ilk—l 0

Il
~

Wi ik—1 (33)

0 Iy,

L, represents the ith element of vector I in the
(k — 1) iteration, and k signifies the index of the iteration
step. By continuously constructing W and calculating
the weighted minimum norm, the model results are con-
verged, but the computation time of FOCUSS is longer
than that of other algorithms.

LORETA

LORETA is an innovative method in the high tempo-
ral resolution neuroimaging field that allows for the 3D
reconstruction of the EEG activity distribution [154]. A
head model is used for LORETA, and the intensity and
direction of electrical activity at each point determine the
electromagnetic field measured on the scalp. It is defined
as:

minFyy (34)
with
Fyw = ||® — KKJ|> + o/ T Wy (35)

In the above equation, ® represents a vector of poten-
tial difference, K denotes the lead field matrix of the
volume, / signifies the current density, W denotes the dis-
crete Laplace operator in the square space, and « refers to
the Tikhonov regularization parameter.

Tw = Tw@ (36)

The Tw value can be calculated using the following
formula:

+

Tw = WKT (I(W’IKT + aH) (37)

H denotes the mean reference operator, which is real-

ized using the discrete spatial Laplacian operator, so the
spatial resolution of LORETA is relatively low.

sLORETA is also a common and popular source

localization method. sLORETA incorporates additional

assumptions regarding the smoothing and weighting of

the values [155]. An advantage of SLORETA is that it has
“guaranteed accuracy” in the presence of a single dipole,
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while LORETA does not [155]. SLORETA has been used
in various studies to estimate the sources of EEG signals
in the brain [156]. For example, sSLORETA has been used
to study the neural correlates of cognitive processes such
as attention, memory, and language [156]. SLORETA has
also been used to study the neural correlates of various
disorders such as depression, schizophrenia, and Alzhei-
mer’s disease [156].

Dipole

The dipole method can predict the electric field gener-
ated by a theoretical dipole in the brain using dipole
property-related principles [157]. Location and orien-
tation are two parameters of the dipole model, with the
location indicating the position of active region within
the brain in this model and the orientation indicating the
arrangement of brain cells in the active region.

The six parameters of a dipole source consist of three
coordinates in r; € R3¥*! and three dipole components
in d = (dy,dy, dy) € R3*! (equivalently two orientation
angles and an intensity parameter). For each dipole posi-
tion r,; within the head, the relation between d and the
potential measured at the mth electrode V,,,y € R"*!
can be written as:

Vinod = L(rd)d (38)

The matrix L € R”*3 is a lead field matrix, deter-
mined by dipole position, electrode position, and head
geometry.

A more realistically shaped head model is often
required for patient EEG data analysis, but in this case,
boundary element methods or numerical methods such
as the finite-difference method are needed to compute
the lead field matrix.

Beamforming

Beamforming is a spatial filtering technique for signals
measured by discrete sensors [158]. Beamforming refo-
cuses the signals captured on the scalp to their original
locations by finding the weights of each location in the
source space, thus minimizing the variance of the current
dipole at each location. It is often desirable to extract sig-
nals from a small region of the brain that is modeled by
dipoles at the location r; with a specific orientation. With
a given dipole and its components, the potential distribu-
tion is defined as follows:

c=L(ry)d (39)

wic=1 (40)
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r; denotes the dipole coordinate, d represents the
dipole component, L signifies the lead field matrix, and w
refers to the weight vector.

The output variance or output power of a beamformer
is calculated as follows:

2
s{|y(k)‘ },k:—oo,...,oo (41)

y(k) represents the output and &{|-|*} denotes the
expected value of its parameter. The results are con-
strained with different restrictions.

Current source density (CSD)

CSD calculates an estimate of the current projected
radially from the underlying neuronal tissue at a given
surface location to the skull and scalp and calculates a
spatially weighted sum of the potential gradients point-
ing to that location from some or all of the recorded
locations.

