
RESEARCH ARTICLE

Binding selectivity analysis of AURKs inhibitors

through molecular dynamics simulation

studies

Rima D. AlharthyID
1☯, Ghulam Fatima2☯, Numan Yousaf2, Muhammad Shaheen IqbalID

2,

Sadia Sattar2, Abdullah R. Alanzi3, Ijaz Ali4, Muhammad MuddassarID
2*

1 Department of Chemistry, Science and Arts College, King Abdulaziz University, Jeddah, Saudi Arabia,

2 Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan, 3 Department of

Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia, 4 Centre for Applied

Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, Hawally, Kuwait

☯ These authors contributed equally to this work.

* mmuddassar@gmail.com

Abstract

Aurora kinases (AURKs) have been identified as promising biological targets for the treat-

ment of cancer. In this study, molecular dynamics simulations were employed to investigate

the binding selectivity of three inhibitors (HPM, MPY, and VX6) towards AURKA and

AURKB by predicting their binding free energies. The results show that the inhibitors HPM,

MPY, and VX6 have more favorable interactions with AURKB as compared to AURKA. The

binding energy decomposition analysis revealed that four common residue pairs (L139,

L83), (V147, V91), (L210, L154), and (L263, L207) showed significant binding energies with

HPM, MPY, and VX6, hence responsible for the binding selectivity of AURKA and AURKB

to the inhibitors. The MD trajectory analysis also revealed that the inhibitors affect the

dynamic flexibility of protein structure, which is also responsible for the partial selectivity of

HPM, MPY, and VX6 towards AURKA and AURKB. As expected, this study provides useful

insights for the design of potential inhibitors with high selectivity for AURKA and AURKB.

1. Introduction

The Aurora kinase group is composed of serine/threonine kinases, known as Aurora kinase A

(AURKA), Aurora kinase B (AURKB), and Aurora kinase C (AURKC) [1]. AURKs serve an

important role in controlling the cell cycle, with AURKA and AURKB being particularly

important during mitosis [1], while AURKC, is crucial for gametogenesis [2]. The kinase

domain of AURKs, containing three distinct domains, is highly homologous across all of its

members [3]. But the N-terminal region’s sequence vary [3]. The location and spatiotemporal

expression of AURKs clearly characterize their functional roles [4]. According to study, the

overexpression of AURKs in malignancies results in genomic instability and aneuploidy [5]

which causes the development, invasion, and spread of a tumor. Several studies emphasize the

significance of AURKA in cancer treatment after extensive research into its functions [6].

AURKA and AURKB are two essential members of the serine/threonine kinases group [1,

7], with AURKA being associated with mitotic commitment, spindle construction, spindle
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maintenance, and centrosome function [8, 9]. TPX2 plays a crucial role in localizing AURKA

to the mitotic spindle by binding and activating it. [10] The association between AURKA and

TPX2 relies on the presence of glycine 198 (G198) in the catalytic domain of AURKA [10].

Additionally, the interaction between protein phosphatase 1 and AURKA, regulated by phos-

phorylation during mitosis, is vital for proper chromosomal segregation [11]. On the other

hand, AURKB, encoded by the AURKB gene on chromosome 17, also plays a critical role in

regulating the cell cycle. Both AURKA and AURKB phosphorylate histone H3, which is essen-

tial for chromosomal segregation during cell division [12]. AURKB is linked to the Chromo-

somal Passenger Complex, consisting of Survivin, Borealin, and INCENP, which plays a key

role in various aspects of mitosis, including chromosome alignment, cytokinesis, and

segregation.

Two significant regulators of cell division, aurora kinases A and B, have very similar amino

acid sequences. The N-terminal domains, protein kinase domains, and C-terminal domains of

Aurora A and B have an impressive conservation rate, with their catalytic domains being 71%

identical [3]. Furthermore, the 26 residues around the ATP-binding active regions of both

kinases are similar: In Aurora A, L215, T217, and R220, and in Aurora B, R159, E161, and

K164, are the only residues differentiating their ATP-binding sites [13]. Despite these similari-

ties, Aurora A and Aurora B have different chromosomal affiliations: Aurora A is linked to

chromosome 20q13.2, whereas Aurora B is linked to chromosome 17p13.1 [14]. The average

fraction of similar amino acids within the vertebrate Aurora A and B families is significantly

larger (0.84 ± 0.5) than within either family alone, suggesting recent vertebrate evolution [15].

