
LANCE: a Label-Free Live Apoptotic and Necrotic Cell Explorer 
Using Convolutional Neural Network Image Analysis

Emma B. Hartnett1, Mengli Zhou2,3, Yi-Nan Gong2,4,*, Yu-Chih Chen1,2,5,6,*

1Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 
O’Hara Street, Pittsburgh, PA 15260, USA;

2UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, 
USA;

3Xiangya Hospital, Central South University, Changsha, Hunan 410008, China;

4Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, 
USA;

5Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes 
Avenue, Pittsburgh, PA 15260, USA;

6CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes 
Avenue, Pittsburgh, PA 15260, USA

Abstract

Identifying and quantifying cell death is the basis for all cell death research. Current methods 

for obtaining these quantitative measurements rely on established biomarkers, yet the marker-

based approach suffers from limited marker specificity, high cost of reagents, lengthy sample 

preparation and fluorescence imaging. Based on the morphological difference, we developed a 

Live, Apoptotic, and Necrotic Cell Explorer (LANCE) to categorize cell death status in a label-

free manner, by incorporating machine learning and image processing. The LANCE workflow 

includes cropping individual cells from microscopic images having hundreds of cells, formation 

of an image database of around 5,000 events, training and validation of the convolutional 

neural network models using multiple cell lines and treatment conditions. With LANCE, we 

precisely categorized live, apoptotic, and necrotic cells with a high accuracy of 96.3±0.5%. More 

importantly, the non-destructive label-free LANCE method allows for tracking time dynamics 

of the cell death process, which enhances the understanding of subtle cell death regulation at 

molecular level. Hence, LANCE is a fast, low-cost, and non-destructive label-free method to 
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distinguish cell status, which can be applied to cell death studies as well as many other biomedical 

applications.
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INTRODUCTION

After decades of cell death study, it is now well accepted that cell death can be 

highly programmed, including apoptosis and several forms of necrosis1. Decoding the 

cell death pathway has led us to successfully induce, block, and/or predict cell death 

during embryonic development and many other physiological conditions. Moreover, the 

fundamental biological roles of cell death in diseases have also been established. Now 

we have a menu of drugs specifically targeting cell death machinery (e.g., anti-leukemia 

drug Navitoclax and Venetoclax) in treating different pathological conditions2. There are 

currently numerous on-going efforts to develop and validate new cell death regulating 

compounds, so the need to distinguish cell death status continues increasing over time.

To distinguish different types of cell death, cellular morphology is the most straightforward 

standard. Conventionally, cell death is divided into two subtypes, apoptotic and necrotic 

cell death3. For apoptosis, dying/dead cells preserve the plasma membrane (PM) integrity, 

featuring PM blebbing, cell shrinkage, and nuclear fragmentation. As compared to non-lytic 

apoptosis, the markers for necrosis include cell lysis, PM breakdown and cell swell. This 

morphological difference can be distinguished by experienced researchers, under brightfield 

microscopy. However, visual evaluations can be subjective and slow when quantitatively 

counting hundreds or thousands of cells. Biomarkers were also established to quantify 

cell death. For example, cell membrane-impermeant nucleic acid stains, such as Propidium 

Iodide (PI) or SYTOX dyes, can distinguish two forms of cell death, as only necrotic 

cells can uptake those dyes due to the PM integrity loss. Note that although Annexin V 
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is usually for apoptotic cell labeling4, it is now known that necroptotic (a specific form 

of programmed necrosis, mediated by phosphorylated mixed lineage kinase domain like 

pseudokinase (MLKL)) cells also exhibit phosphatidylserine for Annexin V labeling prior 

to cell lysis5, similar to apoptosis. Thus, Annexin V staining is not a specific marker for 

apoptosis.

In addition to the potential issue of marker specificity, marker-based approach to distinguish 

Live, Apoptotic, and Necrotic cells will likely occupy 2 fluorescent channels in the visible 

light spectrum. As illustrated in Fig. S1, blue channel and far-red channel were occupied. 