CSD estimates:

N
C(E) = cih(cos(E, Ei)) (42)

i=1

Here, C(E) denotes the current density value at any
point E on the sphere surface, ¢; refers to a constant to
express an i surface potential set, and cos(E, E;) refers
to the cosine of the angle between the surface point E
and the electrode projection E;. The function Ah(x) is
defined as the sum of the grades:

o0

1 2n+1
h(x) = e Z an(x)

n—1

(43)

Here, m is a constant greater than 1 and P, is the nth
Legendre polynomial, defined as follows:

AP, = —n(n+ 1)P, (44)

CSD does not necessitate reference information but is
susceptible to noise. CSD is a source localization method
designed for scalp EEG, treating the entire head as a con-
ductor with equal conductivity. It concentrates signals
from multiple EEG channels to their respective channels
by adjusting the parameters. This method cannot focus
EEG signals to the intracranial region. However, its arith-
metic is simple and fast, and it is still used in some EEG
analyses for scalp localization without the assistance of
brain models [159].
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Machine learning

Machine learning is a very popular class of signal pro-
cessing methods currently applied in the medical field
[160], and with the rapid development of deep learning,
machine learning methods in EEG analyses have gained
attention. Machine learning methods are commonly
used for classification and regression problems in EEG
analyses and have yielded substantial results in disease
research [161]. The studies in Table 5 utilized various
machine learning and signal processing techniques,
including common spatial pattern (CSP), deep learn-
ing, wavelet analysis, support vector machine (SVM),
convolutional neural network (CNN), recurrent neural
network (RNN), and long short-term memory (LSTM)
network, to address diverse applications such as seizure
detection, diagnosis of neurological disorders (autism,
schizophrenia, Parkinson’s disease), mental fatigue
measurement, and emotion recognition using EEG sig-
nals [162-185].

csp
The CSP algorithm uses a linear transformation to maxi-
mize the variance ratio of two signals after mapping,
which is a common spatial-filtering algorithm used for
multi-channel EEG analysis [186].

X1, X5 refer to the signal data of (n, T1), (n, T2) size,
where 7 is the number of channels and 77, 75 are the
length of the respective signal:

lwXa 2
Y llwXa |2

w = argmax (45)
w denotes the projection matrix, which can be solved
using matrix diagonalization.
In contrast to other spatial feature extraction methods,
the CSP method is simple and efficient, but it is only suit-
able for processing two categories of signal data.

Linear discriminant analysis (LDA)

LDA, a classical linear method, is mainly used to find fea-
tures that characterize or separate two classes and is also
applicable for the dimensionality reduction of data [186].
Regarding projection, the projected data have high cohe-
sion and low coupling characteristics.

My — My)?
Jw) = W (46)
w = argmax,,] (W) 47)
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S1, S, are intra-class scatters, (M; — Ms)? refers to the
inter-class scatter, and w represents the mapping matrix.
Because LDA assumes that the data obey the Gaussian
distribution, it does not perform satisfactorily in process-
ing data with non-Gaussian distributions.

SYm

SVM is a class of generalized linear classifiers for the clas-
sification of binary data in a supervised learning manner
[176]. SVM constructs a hyperplane in high-dimensional
space to distinguish between two classes of data. Assum-
ing that the dataset is [(xl,yl), (xz,yz), ... (x,,,y,,)],
wherein y; € [—1, 1], the hyperplane is defined as:

wlx—b=0 (48)

The plane separating the two classes of data is as
follows:

wla; +wo=1,wla;+wy=—1 (49)

Here, w” represents the normal vector and » denotes
the offset, so the data interval is 2/||w/||. This method max-
imizes 2/|/w|| while ensuring that all data satisfy the con-
ditions. Methods such as Lagrangian duals can be used to
solve such constrained optimization problems, comput-
ing the hyperplane of the separated data. SVM performs
poorly in resolving multi-classification problems.

CNN

The unique convolutional layer of CNN can effectively
extract EEG signals and structural information in the spa-
tio-temporal frequency domains [187-189].

For feature extraction, the dot product is completed
using the input data with the filterbank region-by-region,
and each kernel is scanned using step length, sharing equal
weight. The resulting output is a set of K-dimensional fea-
ture maps.