The high conservation rate is essential in relation to the distinctive pairing of substrates and

inhibitors. These kinases interact with diverse substrates and subcellular localizations with

minimal sequence change, despite their dissimilar structures and motifs. This highlights the

essential functions that both kinds of kinases carry out in regulating cell division.Many studies

have been reported that overexpression of AURKs are responsible in variety of human cancers,

and the mutations in Aurora kinases have been identified in a variety of somatic cancer sam-

ples, that includes lung cancer, and melanoma [16], this suggests that the function of Aurora

kinases in cell transformation and oncogenesis is crucial. In recent decades, there has been

increased research on the role of these potentially oncogenic proteins in tumor growth.

The carboxyl terminus catalytic domain of AURKA and AURKB share approximately 70%

similarity. Both kinases are essential for mitotic progression, but they have distinct localiza-

tions and roles. To investigate the reason for the difference between AURKA and AURKB,

studies have used paired shRNA suppression with overexpression of Aurora mutants. Results

showed that when the catalytic domain residue, glycine 198 is replaced with asparagine to

mimetic the aligned asparagine 142 of Aurora B the AURKA bind to the AURKB binding pro-

tein INCENP, instead of TPX2 which is AURKA binding protein [10].

The Aurora B mitotic function is restored by the mutant Aurora A indicating that the bind-

ing to INCENP is important for AURKB’s unique functionality. Although AURKA needs

G198 for TPX2 binding, and AURKB requires asparagine 142 for INCENP binding and func-

tion of AURKB [10].

Previous research has reported that certain compounds, including ZM447439 [17] and VX-

680/MK-0457 [18] have demonstrated effects as Aurora kinase A inhibitors and Hesperidin

[19] as AURKB. Despite significant experimental study on the interaction of inhibitors with

AURKA and AURKB in different studies, decoding the atomic-level conformational changes

of these two proteins due to inhibitor interactions is still crucial [20, 21].

With the rapid advancement of simulation and calculation methods [22], several molecular

dynamics (MD) techniques, such as traditional MD [23, 24], multiple short molecular dynam-

ics simulations [25, 26], accelerated MD (aMD) simulations [22, 27, 28], have been widely
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used to carry out target conformational evolution, various techniques for predicting binding

free energy, including the Poisson Boltzmann surface area (MM-PBSA) method [29, 30], ther-

modynamics integration (TI) [31, 32], free energy perturbation (FEP) [33, 34], and solvated

interaction energy (SIE) methods [35, 36], are frequently used to assess ligands’ capacity to

bind to targets. Furthermore, techniques for machine learning and deep learning are presented

to effectively examine the ligand-target binding process and reveal the underlying molecular

causes of ligand-target interactions [37, 38]. These modeling techniques have also contributed

to successful understandings of the inhibitor-receptor binding process.

The development of small drug like compounds that inhibit the activity of AURKs is still a

major area of research. Two inhibitors MPY (2BMC) [39] and HPM (2C6E) [40] were

designed to inhibit the activity of AURKA, while a small molecule VX6 (4AF3) [18] was devel-

oped to suppress the activity of AURKB. A crucial chemical process for the creation of small

molecules that target AURKs can be found by further examining the differences in the binding

patterns of VX6, HPM, and MPY to AURKA and AURKB. The plausible binding modes of

these inhibitors are shown in Fig 1A and 1B, while the structures of HPM, MPY, and VX6 are

shown in Fig 1C–1E. In this study, molecular dynamics simulations were used to enhance the

conformational sampling of inhibitor-AURKs complexes, the cross-correlation matrix [41, 42]

was used to understand the internal dynamics of inhibitor-bound AURKs, and calculations of

residue-based free energy decomposition were used to identify the binding ability of VX6,

HPM, and MPY to AURKs by employing MM/GBSA method. MM/GBSA offers a balanced

approach, considering both molecular mechanics and solvation effects.

