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ABSTRACT Bacteriophages are viruses that infect bacteria and thus threaten
industrial processes relying on the production executed by bacterial cells.
Industries bear huge economic losses due to such recurring and resilient
infections. Depending on the specificity of the process, there is a need for
appropriate methods of bacteriophage inactivation, with an emphasis on
being inexpensive and high efficiency. In this review, we summarize the
reports on antiphagents, i.e., antibacteriophage agents on inactivation of bac-
teriophages. We focused on bacteriophages targeting the representatives of
the Enterobacteriaceae family, as its representative, Escherichia coli, is most
commonly used in the bio-industry. The review is divided into sections deal-
ing with bacteriophage inactivation by physical factors, chemical factors, and
nanotechnology-based solutions.

KEYWORDS bacteriophages, inactivation, antiphagents, Enterobacteriaceae,
bionanotechnology

Bacteria-based processes are among the most important in biotechnology
and dominate multiple branches of the food and agriculture industries.
Many biotechnology companies exploit the natural metabolic properties of
bacteria to produce drugs (1), vaccines and antibiotics (2, 3), insecticides
(4, 5), dairy products (6, 7), enzymes, biofertilizers (8), organic acids (9),
precursors of polymers (10), fuels (11, 12), and solvents (13). Escherichia
coli, a member of the Enterobacteriaceae family, is the most commonly
used species (14). The sales of drugs of microbial origin surpass 13 billion
U.S. dollars annually (15), and the biotechnology industry is one of the fast-
est-developing industries globally (16).

The closures of bacteria-based factories result in substantial economic bur-
den to companies, consumers, and the product market. One of the most
common reasons for shutting down bacterial factories is infections caused by
bacteriophages, i.e., viruses attacking and killing bacteria. Bacteriophages are
highly specific in action. exclusively infecting bacterial cells (17), while caus-
ing no significant threat to animals and humans (18, 19). They are believed

Received: 21 September 2022
Accepted: 20 December 2022
Published: 18 January 2023
Editor: Deborah Hinton, National Institutes of
Health
Address correspondence to Jan Paczesny,
jpaczesny@ichf.edu.pl.
Copyright:© 2023 American Society for
Microbiology. All Rights Reserved.

December 2023 Volume 11 Issue 1 10.1128/ecosalplus.esp-0019-2022 1

https://orcid.org/0000-0003-3758-3951
https://crossmark.crossref.org/dialog/?doi=10.1128/ecosalplus.esp-0019-2022&domain=pdf&date_stamp=2023-1-18
https://doi.org/10.1128/ASMCopyrightv2
https://doi.org/10.1128/ecosalplus.esp-0019-2022


to be the most widespread biological entities on Earth,
totaling approximately 1031 bacteriophage particles (20).
It is estimated that only 0.001% to 0.1% of the global
bacteriophage metagenome is known, and many species
of bacteriophages remain undiscovered (21). A single
bacteriophage particle (virion) consists of the genome
(dsDNA, ssDNA, (1)ssRNA, dsRNA) within a protein
capsid (22). Most known bacteriophages belong to the
order Caudoviricetes (tailed-phages), whose representa-
tives are characterized by the dsDNA genome and an
icosahedral capsid with fibers attached to the tail (23). A
single family of enveloped bacteriophages, Cystoviridae,
is also known (24, 25). The size of the virion is usually
about 50 to 200 nm; some filamentous bacteriophages of
the family Inoviridae (e.g., M13) may even reach a length
of 400 nm (26). Additionally, larger bacteriophages have
been isolated from marine environments with dimen-
sions above 800nm (27 to 29). However, there are
smaller phages (e.g., MS2 phage, 26 nm diameter).

Bacteriophages have evolved precise biological functions
that enable them to carry out host identification, subse-
quent metabolism requisition, and reproduction (30). A
temperate bacteriophage integrates its genetic material
into the host’s chromosome, forming a prophage. The
bacteriophage genome can be transmitted as a prophage
sequence to daughter cells at each subsequent cell divi-
sion, in a process called the lysogenic cycle. External fac-
tors, such as stress, can activate the prophage, leading to
the lytic cycle. This allows for taking control over the host
and forcing it to produce copies of the virion. Virulent
bacteriophages exclusively propagate through the lytic
cycle. The release of progeny virions usually results in the
death of the host cell, with limited examples of bacterio-
phages causing chronic infections (31).

Phages are difficult to eliminate, especially in routine
cleaning and disinfection (32). Therefore, bacteriophage
infection often spreads rapidly, leading to resilient con-
taminations, followed by heavy product loss (33). This
effect is amplified while operating in biofoundries on
large scales (34). These contaminations are extremely
damaging to academic laboratories and bacteria-based
industries alike (35). Bacteriophage contamination was
first reported by Whitehead and Cox in 1935 in a dairy
culture, leading to the study of phages for inactivation
(36). Today, 1% to 10% of batches of products in the dairy
industry are lost to bacteriophages. Over 70% of biotech-
nological companies have routinely encountered problems

with phage contamination (37), with several companies
being forced to shut down entirely due to bacteriophage
contamination (38). Companies are reluctant to admit to
bacteriophage contaminations; therefore, the issue is still
poorly addressed.

Due to the difficulty in deactivating bacteriophages in an
operating bioreactor, resources are invested in reducing
the probability of bacteriophage infection, both at the
design level (by optimizing protocols for wastes and raw
materials handling, biofoundry and process layout, or per-
sonnel training) and by employing microbiological strat-
egies (periodic changes of bacterial strains, cocktails of
bacterial strains, and development of bacteriophage-resist-
ant mutants) (39, 40). Additionally, antiphagents (antibac-
teriophage agents) can provide a more direct solution by
eradicating bacteriophage contaminations.