1 _ -1 l )
Z —"(ZZ/ * W;’JJFB/')

Here, Bll» signifies the jth deviation in the layer /, lei
refers to the weight matrix connecting with the feature
map in the neighboring layer (Z].I,Z/.lfl), * represents the

(50)

convolution operator, and o (-) denotes the nonlinear acti-
vation function.

The extracted feature maps are recognized by a classi-
fier, which often uses the cross-entropy loss function:

N
~ 1 ~ ~
L{yn5i) = 5 D _(~yidogyi — (1= yi)log(1 = 5:))
i=1

(51)
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Here, y; represents the sample’s true value and y; sig-
nifies the model-predicted value. CNN requires less pre-
processing than other algorithms but also has the risk of
overfitting.

RNN

The RNN model performs well for temporal signals,
wherein connections between nodes generate directed
or undirected graphs along the time series, effectively
extracting feature information in the time dimension [190].
However, gradient explosion and gradient vanishing prob-
lems are present due to RNN’s structure of backpropaga-
tion through time. Later, LSTM was developed, which has
broader applications than RNN.

LSTM
LSTM has improved on the problems of the RNN network
[191] and selectively transmits data utilizing forgetting
gates, input gates, and output gates.

The forgetting gate determines which information to
remove from the state of the unit:

Je= U(W/f[ht—bxt] + bf) (52)

The input gate determines which values will be
updated:

it = o (Wilhs—1,%¢] + by) (53)

C; = tanh(Wlhs—1,%.] + be) (54)

Then, the unit value state is updated based on the equa-
tions above:

C[ = f[ * C[_l + it * E'[ (55)

Finally, the output gate determines which parts of the
unit state will be the final output:

o = o (Wolhs—1,%:] + bo) (56)

]’lt = 0t * tanh(Ct) (57)

wherein o signifies the sigmoid activation function that
compresses numbers to the range 0, 1, tanh denotes the
hyperbolic tangent activation function that compresses
numbers to the range—1, 1, Wy, W;, W¢, and W, are the
weight matrixes, x; represents the input vector, /;_; rep-
resents past hidden states, and by, b;, b, and b, are devia-
tion vectors. LSTM has a slow training speed due to its
performing and processing difficulties [192].
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Joint application of EEG analysis and machine learning
methods

The joint application of EEG analysis and machine learn-
ing methods has been an active area of research in neu-
roscience and disease diagnosis. EEG is a non-invasive
method of measuring the electrical activity of the brain,
and machine learning algorithms can be used to extract
information from EEG signals to help diagnose vari-
ous disorders and identify different brain states [193].
Machine learning algorithms have been developed to
extract features from EEG signals, such as frequency
bands, time—frequency representations, and connectiv-
ity measures [193]. These features can then be used to
train machine learning models to classify different brain
states or diagnose various disorders [193]. Machine
learning algorithms have been developed to detect sei-
zures in EEG signals with high accuracy [194] and clas-
sify EEG signals from patients with Alzheimer’s disease
and healthy controls [195].

The joint application of EEG analysis and machine
learning methods has several advantages in neuroscience
and disease diagnosis. It allows for the identification of
patterns in EEG signals that are difficult to detect using
traditional methods. Machine learning algorithms can
be used to extract features from EEG signals that are not
easily visible to the human eye, such as subtle changes in
frequency or amplitude [193]. These features can then be
used to train machine learning models to classify differ-
ent brain states or diagnose various disorders. Another
advantage of this combination is that it can help reduce
the subjectivity of EEG analysis. Traditional EEG analysis
methods rely on visual inspection of the EEG signal by
a trained expert, which can be time-consuming and sub-
jective [193]. Machine learning algorithms can be used to
automate the process of EEG analysis, reducing the time
and subjectivity involved in the analysis [194].

Moreover, different models may be better suited to dif-
ferent aspects of the data. One model may be better at
detecting certain types of patterns in the data, while
another model may be better at classifying the data into
different categories. By combining the strengths of differ-
ent models, it is possible to create a more accurate and
robust analysis [193] to reduce the risk of overfitting, and
create a more generalizable analysis [196].