2. Material and methods

2.1. Simulated system setup

The crystal structures of AURKA complexed with HPM (PDB ID: 2BMC) and MPY (PDB ID:

2C6E) and AURKB complexed with VX6 (PDB ID: 4AF3) were retrieved from Protein Data

Bank (PDB). The co-crystal poses of the inhibitors were extracted from the structures and six

complexes i.e., HPM-AURKA, MPY-AURKA, VX6-AURKA, HPM-AURKB, MPY-AURKB,

VX6-AURKB were prepared using the PyMOL software. During structure preparation, all the

non-inhibitor molecules and crystal water were removed, and the missing hydrogen atoms

were added using the Amber’s Leap tool. The simulation parameters of the proteins were pre-

pared by using the ff14SB forcefield [43, 44]. Similarly, the geometries of the inhibitors were

optimized at the semiempirical AM1 and Amber’s Antechamber module [45, 46], and Gastei-

ger changes were allocated to each inhibitor. The general amber forcefield (GAFF) [47] was

used to generate the parameters for HPM, MPY, and VX6 inhibitors. After parametrization,

the solvation of the complexes was done in a periodic box of 10 Å containing TIP3P water

molecules [48]. Then systems were neutralized by the addition of 7 Cl- ions in AURKA com-

plexes and 8 Cl- ions in AURKB complexes. The initial confirmation of the complexes was sub-

jected to 250ns MD simulation with randomly assigned velocities.

2.2. Molecular dynamics simulations

Before subjecting the system to the production run, the prepared systems were optimized

through steepest decent minimization of 10000 steps to remove the unfavorable atomic inter-

actions. After that, the solvation system was equilibrated for an additional 10000 steps. Then

the temperature of the system was gradually raised from 0 to 300K and then the systems were

further optimized at 300K for equilibration. The systems that undergone the process of equili-

bration were then subjected to the production run for 250 ns long simulation at 310K tempera-

ture and 1 atm pressure using NPT ensemble. The SHAKE algorithm was used to constrain
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the hydrogen bond forming atoms, and the particle mesh Ewald (PME) approach was used to

identify the long-range electrostatic interactions [49, 50] at the cutoff range of 10Å. The molec-

ular dynamic simulations were run by using NAMD [51]. The molecular dynamic trajectories

were analyzed using the VMD [52] and BIO3D package of R [53].

2.3. Principle component analysis

PCA has proven to be a valuable method for identifying coordinated motions in a collection of

conformational structures obtained from either molecular simulations or experimental data.

This technique has been widely used to study how changes in conformation affect the function

of receptors [54, 55]. To perform PCA, we used the atomic coordinates obtained from the

molecular dynamics simulations to construct the covariance matrix. This matrix is then

Fig 1. (A) Supxerposition of AURKA (green) and AURKB (blue) to analyze the conformation of bound inhibitors; (B) The plausible binding modes of

inhibitors (represented with sticks) in AURKA and AURKB binding pocket (Shown in surface). (C), (D), and (E) represent the structures of HPM, MPY, and

VX6, respectively.

https://doi.org/10.1371/journal.pone.0295741.g001
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diagonalized to produce a set of eigenvalues and eigenvectors. After diagonalization, the eigen-

vector of the matrix demonstrates the directions of movement of protein domains, and the

correlated eigenvalues indicate the square mean fluctuations along the respective eigenvectors.

The first few eigenvectors with high eigenvalues are very helpful in demonstrating the overall

movements of proteins BIO3D package [53] of R was used to compute the dynamic movement

of the protein complexes.

2.4. Calculations of MM/GBSA

MM/GBSA method provides more reliable binding free energy values than many molecular

docking scoring functions [56, 57]. Similarly some studies have also shown that MM/GBSA

approach is accurate and reliable enough for predicting the small drug like compounds and

their protein targets binding free energies [58, 59]. Considering these studies in view, binding

free energies of AURKs complexes were calculated using MM/GBSA method by employing

the below mentioned equation.

DGbind ¼ DGcomp � DGpro � DGlig ¼ DEele þ DEvdW þ DGgb þ DGnonpol � TDS

The ΔGcomp, ΔGpro, and ΔGlig indicate the binding energies of AURKs complexes. The

ΔEele and ΔEvdW show the electrostatic and van der Waals interactions of the inhibitors to

AURKs. The term ΔGgb presents the polar solvation energy which is solved by using the Gen-

eralized Born (GB) model [60] while ΔGnonpol represent the nonpolar free energy terms. Lastly,

TΔS indicates the entropy caused by the ligands.