Other reviews on phage inactivation (41) have focused
on particular inactivation methods (42) or environmen-
tal conditions (43). This review presents a systematic
overview of the various approaches for bacteriophage
inactivation. Escherichia coli, and some other represen-
tatives of the Enterobacteriaceae family, are the most
frequently used models in research practice and in the
industry; coliphages are the most commonly used mod-
els in research practice. In the industry, coliphages are
preferred for phage inactivation or stabilization proto-
cols. Therefore, we focused on this group of bacterio-
phages. To provide an extensive view of the current
trends, we briefly discussed the inactivation methods of
bacteriophages that infect commonly used bacteria in
the industry. We grouped these methods based on their
nature and character, briefly describing the mechanism
of action of each group.

PHYSICAL FACTORS

Temperature. Physical bacteriophage inactivation treat-
ments include thermal inactivation, hydrostatic pressure,
radiations, electric field, osmotic shock, and variations in
pH. Thermal treatment is commonly applied for bacterio-
phage inactivation at mild or moderate temperatures (i.e.,
50 to 95°C) (44). Disinfectants are generally tested in syn-
ergy with elevated temperatures to increase efficacy (45).
While low temperatures (i.e., below 40°C) are used against
pathogenic bacteria, the same does not work against
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viruses. The persistence of enteric viruses is higher at low
temperatures (46).

Thermal treatments cause morphological changes in bacte-
riophage particles, such as the parting of the head and tail
structures, aggregation of bacteriophage tails, and release of
DNA (47). A group led by Evilevitch showed the immediate
ejection of DNA through the vortex portal, a protein struc-
ture that is a “gate” to the capsid (part of the virus, where
genetic material is stored) at high temperatures (65 to 70°C)
(48, 49). They also found that the DNA of Lambda bacterio-
phages (targeting E. coli) exhibits temperature-induced tran-
sition resulting in structure, energy, and mobility variations.
Below the transition temperature, DNA has restricted mobil-
ity. This phenomenon delays or completely prevents its
release, even when the capsid is “opened” by a receptor mol-
ecule (50, 51). This result is the highest activity of the
Lambda bacteriophages at temperatures just above the tran-
sition of DNA but not too high, which could trigger the
“ejection through portal”mechanism.

The effect of elevated temperature on bacteriophages
was also studied by Brié et al. (52), who studied MS2
bacteriophages. MS2 is a bacteriophage targeting E. coli
F1 strains and is considered a good model for rhinovi-
ruses. Above critical temperature (72°C), MS2 virions
were destroyed, and the genome was released. At lower
temperatures, the bacteriophages remained virulent: no
“ejection” mechanism was reported (52). Rockey et al.
studied the effect of various relative humidity (RH) and
high temperatures (53). It was observed that RH of 20%
was essential for effective heat inactivation of MS2 and
Phi6 bacteriophages (Fig. 1).

For bacteriophages to be deactivated, the temperature must
be high enough to exceed the energy barrier characteristic
for a given bacteriophage and trigger at least one mechanism
of deactivation (50, 54). However, it is important to note
that some bacteriophages can resist extreme conditions, such
as boiling in 90°C for 15 min (42). Bacteriophages can sur-
vive the processing environment, including pasteurization
procedures (72 to 75°C, 15 to 30 s), due to their high thermal
resistance (55). Higher temperatures, especially in dairy
industries, also lead to a subsequent denaturation of whey
proteins. Overall, thermal treatments are difficult to imple-
ment in biotechnological processes, limiting their potential
as an effective antiviral treatment modality.

Pressure. To avoid the undesirable consequences of heat-
ing, novel nonthermal inactivating processes have been
gaining popularity in the last few years. In this regard,
high-pressure systems are a promising technique, because
they ensure the retention of chemical and physicochemical
properties of the final products (42). High hydrostatic pres-
sure (HHP) and high-pressure homogenization (HPH) are
two such pressure-based techniques that have been well
studied (42). High-pressure processing (HPP), in particular,
was a successfully implemented alternative to nonthermal
processing technology in the food industry so far (56).
DHP (dynamic high pressure), as the name suggests, is a
dynamic process that allows the treatment of large quanti-
ties of the product (57).

It has been observed that bacteriophage inactivation is pro-
portional to the pressure and the number of passes (42, 57,
58). It has also been reported that a pressure of 300MPa at a

FIG 1 Inactivation of MS2 bacteriophage (A), and Phi6 bacteriophage (B), at 72°C and 82°C for
various relative humidity (RH) when viruses were suspended in culture media. Open faded symbols
indicate virus inactivation beyond assay detection limits. The image was adapted from Rockey et al.
based on the CC BY 4.0 License (53).
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temperature range of 25 to 40°C can cause a 2log (99%)
reduction in the bacteriophage titer (56). However, such
studies are opposed by other experiments showing bacterio-
phages' resistance toward high pressure. For example, little
or no inactivation of E. coli Qb and c2 bacteriophages was
observed in culture media after treatment at #400MPa. A
complete inactivation (8log) was achieved when this pressure
was increased to 800MPa (59).

It is hypothesized that the long form of the prolate head
makes bacteriophages more sensitive to high-pressure
treatments than other isometric structures that are
more stable (57). Most bacteriophages, however, show
resistance to high pressures. Salmonella bacteriophages,
for example, are unaffected by HPP up to 250MPa (56).
This suggests that pressure might be effective, but is not
a universal antiphagent.