In summary, the joint application of EEG analysis and
machine learning methods has great potential for the
diagnosis of various disorders and the identification of
different brain states. It has several advantages, including
the ability to identify patterns in EEG signals that are dif-
ficult to detect using traditional methods, and the ability
to reduce the subjectivity of EEG analysis.
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Discussion

This article reviewed several commonly used EEG/
iEEG analysis methods in neuroscience and introduced
the applied principles based on the data generation
characteristics. Due to different EEG data generation
approaches, there are fundamental differences in data
time, events, and variability. Therefore, the methods for
data analysis should be selected based on these charac-
teristics to ensure theoretical accuracy. Figure 4 presents
a summary diagram of method selection. The required
method can be selected based on the characteristics of
the EEG signal and application requirements. The various
methods are discussed below.

The power spectrum analysis method is used to reflect
the energy changes in various brain regions. FFT has
a high-frequency resolution and accuracy but is eas-
ily affected by noise and requires a large amount of data
[197]. Therefore, FFT is more suitable for analyzing time-
invariant EEG signals of good quality [44]. Welch and
multitaper can suppress noise in EEG signals using the
window averaging method, but the frequency resolu-
tion is decreased and the requirement for data length is
increased [198]. Hence, for time-invariant EEG, if the sig-
nals contain slight burst noise, Welch or multitaper is a
good choice [45]. Additionally, for accurate event-related
EEG, EEG can be segmented into epochs based on the
onset time of events. Windowed superposition analysis
of EEG in the same state, such as baseline EEG before
stimulation, can also yield good power spectrum results.
If the signal can be directly spliced, signal jumps easily
occur at the splicing site, which can cause severe Gibs.
Therefore, it is not recommended to use signal splicing
before FFT calculation or Welch power spectrum analy-
sis. The AR model can calculate the power spectrum
after signal prediction and modeling, which is very suit-
able for analyzing short-term signal power spectra [58],
such as the power spectrum of a small segment of rapidly
changing EEG signals in event-related EEG. However, it
should be noted that the AR model method is based on
the model, so the selected model may not fit the signal
well. Selection of the wrong model will result in large
deviations [197]. The application of AR models requires
a more accurate evaluation of the signals [199]. Addi-
tionally, for signals with rapid changes in signal ampli-
tude, commonly used models cannot fit effectively, so AR
models cannot effectively analyze the power spectrum. In
summary, if the data obtained are of good quality, such
as high-quality sleep data, FFT is recommended to obtain
more accurate results. If the data contain random noise,
such as in the long-term monitoring of epilepsy, Welch or
multitaper is recommended. If the data are short, such as
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Random event-related EEG —

Accurate event-related EEG —
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— Random event-related EEG —

— Accurate event-related EEG —

Time-invariant EEG

More suitable

Power spectrum analyses

w More suitable

Time-frequency analyses

w Find relationships

Connectivity analyses

— Time-invariant EEG —]

Need more channels

w Find locations

Source localization analyses

* Low noise: FFT

« High noise: Welch,
multitaper

« Short length: AR model

« Preferred: WT

- Easier and faster: STFT

« High time and frequency
resolution with low noise:
WVD

» Nonlinear components:
EMD

« Similar in shape: CORR

« Synchronized in phase:
PLV/PLI

* Phase synchronization
at different frequencies:
COH

« Phase synchronization
in time-frequency space:
WTC

* Less sensors and sources
are sparse: FOCUSS

« Pointed and less sources:
Dipole

« Distributing sources with
large number: Beamforming,
LORETA

« Extracranial distribution
without brain model: CSD

» Nonlinear correlation:

MI, GC

» Modulation between
different frequencies:
CFA

Feature
extraction
v
> Machine learing <

« Features are expressed by image: CNN
« Features are sequential: RNN, LSTM

« Extract features that can discriminate between two or more classes: CSP
« Classification based on characteristics (the classes are normally distributed): LDA
« Classification based on characteristics (the classes are linearly separable in the feature space): SVM