3. Results and discussion

3.1. AURKA and AURKB’s structural fluctuation and flexibilities

Root mean square deviations (RMSDs) of the backbone atoms from the initial optimized con-

figuration were calculated for apo structures of AURKA and AURKB and their complexes to

evaluate the extent of structural fluctuations across molecular dynamics simulations (Fig 2A

and 2B). The information from RMSD plots revealed that the AURKA systems attained

Fig 2. RMSDs of backbone atoms in AURKs complexes calculated during 250 ns simulation. (A) RMSD plots of AURKA complexes. (B) RMSD plots of

AURKB complexes.

https://doi.org/10.1371/journal.pone.0295741.g002
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equilibrium at 25 ns. After equilibration, the RMSD of the apo AURKA increased to ~3.5 Å at

100 ns and then attained a stable range of 3 Å at 150 ns. The RMSD of AURKA-HPM complex

showed deviations to 2.5–3.5 Å till 100 ns and then attained stability at ~3.5 Å till the end of

simulation. The RMSD of AURKA-MPY complex showed a similar trend to HPM complex

whereas the RMSD of the AURKA-VX6 complex showed major deviation during 100 to 150

ns but it attained stability after 150 ns in the range of ~2.5-3Å. Among the three complexes,

the AURKA-HPM showed higher deviations than the other two complexes. On the other

hand, AURKB complexes attained stability at the start of the simulation and their RMSD val-

ues remained in the range of ~2–3 Å throughout the simulation time while the RMSD of apo

structure was higher than the complexes as indicated in Fig 2B. The RMSD analysis showed

that the systems attained equilibrium at specific value and remained stable during the simula-

tion. Furthermore, the conformational changes in the AURKS structures were analyzed by

aligning the different snapshots obtained at 0, 50, 100, 150, 200, and 250 ns. The alignment of

the snapshots revealed that the ligands remained bound to the proteins pockets and did not

dissociate during the simulation (Fig 3).

To assess the fluctuations of AURKA and AURKB structures upon binding of HPM, MPY,

and VX6 inhibitors, the Root Mean Square Fluctuations (RMSF) of the residues were calcu-

lated from the trajectories (Fig 4). The RMSF plots of AURKA and AURKB showed similar

trends indicating that both structures have same number of rigid residues and flexible regions.

Fig 3. The superimposition of different snapshots of AURKA and AURKB complexes across the simulated time for conformational analysis.

https://doi.org/10.1371/journal.pone.0295741.g003
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Structural fluctuations were observed in five regions consisting of L1, L2, L3, L4 and L5

regions. These results showed that some residues from these regions were situated near the

binding sites of the AURKA and AURKB. The RMSF values of AURKA and AURKB bound to

VX6 were higher than the AURKs bound to the HPM and MPY, especially at the L2, L3, and

L5 regions indicating that the binding of HPM and MPY restricted the motions of these

regions. The structural analysis revealed that the regions L2 and L4 were near the binding sites

of AURKA and AURKB which showed that some residues in these regions play a significant

role in the binding selectivity of HMP, MPY, and VX6 towards the AURKs. While the residues

in L1, L3 and L5 were not near the binding pocket and the fluctuations in these regions can

play a vital role in the binding of these inhibitors to the AURKA and AURKB. The RMSF val-

ues of apo structures revealed that the flexibility in the loop regions was more in apo structure

as compared to the complexes indicating the stability of protein structures upon binding of the

ligands [61].

Fig 4. RMSF of residues in AURKA and AURKB during MD simulations: (A) RMSF for apo AURKA and its complexes with HPM, MPY, and VX6, (B) the

structure of AURKA, (C) RMSF of apo AURKB and its complexes with three inhibitors and (D) the structure of AURKB.

https://doi.org/10.1371/journal.pone.0295741.g004
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3.2. Dynamics behavior of AURKA and AURKB

The cross-correlation matrices of the Cα atomic coordinates of AURKA and AURKB com-

plexes were computed to find the differences in structural dynamics (Fig 5). The red and pink

colors show the positive correlated motions while blue and dark blue indicate the anti-corre-

lated motions. The diagonal part of the matrix shows the correlated motion of domain relative

to itself while the correlation in among different domains are depicted by the off-diagonal

regions. As shown in Fig 5, the structural dynamics behavior of the AURKA and AURKB was

influenced upon binding of the inhibitors, HPM, MPY, and VX6.