With label-free cell death recognition based on brightfield microscopy, more proteins of 

interest can be quantified by fluorescent labels in one experiment. Furthermore, as compared 

to brightfield microscopy, the exposure time of fluorescence microscopy is 10–100 times 

longer. While the difference might not be noticeable when taking only a few images, 

the fluorescence microscopy experiments will be significantly lengthier when imaging 

hundreds or thousands of images for drug screening. A fast brightfield measurement is 

especially helpful for monitoring rapid changes of cell status and alleviates the phototoxicity 

and photobleaching effects of fluorescence microscopy. The limitations in marker-based 

fluorescence approaches highlights the need to develop a fast and easy-to-use label-free cell 

morphology distinguisher.

The recent advancement in machine learning opens avenues for image classification 

and automatic recognition in high throughput. Among machine learning strategies, the 

convolutional neural network (CNN) is especially good at image classification6. Inspired 

by the functionality of human neurons and synapses, CNN is composed of convolutional 

and pooling filters and connections between filters. Its multi-layer structure recognizes both 

local and global features to mimic the judgement of a human observer for classification of 

images7,8. Prior work has used machine learning approaches to quantify cell viability by 

transmitted light microscopy6,9,10. This process is effective, but complicated by the need 

for multiple programs each differing in complexity from unsupervised machine learning to 

convolutional neural networks in deep learning. Consequently, this process can differentiate 

between viable live cells and presumed dead cells, yet no effort is made to distinguish 

the different forms of cell death (e.g., apoptosis versus necrosis). Similar tools have been 

developed using machine learning on transmitted light microscopy images with the purpose 

of determining cell death as it occurs solely by morphological changes6. The significance 

of this work lies in the idea of a single neural network being capable of cell death 

classification at high accuracies from digital images. Despite a high accuracy around 98.7%, 

this method is equally limited in that it cannot distinguish types of cell death. There are also 

several manners of label-free approaches to identify traits of programmed cell death without 

machine learning such as ultrasound imaging, dynamic light scattering, Raman scattering, 

Optical coherence tomography (OCT), and endogenous fluorescence imaging11,12. These 

methods lack a built-in method to quickly count the cell types they aim to identify. Similar 

to labeled methods such as the Annexin V/PI assay13, some of these methods resort to 

using flow cytometry to count desired cells14. Flow cytometry analyzes the light scatter of 

cells in the forward or side direction using multiple lasers. This, along with the analysis of 

excitation of desired fluorophores, provides a quantitative measure of a given trait15. This 

requires extensive equipment and additional reagents which increase the cost and time of 
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experimentation. Methods that do not employ flow cytometry rely on visual estimations of 

large areas containing potentially hundreds of cells following visualization16, ensuring that a 

true quantitative measure cannot be reached.

Herein, we report the first label-free identification methods that can distinguish not only 

live versus dead cells, but also apoptosis versus necrosis. We trained and tested the model 

using a variety of cell lines and precisely recognized live, necrotic, and apoptotic cells 

across various experimental circumstances. We named this model as “Live, Apoptotic, and 

Necrotic Cells Explorer (LANCE)”. The label-free LANCE is simple, fast, and allowing 

incorporating more proteins of interest to be studied in one experiment. More importantly, 

with the help of LANCE, we successfully monitored the cell death process over time in a 

label-free manner. By doing so, we successfully verified the function of cell death executor 

molecule Gasdermin E (GSDME, also known as DFNA5). The LANCE method represents 

a paradigm shift of cell death studies from a label-based measure to a label-free manner, 

ultimately expediting and enhancing the discovery in cell death.

MATERIALS AND METHODS:

Cell culture and induction of cell death

NIH3T3 cells and their derivatives, iMacs (murine immortalized macrophages) were 

maintained at 37°C, 5% v/v CO2 in a humidified incubator in DMEM (GIBCO) 

supplemented with 10% FBS, 2 mM L-glutamine (GIBCO), 200 U/mL penicillin-–

streptomycin (GIBCO) and 50 μg/mL Plasmocin (Invivogen). U937 and Jurkat cells were 

maintained similarly except in RPMI1640 media (GIBCO). iMacs were originally generated 

from Dr. Doug Green Lab (St Jude Children’s Research Hospital).