« Suggestion: use multi models to get more stable and accurate results

Fig.4 Summary of method selection for different data characteristics and application requirements. AR autoregressive, CFA ross-frequency
analysis, CNN convolutional neural network, COH coherence, CORR correlation, CSD current source density, CSP common spatial patterns, EEG
electroencephalography, EMD empirical mode decomposition, FFT fast Fourier transform, FOCUSS focal underdetermined system solution, GC
granger causality, LDA linear discriminant analysis, LORETA low-resolution electromagnetic tomography, LSTM long short-term memory, Ml mutual
information, PLV/PLI phase lag value/index, RNN recurrent neural network, STFT short-time Fourier transform, SYM support vector machine, WT

wavelet transform, WTC wavelet coherence, WVD Wigner-Ville distribution

EEG after physical instant stimulation, the AR model is
recommended for fitting. Power spectrum analysis is the
basis of EEG signal analysis and one of the most impor-
tant analysis methods. With upgrades in EEG acquisi-
tion equipment, the signal-to-noise ratio of the obtained
EEG signal is also increasing. At this time, the transient
power spectrum will play an important role, and related
research will enhance the development of brain-com-
puter interfaces (BCls) and machine learning fields.
Time—frequency analysis is a powerful tool for analyz-
ing event-related EEG signals because it can describe the
changes in time-varying EEG from two dimensions based
on the changes in time and frequency. Among the various

time—frequency analysis methods, the continuous WT is
the most commonly used method due to its good per-
formance in balancing time and frequency. However,
its high computational and spatial complexity makes
it unsuitable for long-term data analysis [200]. Corre-
spondingly, DWT shows a good performance in signal
decomposition but a poor visualization effect and unsat-
isfactory frequency resolution [201]. For time-invariant
EEG, although the changes in EEG are insignificant, the
energy of diverse frequency bands will certainly change
in response to long-term changes. STFT can present this
response well, having good frequency resolution [3] and
low time resolution [69]. If WT is used, although it is
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more informative, the resultant massive data redundancy
is not conducive to observing the main features. WVD
has a very high time—frequency resolution for short-
term signals but is highly susceptible to noise. Therefore,
WVD is more suitable for analyzing short-term signals
with less noise [70]. EMD is very suitable for analyzing
signals with many abrupt amplitudes [72] and will not be
affected by Gibs, but WVD has poor frequency localiza-
tion of low-noise signals [201]. With advances in com-
puter performance, time—frequency analysis methods
have gradually replaced power spectrum methods as the
first choice for observing spectrum changes. The integra-
tion of time—frequency graphs and image-based deep
learning has also produced many high-quality applica-
tions. However, it should be noted that time—frequency
analysis is still not detailed enough for the calculation
of instantaneous changes. For example, it is difficult to
use time—frequency diagram analysis for the EEG sig-
nal during epileptic discharge. In this case, it should be
combined with the time domain method to improve the
description accuracy.

Connectivity analysis is an important part of neural
signal analysis. The selection of relevant analysis methods
is crucial to the main features that need to be analyzed.
This article introduced several classical correlation analy-
sis methods from the perspectives of time, frequency,
and nonlinearity. However, many other methods have not
been introduced, such as event statistics, CFC coupling,
and amplitude frequency coupling. These methods are
similar to the ones in this article and can be selected based
on the data characteristics. Several correlation analysis
methods applicable to long-term signals can be used to
observe the correlations between different brain regions
in time-invariant EEG due to insignificant changes in
the characteristics of time-invariant EEG. CORR focuses
more on the time-scale similarity of signals, while COH
focuses more on their frequency-scale similarity [107].
The PLV/PLI method refers to phase-based statistics,
with PLV being stricter. Such a method can be easily
converted into correlation statistics of cross-frequency
or other events [202]. These three methods can be used
to measure the correlation between channels in terms of
signal similarity and signal phase synchronization [112].
MI and GC can analyze the driving force between signals
from the perspective of information transmission [109].
These two methods can be used to study the relation-
ship between signals. MI observes the relationship from
the perspective of information transmission, while GC
infers the relationship from the perspective of regression.
Both methods are nonlinear but differ in their approach.
MI uses information entropy, while GC uses regression.
As a result, the characteristics of the observations differ
between the two methods [111]. However, WTC requires
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clear events to produce more accurate results, making it
suitable for accurate event-related EEG but not for time-
invariant EEG. All the methods mentioned above are also
suitable for accurate event-related EEG. However, it is
important to note that the relevant changes presented by
event-related EEG during the event are accurate and real.
Therefore, correlation analysis of short-term signals after
the event is recommended to obtain related results with
a higher signal-to-noise ratio. For random event-related
EEG, due to the inaccuracy of its events, WTC meth-
ods are also unable to provide accurate results. However,
due to the time-varying characteristics, other correlation
analysis methods are required to segment and classify the
signals according to the main analysis features to improve
the signal-to-noise ratio of the results [203]. Connectiv-
ity analysis methods have emerged as a powerful tool for
studying brain networks, which are important compo-
nents of brain cognition. Moreover, these methods can
be combined with neural networks to develop new bionic
operations. Different connection patterns can represent
different ways of connecting neurons. The existing neural
networks usually use direct signal connections, but other
connection methods can be used to produce more intel-
ligent network interfaces. Spiking neural networks are a
representative example of this type of research.