Radiation and electric field. The inactivation of bacte-
riophages via radiation relies mostly on the generation of
free radicals (60). These radicals affect the viral genome,

causing damages in the genome (61). The first experiments
using radiation for the inactivation of bacteriophages were
performed over 40 years ago, using high-energy electrons
(60, 62). The effect of X rays (63 to 70), along with the X-
rays (67) and gamma rays (71 to 79), were investigated as
bacteriophage-inactivating factors.

Nowadays, less harmful radiation and more precise applica-
tions are preferred. With the SARS-CoV-2 pandemic, virus-
radiation research underwent a resurgence. UV radiation is
a compromise among ionizing properties, ease of use, and
limited risk. Its impact on bacteriophages is known in labo-
ratory conditions, including experiments in water solutions
(80 to 95). To enhance the virucidal effects of UV radiation,
irradiation is sometimes combined with various photocata-
lysts, e.g., titanium dioxide (90, 92). Usually, UV radiation of
a wavelength from the spectra of UV-A and UV-C is used
(Fig. 2). However, near-UV radiation was also found effec-
tive (96 to 101).

The widespread usage of next-generation lasers allowed for
bacteriophage inactivation in a more precise way. Laser-

FIG 2 Inactivation of models of coronavirus by UV-C irradiation. In this figure, Phi6 bacteriophage and murine
hepatitis virus (MHV) were exposed to various wavelengths of UV-C to cause 99.9% inactivation. As a control,
the wavelengths used for krypton chloride (KrCl*) generation were used. Adapted from reference 96 with
permission of the publisher (copyright 2021 American Chemical Society).
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based methods use different wavelengths (including UV
spectrum), but as monochromatic laser light instead of dis-
persed light. All of these methods are characterized by short
times of irradiation since relying on femtosecond (102 to
109), picosecond (110), or subpicosecond lasers (111)
(femto- and picoseconds adequately).

Recently, photoinactivation-based methods have become
increasingly popular. In principle, photoinactivation is
inactivation by visible light combined with a light-sensitive
indicator that releases reactive oxygen species (ROS) (112).
Two types of photoinactivation may occur: (i) type I—
excited photosensitizer returns to the ground state with
oxygen, forming oxygen radicals; and (ii) type II—energy is
transferred from triplet state photosensitizer to ground-
state oxygen, forming singlet state oxygen (113). Microbial
photodynamic inactivation (PDI), especially bacteriophage
photoinactivation, was very effective in bacteriophage re-
moval from wastewater (113 to 121).

Another bacteriophage-inactivating factor is the electric field.
Since bacteriophages' capsids are composed of different pro-
teins, each has a charge and isoelectric point (122) and is
sensitive to electric field changes. A pulse electric field (PEF)
is used most frequently. Even though this method is usually
used for bacteria elimination, PEF seems to be also efficient
for bacteriophage inactivation in a relatively short time—up
to 15 min (123 to 125). The application of low-intensity and
low-frequency electric fields as an antiphage factor is rare
nowadays. Staczek et al. showed that low-frequency electro-
magnetic fields alter the replication cycle of MS2 bacterio-
phage (126). Richter et al. used electric field to orient virions
for sensing applications and did not observe any adverse
effects (127, 128). Grygorcewicz et al. showed a rotating elec-
tromagnetic field's positive effect on the infectivity of bacte-
riophages (129).

Rahaman et al. proved the complex application of electric
field and electrochemical multiwalled carbon nanotubes
(EC-MWNT) could be used for both MS2 bacteriophage
inactivation and bacteriophage removal by filtration.
Authors reported the reduction of bacteriophage titer by
about 7log when the potential of 2 V was applied during
the filtration through the MWNT filter at a constant per-
meate flux 140 L *m22 h21 (130). Vecitis et al. used a sim-
ilar protocol for the simultaneous removal of E. coli and
MS2 bacteriophages from water solutions. The decrease in
bacteriophage titer was similar (7log), but the authors also

reported the elimination of 7log E. coli within 30 s when
the potential of 3 V was applied (131).

Another method for bacteriophage inactivation is the
usage of discharge-generated ions, which are particularly
effective against airborne viruses. In such protocols, the
electric field is applied to the carbon-brush fibers, creating
a nonuniform field that ionizes the air. Depending on the
number of ions per bacteriophage particle, discharge-gen-
erated air ions inactivate up to 4log of coliphage MS2
(132) and against coliphage PhiX174 (133). The effective-
ness of this protocol remains similar in water solutions
(123). Kettleson et al. reported the usage of an electrostatic
precipitator (ESP) for 2log reduction of coliphages T3 and
MS2 (134). Also, Drees et al. described the electrochemical
method for bacteria and bacteriophage inactivation. As
model bacteria, E. coli ATCC 15597 and P. aeruginosa
ATCC 15224 strains were used; the effect on bacterio-
phages was tested on coliphage, MS2, and Salmonella-
phage PRD1. The exposure of E. coli to 5mA direct cur-
rent resulted in a decrease in bacterial titer by about 2log
within 5 min, while the same current caused the reduction
of MS2 bacteriophage titer by 2.5log within 20 min (135).

The usage of radiation for bacteriophage inactivation
appears to be effective and quick. However, the use of radi-
ation is nonspecific, making it dangerous for personnel and
corrosive to labware. Due to the nature of irradiation, all
radiation-based inactivation protocols are effective on flat
surfaces, as the radiation cannot pass through certain mate-
rials. Apart from UV radiation, most protocols require ex-
pensive equipment and qualified personnel.