To induce apoptosis, NIH3T3 cells were stably retrovirally transfected a caspase 9 fused 

to FKBP (Fv) domain, which responds to rapamycin dimerizer B/B (AP20187, Takara) 

and gets activated by dimerization17. Most cells underwent apoptosis after 50–100 nM 

B/B treatment for 3–4 hours. To induce necrosis (pyroptosis), NIH3T3 cells were stably 

transfected a caspase 9 fused to FKBP (Fv) domain plus full-length GSDME. Same as 

above, 50–100 nM B/B treatment for 3–4 hours was sufficient to kill a majority of cells 

by necrosis (pyroptosis). For Jurkat cells, apoptosis was induced by 20 ng/mL TNF-α + 

20 μg/mL cycloheximide for 6 hours (TNF+CHX); necrosis (necroptosis) was induced by 

20 ng/mL TNF-α + 20 μg/mL cycloheximide + 100 μM zVAD-fmk for 6 hours (TCZ). 

For U937 cells, apoptosis was induced by 150 mJ/cm2 UV exposure. To induce necrosis 

(pyroptosis), U937 cells were stably retrovirally transfected with full length GSDME (U937-

GE) then exposed to 150 mJ/cm2 UV. For iMacs cells, apoptosis was induced by 20 ng/mL 

TNF-α (peprotech) + 20 μg/mL cycloheximide (TNF+CHX); necrosis (pyroptosis) was 

induced by 2 μg/mL LPS (Sigma) + 500 nM 5–7-oxo-zeaenol (CalbioChem) for 3 hours. 

For cell death molecular probing, cells were stained with either Annexin-V-Alexa Fluor™ 

647 (Thermo Fisher, 1:200) or TO-PRO3 (Thermo Fisher, 1:10,000). Cells were analyzed 5 

minutes after staining.
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Western blot

Cells were lysed with loading buffer (50 mM Tris pH=6.8, 2% SDS and 10% glycerol) 

and denatured by boiling. Protein concentration was then determined by the BCA assay 

(Thermo Fisher) and systematically normalized before SDS-PAGE. Following the transfer 

of proteins to nitrocellulose (Thermo Fisher), immunodetection was performed using the 

indicated primary and peroxidase-coupled secondary antibodies. Proteins were visualized 

by enhanced chemiluminescence (ECL, Thermo Fisher). Antibodies used include anti-Actin 

(Santa Cruz; sc-1616; RRID: AB_630836) and anti-GSDME (Abcam; ab216191; RRID: 

AB_2737000).

Image acquisition

The samples of live and program death cells were imaged using an inverted microscope 

(Ti2E, Nikon). The brightfield and fluorescence images were taken with a 10x objective lens 

and a monochrome CMOS camera (ORCA-Fusion Gen-III SCMOS Camera, Hamamatsu). 

A DAPI filter set was used for the fluorescence imaging of Hoechst nucleus staining. 

Brightfield imaging and the fluorescence imaging were performed using an exposure 

time shorter than 100 ms to minimize the phototoxic effect on cells. Auto focusing was 

performed to ensure the image remained in focus throughout the imaging experiments. To 

test the images collected by another imaging environment, we also used a Lionheart FX 

automated microscope with the software of Gen 5.

Image processing for object recognition

The goal of processing these microscope images (1.5 mm by 1.5 mm) was to yield 

individual cells from larger microscope images that could be easily recognized by a 

convolutional neural network. To obtain these individual cell images, a MATLAB (2021b) 

program was developed to transform the microscope images18. The images were first 

processed by contrast adjustment, and adaptive filtering through a 5-pixel by 5-pixel window 

(Fig. 1a–c). These steps prime the full image for recognition of objects. The objects exactly 

sitting on the border of images were eliminated. Then, we (1) binarized the images, (2) filled 

enclosed regions, and (3) removed small objects (smaller than 150 pixels) which are likely to 

be debris (Fig. 1d,e). In this manner, the program could crop objects based on the estimated 

centroids of enclosed regions (Fig. 1f–h). Individual objects were then cropped to 40-pixel 

by 40-pixel (26 μm by 26 μm) images centered around the calculated centroid and saved. 

This process was used for all microscope images in this work.