Source localization analysis can convert multi-channel
EEG from the scalp to deeper brain regions, which can
more clearly localize the position of signal generation.
A personalized brain model is generated through struc-
tured MRI, following which intracranial nerve activity is
inferred from extracranial nerve activity signals to esti-
mate the discharge location of the personalized brain.
This process can locate key intracranial locations with-
out surgery and has been widely used in the fields of epi-
lepsy focus location and functional area location. Existing
source localization methods have different implemen-
tation principles. The minimum norm estimation can
partly localize the source into the intracranial region but
has low accuracy in deep source localization and a high
requirement for signal quality due to the use of MEG
[139]. The dipole and beamforming methods can effec-
tively localize the source into the intracranial region and
have good localization accuracy, but they require more
accurate parameters and an accurate head model [142,
163]. Beamforming balances speed and accuracy and is a
rapidly developing method [204]. The FOCUSS method
has good resolution but low computational efficiency
[140]. LORETA is currently the most frequently used
source localization method [205]. The spatial resolution
of this method is not high, but its temporal resolution is
good; thus, it has received considerable attention in EEG
analysis [139]. CSD does not require a brain model and
its calculation process is simple and fast, but it cannot
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localize the source in the intracranial cavity [144]. Sig-
nal quality plays a crucial role in the accuracy of multi-
channel brain source localization methods. Therefore,
the source localization method best suits short-term
EEG localization analysis in event-related EEG. By lever-
aging the high signal-to-noise ratio features at the onset
time of events, more accurate localization results can be
obtained. For the source localization analysis of time-
invariant EEG, the discharge characteristics of the EEG
should be converted before localization, or the superpo-
sition method should be used to increase the signal-to-
noise ratio. For random event-related EEG, it is advisable
to choose EEG signals with a high signal-to-noise ratio
for localization as far as possible. Source location meth-
ods have significant restrictions, including signal quality,
number of channels, and brain model accuracy, which
can affect positioning accuracy. However, targeted selec-
tion can improve the accuracy of these methods. With
the continuous development of computing power and
artificial intelligence technology, the quality requirements
of source localization methods will gradually decrease,
allowing them to be widely used in clinical practice.
Machine learning methods are rapidly developing
methods that learn features, which can be the original
EEG signals or converted features of EEG [148], such as
power and connectivity [149]. Hence, although machine
learning has a wide range of adaptability due to its self-
learning nature, the generation and selection of features
remain points of discussion. For time-invariant EEG,
the features of EEG can be the average of long-term
features, such as the power spectrum and connectivity
of each-channel EEG. For accurate event-related EEG,
event-related features can be learned. For random event-
related EEG, machine learning methods with cluster-
ing properties are more suitable for semi-supervised or
unsupervised feature learning [150]. Deep learning has
been successfully applied in multiple EEG signal tasks,
such as motor imagery, epilepsy detection, severe depres-
sion detection, sleep stage scoring, and event-related
potential tasks [206]. There are differences between the
data for different tasks, such as signal window length and
channel count. Given these differences, selecting the suit-
able type of deep learning network can achieve better
classification performance. Using CNN to classify spec-
trograms can also produce good results [207], but CNN
models are suitable for data classification without time
information, while LSTM models are suitable for regres-
sion analysis with time information [190]. However, com-
pared with traditional single models such as CNN and
LSTM, a mixed model is recommended [208]. If a model
fails to achieve the expected results, researchers can opt
for a fusion of multiple models to improve accuracy. For
skilled machine learning researchers, this is a simple
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and fast way to build applications. The mixed model is
expected to perform well in classification accuracy and
transfer learning. Nevertheless, deep learning models
also have shortcomings. For example, due to the small
size of disease datasets, the model is prone to overfitting.
Therefore, methods such as introducing regularization
terms into the model should be considered to minimize
the impact of overfitting [209]. Moreover, the introduc-
tion of model interpretability can aid in understanding
the feature selection for model classification. There may
be causal relationships within the EEG features, and the
introduction of causal algorithms can be considered to
further optimize the models [210]. At present, most deep
learning models are designed based on images and can-
not adapt well to EEG signal data. The transformer, as a
new type of neural network model, is being used in the
diagnosis and treatment of brain diseases, but its appli-
cation in EEG needs to be studied further [211]. There-
fore, it is necessary to consider encoding and decoding
the data based on EEG signal data features and develop-
ing new model structures. Machine learning methods
are currently the fastest-growing neural signal process-
ing methods, and many researchers have proposed new
processing ideas in EEG analysis. With the rapid develop-
ment of brain-like intelligence, a large-scale model may
emerge to perform bionic simulations of human brain
functions. This kind of research will help develop the
field of artificial intelligence to a higher level.