Osmotic shock and pH. Exposing bacteriophages to sig-
nificant changes in the concentration of salts in the solu-
tion causes the destabilization of bacteriophage particles.
Virions are destabilized by the osmotic shock and burst
(136), causing their inactivation (137). Previous reports
show that a 10-fold elevation in salt concentration inacti-
vates up to 90% of the bacteriophage population (138).
This process is also rapid, taking effect within a minute of
concentration change (139). The effects of osmotic shock
on bacteriophages were investigated mainly in the 1960s
and 1970s (140 to 142), but were largely overlooked as a
sterilization technique. Osmotic shock can also be used to
prepare bacteriophage ghosts (143, 144), viral protein
shells devoid of genetic information.
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Although pH change is not commonly used for bacterio-
phage inactivation, bacteriophages can undergo inactiva-
tion when stored in improper pH conditions. Studies have
shown bacteriophage inactivation within 15 s when sub-
jected to a very acidic pH (pH=1) (145). Bacteriophages
are much more susceptible to pH changes than other viral
species; e.g., coliphages undergo up to a 5log titer decrease
in viral particles at basic pH levels (pH 9 or 10), as
opposed to a 1log titer decrease in SARS-CoV-2 viruses
stored at the same pH (146). Some bacteriophages, such as
coliphage PhiX174, show higher resistance toward pH
change compared with other species such as MS2, which
are completely inactivated in an acidic pH (147).

pH-resistant bacteriophages are desirable for use in bac-
teriophage therapy in humans through oral delivery
methods; the use of genetically modified coliphages T7
has been describe in the literature. However, the phages
are prone to attack by enzymes present in the gastroin-
testinal tract and must be adequately shielded (148).

CHEMICAL FACTORS

Polymers. The trend toward sustainable and low-toxicity
approaches in phage inactivation methods led to research
in bacteriophage-inactivating polymers. As a first choice,
poly-amino acids appeared promising, especially poly-L-
lysine. Some inactivating properties were found for L-lysine

monomers, such as commercially available a-poly-L-lysine
(100 monomers) (149, 150), and « -poly-L-lysine (;30
monomers). The latter is produced by bacteria belonging to
the Streptomyces species and was proved capable of effective
inactivation of coliphages T4 and T5 (151). Additionally,
the antiphage properties of another poly-amino acid, poly-
DL-alanine, was also confirmed (152). Both polylysine and
polyalanine are believed to bind to phosphate moieties of
bacteriophage DNA, causing its precipitation and subse-
quent inactivation (151).

Polymeric substances can also be applied as micelles.
Polymeric amphiphiles combine a stable structure with
antiviral properties (153). The mechanism of action is the
prevention of bacteriophage absorption by the host cells.
For example, many viruses have lectin receptors. Since the
PEG-polylactide copolymer surface modified with galac-
tose can interact with lectins, these receptors can be
blocked by the copolymer (154). These prohibit the virus
from absorption and prevent its amplification.

Recent reports suggest certain polysaccharides and their
derivatives, such as chitosan (a derivative of chitin) (155)
(Fig. 3) or poly(N-2-hydroxyethyl acrylamide) (156), can
exhibit antiviral properties. Chitosan appeared to be particu-
larly effective in the inactivation of coliphages and bacterio-
phage 1-97A, causing the reduction of bacteriophage titer
of about 5log (157). It is known that such polymers can inac-
tivate mature bacteriophages and inhibit bacteriophage

FIG 3 The inhibitory mechanism of chitosan antiviral agents on enveloped bacteriophage Phi6, using low
molecular weight chitosan (LMW Ch), quaternary LMW Ch, and high molecular weight chitosan (HMW
Ch). The image was adapted from Plohl et al. based on the CC BY 4.0 License (298).
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replication, although the particular mechanism of action
remains unknown (158).

Proteins. Another class of molecule capable of exhibiting
antiphage activity is proteins, with the most popular being
eukaryotic antibodies. Antibodies exhibit high specificity for
their target antigen and are generated by the immune system
in response to a viral infection (159, 160). Through a com-
plex interplay between various cell types, the immune system
recognizes bacteriophages as foreign, potentially hostile, T-
dependent antigens and develops bacteriophage-specific
antibodies to combat the infection (161). Additionally, blood
plasma proteins can inactivate most bacteriophages (162).

Natural extracts. Natural extracts are bioagents against
many microbial infections and are popularly being incor-
porated as disinfectants in industries due to being readily
available and economically viable on an industrial scale.

Tea is one of the most popular beverages worldwide. In
traditional Chinese medicine, it has been used for thou-
sands of years due to its health benefits (163); antibacte-
rial and antiviral properties of tea extract help bolster
the immune system. Tea extracts have previously dis-
played inactivating properties against microbes (164).

Other extracts of herbs such as Thymus vulgaris (thyme)
(165), Scutellaria baicalensis (166), and Salvia rosmarinus
(rosemary) (167) are also employed for antiviral studies.
Blueberry extracts have caused a complete inactivation of
MS2 bacteriophages for 7days (168).

Pomegranate juice inactivates human enteric viruses such
as MNV-1; however, it is inefficient against bacteriophages
(169). This is a vivid demonstration that the quest for a
universal plant extract effective against a wide range of
bacteriophages has not been successful and remains an
unlikely possibility.