Generation of a database of representative images

Representative images of ‘Live,’ ‘Apoptosis,’ ‘Necrosis,’ ‘Debris,’ and ‘Multiple’ cases 

were selected based on visual judgement and molecular markers to form a library for 

training the CNN model (Fig. S1). ‘Live’ cells were defined by their clear boundary 

and sharp contrast. The morphology of ‘Apoptosis’ and ‘Necrosis’ was defined based on 

literature.3 ‘Debris’ category includes small cell debris, and ‘Multiple’ category consists of 

doublets, triplets, and other cases having multiple cells in an image. Totally, the database 

has 1,454 images of ‘Live’ cells, 958 images of ‘Apoptosis’ cells, 984 images of ‘Necrosis’ 

cells, 996 images of ‘Debris,’ and 753 images of ‘Multiple.’
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Architecture of convolutional neural networks

The CNNs tested (Fig. 2a, S2) combine convolutional layers for extracting features, batch 

normalization layers to standardize the inputs for faster training, and rectifier function 

layers with a convolution size of [3 3], and the number of filters ranges from 64 to 128. 

The rectifier function layer (ReLU) increases the non-linearity of the identified features by 

removing negative values from the inputs7,8. Max pooling layers were also utilized to get the 

maximum of a 2 × 2 rectangle from the image with a stride size of 2. The networks finally 

conclude with a fully connected layer and a SoftMax layer.

Training and validation of convolutional neural networks

Utilizing the MATLAB 2021b deep learning toolbox, we trained a CNN to classify cell 

images into the established 5 categories (‘Live,’ ‘Apoptosis,’ ‘Necrosis,’ ‘Debris,’ and 

‘Multiple’). Following common practice in machine learning, 80% of the data was randomly 

selected for training, (training dataset) while the other 20% was used for examining the 

accuracy of the trained model (independent test dataset). Specific options were employed 

using parameters specified by the MATLAB training options function for similar deep 

learning neural networks. The Adaptive Moment Estimation (Adam) optimization algorithm 

was selected as the mode of training, with an initial learn rate of 0.01, 10 times the default 

rate of the Adam optimizer. The network was framed to have a maximum epoch, or number 

of full passes through the entire data set, of 100 with a validation frequency of 50. With 

each pass of the epoch, the training data set is fully shuffled. At every 10 epochs, the learn 

rate was set to drop in a piecewise manner. L2 regularization, or weight decay, was set at 

0.005. The training was set to stop after 10 instances of the loss incurred exceeding the 

previous smallest loss, or when the maximum number of epochs were reached, whichever 

occurred first. The training process was visualized by ‘Verbose,’ as an indicator to display 

information, where the training progress was plotted in the default form. The visualized 

training was split into subsets for better visualization of progress as it occurred, at 128 

images. The prediction accuracy and sensitivity are determined by the independent test 

dataset using the following formula.

Accuracy = Tℎe number of correctly predicted images
Tℎe number of images in tℎe testing database

SensiticityLive = Tℎe number of correctly predicted images
Tℎe number of live cell images in tℎe tℎe testing database

SensiticityApoptosis = Tℎe number of correctly predicted images
Tℎe number of apoptotic cell images in tℎe tℎe testing database

SensiticityNecrosis = Tℎe number of correctly predicted images
Tℎe number of necrotic cell images in tℎe tℎe testing database
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All identified objects (Fig. 1) were classified using the trained CNN model. The objects 

classified as “Debris” and “Multiple” were excluded from the analysis, and the percentage of 

“Live,” “Apoptosis,” and “Necrosis” events were calculated.

RESULTS and DISCUSSION

Object recognition and image cropping

Image processing has two main goals, (1) to count the number of objects in a microscopy 

image and (2) to correctly classify them into the defined categories. As such, the methods 

previously described can be broken down into two quantifiable measures of accuracy: the 

percentage of correctly identified objects counted during image cropping, and the percentage 

of correct test data predictions ultimately yielded by the CNN. To perform the first task, we 

processed the images to identify cells and measure their centroids for cropping. In addition, 

the small objects, such as debris were eliminated. As illustrated in Fig. 1, the presented 

method successfully captured most objects. To quantitatively evaluate the accuracy, the 