This article discussed some commonly used EEG anal-
ysis methods. However, in practice, a combination of
methods is frequently used. For instance, BCI, a frontier
field of neuroscience and neurological diseases, requires
the complex processing of brain electrical signals using
multiple methods. A neural device known as a BCI trans-
lates the neural activity of an individual into external
responses or directives. These interfaces find applications
in restoring functionality for conditions such as epilepsy,
stroke, spinal cord injuries, ALS, cerebral palsy, narco-
lepsy, Parkinson’s disease, and neuromuscular disorders
[212]. In the realm of mental health, BCIs are under
investigation as potential treatments for conditions like
depression, anxiety, obsessive—compulsive disorder, and
other neuropsychiatric disorders [213]. BCIs are versa-
tile in acquiring a diverse array of signals, each associated
with different objects. Despite this variability, the decod-
ing of brain signals generally follows a five-stage process:
signal acquisition, preprocessing, feature extraction, clas-
sification, and control interface. These stages involve the
integration of various methodologies. Ongoing research
in BCI analysis methods aims to enhance accuracy and
reliability. Notably, the application of deep learning
algorithms for EEG data analysis is a promising avenue.
Another focus is on leveraging explainable artificial
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intelligence techniques to gain insights into BCI analysis
outcomes. Like BCI, numerous studies necessitate the
integration of traditional and innovative technologies to
continually enhance the efficacy of EEG analysis methods
and establish a foundation for further research.

Conclusions

EEG/iEEG is commonly applied in functional neuro-
imaging and is one of the leading tools in neuroscience.
Clinical medicine, BClIs, and psychological research all
require EEG/iEEG analysis. In recent decades, a variety of
analysis methods have emerged for researchers to choose
from, and interest in such techniques is high. However,
the abundance of analysis methods has led researchers to
question their applicability.

This review categorizes representative research meth-
ods based on the characteristics of EEG/iEEG signals.
The methods are classified into power spectrum analysis,
time—frequency analysis, connectivity analysis, source
localization analysis, and machine learning. Other meth-
ods with wide application scenarios, such as nonlinear
analysis, predictive analysis, and graph theory analysis,
are not introduced in this review. These methods are
considered to have certain similarities to or be the exten-
sion of the classical methods in this review from the per-
spective of analysis purpose. The methods introduced in
this review are only a subset of common methods, and
users need to make choices based on the characteristics
of the data and methods.
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