Bacteria are also known to produce compounds that provide
resistance against bacteriophages, by intercalating with their
DNA and inhibiting replication. Recently, a review paper
discussing antiphage small molecules produced by bacteria
summarized the reports on numerous compounds inactivat-
ing E. coli phages, including MS2, f2, fd, Lambda, and T-
phages (170). There are 11 such compounds known so far,
of which daunorubicin, doxorubicin, epirubicin, and idaru-
bicin are most commonly studied and applied in various

industries. These molecules were first found to be produced
by Streptomyces spp. (171). Other natural defense molecules
increase the permeability of bacterial cells; examples of such
compounds are dequalinium chloride and di-benzimidazole
(172). One of the main drawbacks of using natural extracts
is that they are nonspecific in their targeting.

Commercially available disinfectants. Phage eradica-
tion includes routine cleaning processes and disinfectants
(32). Basic methods include the appropriate choice of
equipment, process design, and extensive cleaning and ster-
ilization (38). Chemical treatments encompass several dis-
infectants such as benzalkonium chloride, chlorhexidine,
hydrogen peroxide, triclosan, polyvinylpyrrolidone-iodine,
alkaline detergent mixtures, potassium peroxymonosulfate,
and quaternary ammonium compound-based sanitizers, to
name a few (173 to 175). In laboratory practice, chemical
agents such as Virkon S, Triclosan, and ethanol (75% con-
centrated) are often used to prevent bacteriophage contam-
ination (176 to 178).

Several viral disinfectants are commercially available,
with a range of active substances such as formaldehyde,
caustic soda, potassium peroxymonosulfate, and acetic
acid, which inactivate phages in a variety of methods
(179). While alcohol disinfectants target protein dena-
turation, aldehyde agents disrupt proteins via alkylation
(180). Some of the most successful compounds respon-
sible for virus inactivation include quaternary ammo-
nium, glutaraldehyde, and sodium hypochlorite (181).
The mode of action of quaternary ammonium com-
pounds is reliant on the disruption of the viral envelope
with subsequent release of the nucleocapsid, or the pro-
hibition of viral fusion and subsequent replication
(182). The action of sodium hypochlorite relies on the
release of chloride ions (181) and targeting amino acids
on the surface protein (183).

Sanitizers also contain certain active substances against
viruses; some include ethoxylated nonylphenol, potassium
peroxymonosulfate, and Triclosan (5-chloro-2-(2,4-dichloro
phenoxy) phenol). Potent food additives such as oxidizing
agents, halogenated agents, and alcohols are also explored to
be added to the substrates of food industries (184). Bacterio-
phages are generally resistant to common soaps, antibacterial
liquids, and antiviral solutions (e.g., Virusolve, dish soap,
and Line-Antibacterial 70) (185).
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Some experiments also suggest ozone as an antiphage agent as
it can break the protein capsid and release the viral genome,
thereby hampering adsorption to the host cell (186) (Fig. 4).
The inactivating properties of gaseous ozone were observed
against coliphages MS2, PhiX174, and T7, and Pseudomonas
bacteriophage Phi6 on the gelatin-based medium surface
(187). Aerosolized bacteriophages were effectively inactivated
by ozone by about 3log, with the inactivation titer dependent
on ozone concentration (188). Mik and Groot described the
inactivation of coliphage PhiX174 by ozone and ozonized
cyclohexane, observing the decreases of bacteriophage titer by
6log and 5log (189). For filamentous bacteriophage f2 (target-
ing E. coli K-12 strain), the exposure to 0.06mg/L ozone for
600s resulted in the complete inactivation of bacteriophages
(9log decrease of bacteriophage titer) (186). For coliphage T1,
the reduction was about 5log (190). Additionally, ozonation
appears to be an efficient antiphagent in aqueous solutions.
Komanapalli and Lau reported the inactivation of Lambda
bacteriophage in SM buffer solution within 10 min by about
8log (191). However, another paper described that the pres-
ence of kaolin and activated sludge reduced the effectiveness of
ozonation against coliphage T2. Thismay be due to absorption
of bacteriophages on the surface of suspended solids (192).
Recently, a water sterilization method for applying ozone
nanobubbles (NB-O3) was proposed and was shown to

inactivate Aeromonas hydrophila bacteriophage pAh6 effec-
tively. After 5 min of treatment, a decrease in bacteriophage ti-
ter of about 6log was observed (193).

One of the most prevalent chemical disinfection meth-
ods is chlorine, mostly in food-related industries. A clear
drop in the PFU/mL (plaque formation unit per mL) of
MS2 is observed using chlorine (194). However, some
countries, such as Switzerland, Austria, and Germany,
have banned large-scale chlorination as chlorine in
drinking water may be carcinogenic in nature (195).

The harmful effects of ozone and chlorine on living organisms
(including humans) due to their oxidizing properties have
been known for more than 40years (196). Additionally, the
usage of chlorine and ozone is limited to specific conditions
because of their tendency to corrode metals and alloys (197).
On the other hand, using milder disinfectants, e.g., ethanol, is
not effective against bacteriophages (41).

Reactive oxygen species (ROS). Reactive oxygen spe-
cies (ROS) have been identified as an effective platform
for developing antimicrobial agents (198). Hydroxyl
radical, superoxide anion, singlet oxygen, alpha oxygen,
and peroxides are the most common examples of reac-
tive oxygen species generated by different techniques.
Bacteriophages can be inactivated by producing ROS,
resulting in DNA cleavage and virus inactivation. Such a
mechanism was witnessed when the compound resvera-
trol forms a complex with Cu(II) and results in the re-
dox cycling of copper. This results in the generation of
ROS, which inactivates bacteriophages (199).