process was verified by comparing machine and manual counting. The computer-aided 

object recognition held a high accuracy of 95.8%±1.2% over microscope images containing 

approximately 150 objects each. The accuracy is comparable with the prior methods with 

errors of 4–7%19,20. The error varied between false negatives where true objects were 

not detected, and false positives where a non-existent object was counted. False positives, 

comprising primarily of small debris, made up 72.2% of error counts. While this is not 

desirable, most false positive cases are ultimately classified as debris by LANCE and 

excluded. The remaining false negatives, which incorrectly ignore cellular objects, only 

account for 1% of all events. The quantitative measurement supports the reliability and 

accuracy of the presented cropping method.

Distinguishing live cell and programmed cell death with LANCE

Using the cell cropping program, we constructed a database of around 5,000 cell images by 

two commonly used mammalian cell lines NIH3T3 (mouse fibroblast) and U937 (human 

monocyte). Two different cell lines were used to generate a more general morphological 

model. Images were collected from healthy control cells as well as cells that were treated 

to induce programmed cell death of apoptosis and necrosis. Using the database composed 

of “Apoptosis,” “Live,” “Necrosis,” “Debris,” and “Multiple” events (Fig. 2b), we trained 

a CNN model to predict cell categories by their morphology. As shown in the confusion 

matrix (Fig. 2c), the trained LANCE model has an overall accuracy of 96.1% with 

individual recognition sensitivity of 94.5%, 99.5%, and 98.0% for apoptotic, live, and 

necrotic cells, respectively. Additionally, LANCE successfully detected 98.0% of debris and 

85.0% of doublets. While the accuracy of detecting doublet cells is relatively lower, the 

absolute percentage of doublet-cell events is low of all predicted events. Thus, it would 

not significantly affect the results. Both debris and doublet cells were excluded from the 

analysis as in conventional flow cytometry assays. We trained the model 5 times using 

different training datasets and got a similar accuracy of 96.3±0.5% (mean ± S.D., n=5). It 

takes approximately 5 minutes to train the network using a single GPU (NVIDIA Quadro 

RTX 4000 8GB) or 50 minutes using a single CPU (2.2 GHz Intel Core i7). Once the CNN 

model is trained, the computer can determine the cell status of 100–1000 images per second. 
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The variations in available computational power did not affect the accuracy of LANCE 

prediction.

Given some variations introduced by the random selection of images in the training process, 

the consistent accuracies suggest that the trained model was similar regardless of which 

images were randomly chosen for training or testing. Though the exact machine learning 

process is a black box, the convergence of training can be visualized through the generated 

training process plot. (Fig. S3) To further examine the causes of mis-predictions, we 

manually visualized all incorrect cases to understand what features correspond to what 

learned outcomes. Some of these features are obvious to the human eye and can be correctly 

sorted, such as a standard live cell with a complete nucleus and round shape. A majority 

of mis-predictions seemingly stemmed from test images that displayed traits of multiple 

cell types. (Fig. S4) Early-stage apoptosis images were occasionally sorted as live cells 

if the blebbing was not noticeable enough (Fig. S4a). While adding more early-stage 

apoptosis images to the representative apoptotic database rescued these mis-predictions, 

a few unconventional live cells that did not have a perfectly rounded shape began to mis-

predict as apoptotic instead (Fig. S4b). The dilemma forbids us from further boosting the 

accuracy by optimizing the training database. In addition to the slightly deformed live cells, 

there was also a noticeable presence of unhealthy live cells with weak contrast (Fig. S4c). 

For the most part, problems stemming from the shape led more to apoptotic predictions, 

while problems with the contrast led themselves towards necrotic predictions. Necrotic cells 

were recognized by their low-contrast and dark morphology compared to other objects. 

Thus, relatively dark or low-contrast objects were likely predicted as necrotic, though this 

occurrence was rare. Additional problems came to light regarding the features specific to 

necrotic cells. Certain late-stage necrotic cells appeared similar to debris (Fig. S4d), and if 

predicted as such, would be removed from the final data. Imaging conditions (e.g., focus, 

contrast, and exposure time) that are not relevant to cell morphology can also greatly alter 

the prediction outcomes, so it is essential to maintain accurate focusing and consistent 

imaging conditions throughout experiments.