Decontamination can also be carried out using singlet oxygen
(1O2) generated, for example, by fullerol suspensions (200)
and cationic porphyrins (201). The antiviral properties of tita-
nium oxide surfaces are due to ROS generation by photo-ex-
citation (202). In other experiments, ROS-containing water
nanodroplets are electro-sprayed to inactivate bacteriophages
(198). Some nanoparticles can also inactivate bacteriophages
by generating reactive oxygen species (ROS) (203, 204). In
other experiments, surface discharge of ROS and reactive
nitrogen species (RNS) were utilized to inactive bacterio-
phages (Fig. 5) (205). Plasma or plasma-activated water was
added to bacteriophage suspensions, and the subsequent fall
in infectivity was recorded. Plasma treatment of 80s resulted
inmore than 99.99% bacteriophage loss, while an exposure of
100s caused complete inactivation of T4 bacteriophages.

FIG 4 Ozone effect on bacteriophage MS2 infectivity at three levels of
relative humidity and three exposure times. The solid line represents the
reference value without ozone. The dotted line represents the detection
limit. Twenty percent RH values are represented by circles (l), 55% RH
by squares (n), and 85% RH by triangles (!). The image was adapted
fromDubuis et al. based on the CC BY 4.0 License (299).
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Notably, not all studies found it efficient to inactivate bacte-
riophages by ROS (206). Some literature points out that
bacteriophages can inhibit ROS formation, providing possi-
bilities for bacteriophage-based cancer treatment (207, 208).
This also makes this method not a universal antiphagent.

Salts. A critical factor affecting bacteriophage stability and
activation is the presence of specific salts (ions) in bacterio-
phage suspension in water-based buffers. For instance, T-
phages (targeting E. coli strains) require magnesium salts in
the environment for proper amplification (209). A deficiency
in these salts can lead to the inactivation of bacteriophages
(210). Another example is the inactivation of calcium-de-
pendent bacteriophages by the complexation of calcium cati-
ons (211). Calcium is required for the proper structure
change of the bacteriophage baseplate, which is essential for
bacteriophage DNA release during the infection (212).

Certain metal salts are usually used as antiphagents, with the
most important heavy metal salts, including lead (210), mer-
cury (210, 213, 214), copper (199, 215 to 224), and cadmium
(225, 226) salts. It is generally accepted that heavymetal cati-
ons bind to bacteriophage proteins, causing changes in

folding that lead to the loss of structure and function (227).
This happens due to the binding of metal ions in the salt to
specific amino acids sequences (228). There are also reports
on the inactivation of bacteriophages with the ions of light
metals, such as sodium, potassium, or calcium (210, 229,
230) on Salmonella bacteriophage PRD1.

Additionally, “precious metal salts” can be used for bac-
teriophage inactivation. Silver is the cheapest in this cat-
egory, making it an economically viable option. Another
advantage of silver compounds is their customizability,
enabling the regulation of antimicrobial activity by
changing the attached ligand (231). Although silver
nanoparticles are often used for phage inactivation, sil-
ver ions have been used as well (232, 233). Other pre-
cious metal salts are platinum (234 to 238), gold, and
palladium salts, although they are not as frequently used
as silver salts (236).

Some metal salt combinations can provide reversible bacte-
riophage inactivation, such as potassium cyanide. Cyanide
(CN–) ions bind to bacteriophage capsids causing temporary
inactivation. When complexed with metal cations, e.g., gold
(Au31), the inactivating effect is overcome, leading to phage
reactivation (239). Additionally, high concentrations of so-
dium citrate have been described as bacteriophage-inactivat-
ing, causing the decomposition of viral capsids (240).

In additional to metal salts, metal oxides can also be
used as influential bacteriophage-inactivating factors.
The most frequently used are zinc oxide and titanium
(II) oxide. Their mechanism of action relies mainly on
the generation of ROS or photoinactivation, as described
in previous chapters.

The major drawback of the usage of salts, especially salts
containing metals, is their effects on living organisms and
the environment. When released into the atmosphere, heavy
metals tend to aggregate in soil (241), building up to toxic
concentrations in soil bacteria and plants. Additionally, they
are not specific against bacteriophages (242).

NANOPARTICLES
Nanotechnology is often applied to microbiology to tackle the
growing concerns of contamination. The extent of toxicity of
nanomaterials can be mediated by their size, charge, and com-
position (243). Nanoparticles may achieve viral disinfection

FIG 5 The inactivation of bacteriophage T4 by reactive oxygen species
(ROS) and reactive nitrogen species (RNS) of plasma. The image was
adapted from Guo et al. based on the CC BY 4.0 License (205).
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via the release of toxic ions (244 to 246), ROS generation
(203, 204), or by blocking specific viral proteins (247).

New biomedical applications have unraveled with the
growing advancements of nanotechnology linked with mi-
crobiology, especially with silver nanoparticles (AgNPs).
More than 500 tons of nanoparticles per year are now sup-
plied to meet different industries' demands, drawing atten-
tion to their biological activity, safety, and mechanism of
action (248). AgNPs attack bacteriophages via three mecha-
nisms: adsorption, the release of ions, and ROS generation
(249). It was also shown that AgNPs could bind to the
exposed C-terminal amino residues and cause up to 96%
reduction in PFU/mL of bacteriophages, thereby assisting
in decontaminating commercially viable products (246).

Experiments combining silver nanoparticles (AgNPs) with
bacteriophages have resulted in a lower MIC of AgNPs
(from 1.1% to 0.13%) and minimum bactericidal concentra-
tion (from 2.15% to 0.25%) compared to silver nanoparticles
alone (250). Some experiments with colloidal silver nanopar-
ticles have presented a complete inactivation of MS2 and T4
bacteriophages, with a starting concentration of 103 PFU/mL
(251). Moreover, bacteriophage contaminations can also be
detected by using silver nanoparticle-based inks (252). Other
antiviral applications of silver include silver-nanoparticle-
decorated silica hybrid composites for water disinfection
(253), to coat air filters (254, 255), amine-functionalized glass
substrate immobilized with silver nanoparticles (251), and
silver-doped titanium dioxide nanoparticles (256) for drink-
ing water treatment. Antiviral inactivation by silver nanopar-
ticles is enhanced by impregnation with granular-activated
carbon (GAC) (245). A coating of GAC modified with
AgNPs on household filters resulted in 3log reductions in
PFU/mL of T4 (257).

Richter et al. worked on negatively charged gold nano-
particles coated with various ratios of negative (11-mer-
capto 1-undecanesulfonic acid) and hydrophobic (1-
octanethiol) ligands. The study aimed to establish ratios
that could inactivate bacteriophages without damaging
bacterial cells. Such nanoparticles have the potential to
be directly used in applications that require selective re-
moval of bacteriophages (247).

Iron nanoparticles also play an essential role in the decon-
tamination of bacteriophage infections. Hematite nanopar-
ticles can decontaminate up to 1.5log of MS2 bacteriophages
within 45 min (258). Smaller sizes of iron nanoparticles

result in a greater inactivation effect by providing a larger
surface area for inactivation and allowing easy dispersion
(259). Zero-valent iron nanoparticles (nZVI) are popularly
used to inactivate bacteriophages along with some eukaryotic
viruses (260). Bacteriophages react uniquely to nZVI, with
some studies showing that M13 bacteriophages are most vul-
nerable against nZVI (7log inactivation), while T7 bacterio-
phages show maximum resistance. Moreover, the nZVI
effects on UZ1 bacteriophage targeting Klebsiella aerogenes
in an aqueous system have been explored (261).

Effects of nanoparticles of zinc, fullerene, titanium dioxide,
gold oxide, and copper oxide on bacteriophage inactivation
have also been explored (204, 262 to 264). Examples of
inactivation by metallic nanoparticles include spray-dried
alumina granules (265) and silver and zinc oxide nanopar-
ticles (263). Metal oxide nanoparticles (ZnO, ZnTiO3,
MgO, and CuO) can also be combined with UV irradiation
to inactivate bacteriophages (266).

The antiviral properties of nonmetallic nanoparticles are
mostly limited to carbon nanomaterials (267). Carbon nano-
tubes (CNT), single-walled or multiwalled, seem to be the
most promising bacteriophage-inactivating structures. By
increasing surface area, the number of bacteriophage particles
absorbed on that surface is much higher. This approach was
effective in water solutions and bioaerosols (130, 131, 268 to
275). Other carbon nanostructures were seen as potentially
promising antiphage factors, such as carbon dots (276, 277),
fullerene (262, 278, 279), fullerol (200, 280, 281), graphite
(282), graphene (283), and graphene oxide (GO) (284).

Silica nanoparticles, although less studied and used, operate
with a similar mechanism of action. Enhanced bacterio-
phage absorption and attenuation on the surface of such
nanoparticles were described (285, 286). No inactivation by
a suspension of silica nanoparticles was noticed (286),
although bacteriophages can be immobilized on silica par-
ticles, which can result in an apparent decrease in bacterio-
phage titer. Cademartiri et al. presented that silica particles
modified with poly(ethylene) glycol can absorb bacterio-
phages targeting foodborne pathogens, including E. coli
(VB-EcoM-AG2), S. enterica serovar Enteridis (VB_SenS-
AG11), and Shigella boydii (VB_SboM_AG3). Depending
on the bacteriophage, a decrease in titer up to 8log (108

PFU/mL) was observed after overnight incubation with
these particles (287). Bone et al. reported the immobiliza-
tion of T4 bacteriophage on 1mm amino-functionalized
silica particles. Flow cytometry proved that a single piece of
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such particles could bind about 20 bacteriophages and that
the number of absorbed bacteriophages is proportional to
the particle's diameter (288).

Similar to metal salts and ions, nanocompounds can be
harmful to the environment (289, 290). Moreover, there are
already reports on the recognition of nanoparticle-resistant
bacterial strains, which suggest that the overuse of nanocom-
pounds for bacteriophage inactivation may cause widespread
nanoparticle resistance (291, 292), showing similarity with
antibiotic resistance in bacteria. Although promising, the
nano-related approach requires proper waste management
procedures and regulatory clearance before being used on an
industrial scale.

Inactivation of other groups of bacteriophages.
Despite Enterobacteriaceae-targeting bacteriophages being
the target of this review, interesting methods for bacterio-
phage inactivation have been described for other species of
phages.

For examining temperature inactivation, Lactococcal bacte-
riophages appear to be good models. This is due to their
increased resistance to high temperatures and pressures
compared to coliphages (57). Elevated temperatures gener-
ally inactivate cold-active bacteriophages (infectious at
#4°C). Bacteriophage 9A, an example of a cold-active ther-
molabile bacteriophage, is rapidly inactivated over a temper-
ature range of 25 to 55°C (293). Bacteriophages P001 and
P008 experience a fall in titer by 7log and 2log orders,
respectively, when the temperature is elevated to about 75°C,
ranging from 16s to 120 min, depending on the phage (47).