Optimization of the convolutional neural network models

While we attained good results using a 6-Layer, 3X3 Filter CNN model, additional test 

was performed for further optimization, by comparing three other network structures to 

determine whether the accuracy could be improved by altering either the filter size or 

the number of convolutional layers. A 3-Layer, 3X3 Filter, a 6-Layer, 5X5 Filter, and a 

9-Layer, 3X3 Filter models were tested. As illustrated in Fig. 3, S2 and Table S1, the results 

suggest that the reduction of convolutional layers significantly deteriorated the prediction 

accuracy. However, adding more convolutional layers or enlarging the filter size would not 

significantly improve the accuracy. The results suggest that the selected 6-Layer, 3X3 Filter 

model, is suitable for LANCE, Further complication would only increase computation times 

but not improve accuracy.

Validation of LANCE by different imaging environments and cell lines

To test whether the LANCE model can be used to analyze images collected in other labs 

with different imaging environments, we performed a side-by-side experiment to image 
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the same samples by two imaging setups: Setup 1 (Microscope: Nikon Ti2E, Camera: 

Hamamatsu ORCA-Fusion Gen-III SCMOS, Objective lens: 10X) and Setup 2 (Microscope 

and Camera: BioTek Lionheart FX automated digital microscopy, Objective lens: 20X). 

As the types of microscopes, objective lens, and camera are all different, the imaging 

environments are distinct for testing the transferability of the LANCE model. To compensate 

different magnifications, the collected images were re-sized before analysis. The LANCE 

model was trained solely by images collected from the Setup 1. As illustrated in the Fig. 4, 

we got consistent cell status for images collected from two setups. The experiments clearly 

demonstrate the transferability of the presented method.

In addition, we further tested the LANCE model using iMacs (murine immortalized 

macrophages) and Jurkat (human T lymphocytes) cell lines, which did not appear in the 

database. For iMacs cells, apoptosis was induced by TNF-α + cycloheximide (TNF+CHX); 

necrosis (pyroptosis) was induced by LPS + 5–7-oxo-zeaenol (LPS+OXO). For Jurkat cells 

TNF+CHX was used to induce apoptosis, and TNF + CHX + zVAD-fmk (TCZ) was used 

to induce necrosis.21–24. The cell status under treatments predicted by LANCE matched 

with the visual observations and expected inducing directions (Fig. 5). The successful 

demonstration using two new cell lines that were not in the training dataset supports the 

genericity of the LANCE model for widely applying to cell death studies.

LANCE tracking of cell death dynamics exhibited the pore-forming activity of Gasdermin E

In addition to the snapshot measurement of cell status, LANCE can be used to track 

the dynamics of cell death process. To exhibit the strength of LANCE, we employed an 

apoptosis-secondary necrosis cellular model. Apoptosis is mediated by effector caspases, 

such as caspase-3,6 and 7. However, after initial apoptosis, certain cell types can further 

undergo secondary necrosis. Although the secondary necrosis was believed to be un-

programmed, recent studies suggest in most cases, the secondary necrosis is gasdermin 

E (GSDME) mediated pyroptosis25,26. GSDME is a pore-forming protein if cleaved by 

apoptotic caspases to release its N-terminus domain. Cells without GSDME expression 

cannot move to secondary necrosis phase but stay in apoptosis for a long period, with intact 

cell membrane structure and an apoptotic morphology.

GSDME expression is epigenetically regulated and highly related to pathological conditions, 

such as chemotherapy-induced side effects (inflammation) and tumorigenesis26, 27. For 

example, in most cancer cells, GSDME expression was attenuated as GSDME-mediated by 

secondary necrosis can facilitate a strong anti-tumor immunity26. U937 cells is one of the 

immortalized cancer cell lines that silence GSDME expression. Given that, we reconstituted 

GSDME expression in U937 by retroviral based transduction (U937-GE). Upon UV 

exposure-induced apoptotic caspase activation, GSDME could be efficiently cleaved (Fig. 

6), which triggered plasma membrane damage, cell lysis and necrotic morphology. We 

captured images of both U937 and U937-GE every 30 minutes for 4 hours after UV 

exposure for LANCE analysis. The dynamics revealed that for U937 cells, cells underwent 

apoptosis with minimal necrosis due to lack of GSDME (Fig. 7a). More interestingly, for 

U937-GE cells, cells first started with apoptosis (1.5 h), but switched to necrosis later (3–4 

h) due to the GSDME activation triggered by apoptotic caspases (Fig. 7b). Representative 
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images were shown in Fig. 7c–f, S5, S6. In this experiment, LANCE precisely captured the 

process of the initial apoptosis and secondary necrosis, which exhibited the pore-forming 

activity of GSDME in cell death.

CONCLUSION

Despite being a crucial tenant of many research applications, current methods that can 

assess cell death rely on staining. Label-free prediction that does not require staining allows 

the user to flexibly monitor the samples at any time. In this work, we developed the 

LANCE for label-free distinguishment of cell status utilizing machine learning techniques 

and succeeded in multiple facets. For the first time, we established a morphology-based 

approach to precisely distinguish the programmed cell death of apoptosis and necrosis using 

a convolutional neural network model. The LANCE can be used to assess images collected 

by another microscopy setup and also new cell lines that are not present in the training 

dataset. More importantly, the non-destructive method allows for flexible time-dynamic 

monitoring of the compositions of cell populations under different treatment conditions. 

The comprehensive tests validate the LANCE to be a fast, easy-to-use, precise, and reliable 

method which will change how we study programmed cell death. The success not only 

provides an effective tool to quantify cell status but also opens new opportunities to perform 

label-free measurements with machine learning.
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Fig. 1. Cell cropping process from a microscopy image.
(a-f) Image processing and cropping of a single cell. (a) Unaltered raw image. (Scale bar: 

13 μm). (b) Contrast adjustment for improving binarization. (c) Adaptive filtering through 

a 5 pixel by 5-pixel window. (d) Image binarization by a threshold. (e) Filling of an 

enclosed area. Areas smaller than 150 pixels were eliminated. (f) Cell cropping based on 

the calculated centroid. Processed images were cropped into 40×40 pixel images, (g) A raw 

microscopy image (scale bar: 130 μm). (h) A processed image showing all objects were 

successfully recognized as marked. (Scale bar: 130 μm).
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Fig. 2. LANCE prediction of cell status by a convolutional neural network (CNN).
(a) CNN structure characterized by six convolutional layers. (b) Representative images of 

cell categories (‘Live,’ ‘Apoptosis,’ ‘Necrosis,’ ‘Debris,’ and ‘Multiple’) used in training 

and prediction (scale bar: 10 μm). (c) Confusion matrix of predicting testing dataset using 

LANCE demonstrates a high accuracy of 96.1%.
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Fig. 3. Comparison between four different network structures.
Error bar represents the standard deviation of 5 independent trials.
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Fig. 4. Comparison between images taken by different microscopes.
The length of bars represents the percentage of cell subsets. Error bar represents the standard 

deviation (N = 4 for Nikon Ti2E, and N = 5 for BioTek Lionheart FX).
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Fig. 5. Prediction of the status of iMACs and Jurkat cells.
TNF+CHX was used to induce apoptosis. LPS+OXO or TCZ was used to induce necrosis. 

The length of bars represents the percentage of cell subsets. Error bar represents the standard 

deviation of 4–20 images.
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Fig. 6. Western blot of GSDME expression and cleavage in U937 and U937-GSDME cells
upon 150 KJ/cm2 UV irradiation (UV) with or without TNF (T) for ~2 hr.
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Fig. 7. Time dynamics of cell death.
(a-b) Temporal tracking of U937 (GSDME silenced) and U937-GE (GSDME expressed) 

cells irradiated by 150 KJ/cm2 UV. Cells were imaged every 30 minutes for 4 hours. Error 

bar represents the standard deviation of 4 images at each time point. (c) Representative 

initial image of U937 cells. (d) Representative images of U937 cells four hours after UV 

irradiation. (e) Representative initial image of U937-GE cells. (f) Representative images of 

U937-GE cells four hours after UV irradiation. Scale bar: 50 μm.
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