Unfortunately, 9log unit inactivation of the heat-resistant
P1532 bacteriophage at 95°C leads to more than 95%
whey protein denaturation (44). Other resistant bacterio-
phages, like bacteriophage P680, are detected even after a
heat treatment at 95°C for 30 min (294). Phi6, a unique
representative of enveloped bacteriophages, was also an
object of examination of its pH tolerance (295). Moreover,
the complex effects of iron, aluminum, nickel, chromium,
and copper salts were investigated on this bacteriophage.
The authors claimed the virucidal properties of metal salts
rely on the change of pH due to salt hydrolysis (233).
Nonmetal salts have very limited application; there are but
several reports on the inactivation of dairy bacteriophages
with ammonia (296) and its salts, namely, ammonium
chloride (42) and ammonium sulfate (297).

Conclusion. Bacteriophage contamination is a growing
concern for bacteria-based industries. Such infections tend
to recur and are resilient to sterilization protocols. A variety
of approaches have been explored to fight bacteriophages.
Within the vast literature of phage inactivation, solutions for
Enterobacteriaceae-targeting bacteriophages are the most
crucial, as E. coli is a model bacterium in most laboratories
and industries. Further research into phage inactivation is
needed for the generation of novel antiphagents of higher ef-
ficiency and broader application. In this paper, we reviewed
different techniques adopted to reduce bacteriophage titers.

Antiphagents can be primarily categorized as physical and
chemical. Nanotechnology also contributes significantly to
the inactivation of bacteriophages. While bacteriophages
resist most physical factors, extreme conditions such as high
temperature (95°C and above), high pressure, intense irradia-
tion, and sudden changes in pH cause significant reduction
in bacteriophage titers. Several chlorine-based disinfectants
also inactivate bacteriophages, especially in industries and
laboratories. The examples of usage of each method are sum-
marized in Table 1.

Despite this plethora of antiphage approaches, industries
consistently struggle with bacteriophage contaminations. A
universal antiphagent, effective against all kinds of bacterio-
phages and applicable in every condition, is yet to be found
and is unlikely to exist, given the large number of phage spe-
cies and the variation in genotypes between them. Each
method has drawbacks and limitations and are more suited
for specific context-dependent applications. Bacteriophages
are generally resistant to the effects of temperature and elec-
tric fields, and radiation usage is expensive and requires spe-
cialized equipment. Chemical disinfectants and ROS-related
approaches are corrosive and nonspecific. The effectivity of
pressure and osmotic shock protocols for bacteriophage
inactivation is relatively poor. Nano-related strategies and
metal compounds are harmful to live organisms and the
environment. Polymers seem to be the most promising
group of compounds for usage as antiphagents. However,
the use of biodegradable polymers for bacteriophage inacti-
vation requires further development. We conclude that there
is a pressing need to design antiphagents that are active
against bacteriophages while ineffective against bacterial cells,
as well as being safe to humans, the environment, and equip-
ment. Such agents are primarily required for biofoundries
that endure heavy losses due to bacteriophage infections.
Novel antiphagents have the potential to be active against
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TABLE 1 Summarization of different methods for the inactivation of Enterobacteriaceae-targeting bacteriophages

Inactivation method Conditions Phage Host Reference
Physical factors

Temp 72°C MS2 E. coliHfr K-12 52

72°C, 84°C MS2 E. coli ATCC 15597 53

Pressure 250MPa Nonspecified S. enterica 56

800MPa Qb E. coli ATCC 1288 59

Radiation UV-A (62 mJ*cm22) MS2 E. coli 15597 90

UV-A (10 mJ*cm22) PhiX174 E. coli 13706 90

UV-A (30 mJ*cm22) PRD1 S. typhimurium LT2 90

Near-UV T4 E. coli B 96

Near-UV T7 E. coli B 97

UV-C (35 mJ*cm22 / 300 10 mJ*cm22) lNM1149 E. coli LE392 98

Femtosecond laser (425 nm) M13 E. coli TG-1 102

Femtosecond laser (425 nm) M13 E. coli JM103 109

Femtosecond laser (425 nm) MS2 E. coli C3000 109

White light (40 W*m22) Qb E. coli 13706 113

White light (40 W*m22) T4 E. coli 13706 113

Electric field Streamer corona discharge MS2 E. coli C3000 123

Electromagnetic field (60Hz) MS2 E. coli ATCC 15597 126

EC-MWNT MS2 E. coli ATCC 15597 130

Direct current (5mA) MS2 E. coli ATCC 15597 135

Direct current (5mA) PRD1 Salmonella choleraesuis subsp.
Choleraeusi ATCC 23564

135

Discharge-generated ions by electric
field

PhiX174 E. coli ATCC 13706 135

Osmotic Shock Salt concn T4B E. coli B 138

Salt concn T4 E. coli B 140

Low pH T3 E. coli ATCC 11303 145

High pH Coliphages E. coli 146

Low pH T7 E. coli BL21 148

Chemical factors

Polymers « -poly-L-lysine T4 E. coli B 149

« -poly-L-lysine T5 E. coli B 149

Chitosan T2 E. coli B2 158

Proteins Anti-phage antibody T4 E. coli 161

Anti-phage antibody Coliphages E. coli 162

Natural extracts Blueberry extract MS2 E. coliHfr K-12 168

Small molecules MS2 E. coli 170

Small molecules f2 E. coli 170

Small molecules Lambda E. coli 170

Commercially available disinfectants Ozone (0.06mg/L) f2 E. coli ATCC 15766-B 186

Ozone MS2 E. coli 187

(Continued on next page)
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eukaryotic viruses offering an effective tool to fight future
pandemics more effectively.
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