For AURKB complexes (Fig 5B, 5D and 5F) the anticorrelated motions were observed at

three regions R2, R3, and R4, while the positively correlated motions were observed at the

diagonal and R1 region. By comparing the HPM bound to AURKB, the binding of HPM to

AURKA weakens the positive correlating motions at R1 regions and anticorrelated motions at

the R2, R3, and R4 regions (Fig 5A). The binding of MPY to AURKA slightly affected the anti-

correlated motions at R2, R3, and R4 regions while the binding of MPY to AURKB affected

the anti-correlated motions but did not affect the positive correlated motions at R1 region (Fig

5D). By comparing the AURKA-VX6 and AURKB-VX6, the associations did not alter the

motions at R1 region in AURKA, but it strengthened the anticorrelated motions in R2, R3,

and R4 regions in AURKA (Fig 5E). According to the above discussion, the binding of identi-

cal inhibitors to AURKA and AURKB lead to motion mode difference, indicating that the resi-

dues in R1–R4 regions may be involved in binding with HPM, MPY and VX6 [62].

3.3. PCA analysis

The use of principal component analysis (PCA) is widespread in the investigation of concerted

movements of protein structural domains. This approach can effectively filter significant collective

motions from structural ensembles obtained from experimental or simulation studies. In this

study, PCA was utilized to decode the molecular mechanism underlying the binding selectivity of

HPM, MPY, and VX6 to AURKA and AURKB. To perform PCA, a covariance matrix was con-

structed using the Cα atomic coordinates extracted from the starting conformational trajectory

(SCT). The proportion of variance of first eigenvalue for the HPM bound to AURKA was 47.4%

that was higher than the first eigenvalue of AURKB bound to HPM, indicating the higher struc-

tural variation in AURKA-HPM complex (Fig 6A and 6D). The binding of MPY to AURKA and

AURKB did not show major difference in the variance of the structures as the eigenvalues for

AURKA and AURKB were 22.9% and 22.5%, respectively (Fig 6B and 6E). Lastly, the binding of

VX6 showed more variation in AURKA than AURKB. The results indicated that the binding of

these inhibitors influence the structural variations of the AURKA and AURKB.

3.4. Binding free energy calculations

The MM/GBSA approach was utilized to determine the binding free energies of HPM, MPY, and

VX6 to AURKA and AURKB. This involved calculating the energetic data for three hundred

structural frames obtained from a 250 ns trajectory at 2 ns intervals. The results of the MM/GBSA

calculation for all three ligands bound to AUKRA and AURKB are presented in Table 1.

The ΔEvdW value for AURKB-HPM was higher than AUKRA-HPM complex. The similar

trend was observed in the ΔEvdW value of MPY and VX6 complexes. The ΔEele energy component

for AURKA-HPM was -0.01±0.42, while it was -7.59±0.43 for HPM-AURKB complex. The elec-

trostatic energy contributions indicated that the AURKA complexes showed better electrostatic

energies than AURKB complexes except for HPM complexes. After analyzing the surface ener-

gies, the AURKB-HPM complex showed a better surface energy of -8.98±0.02 than all other com-

plexes. The ΔGtotal values of HPM-AUKRA (-53.09±0.09), HPM-AURKB (-69.34±0.33),

PLOS ONE Binding selectivity analysis of AURKs inhibitors

PLOS ONE | https://doi.org/10.1371/journal.pone.0295741 December 19, 2023 8 / 20

https://doi.org/10.1371/journal.pone.0295741


Fig 5. Cross correlation matrices derived from Cα atomic coordinates (A), (C), and (E) denoting AURKA with HPM, MPY, and VX6

respectively; (B), (D), and (F) depicting AURKB with HPM, MPY, and VX6.

https://doi.org/10.1371/journal.pone.0295741.g005
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MPY-AURKA (-49.34±0.32), MPY-AURKB (-55.28±0.49), VX6-AURKA (-52.79±0.49),

VX6-AURKB (-59.32±0.42) indicated that HPM had better selectivity towards AURKB rather

than AURKA. Similarly, MPY and VX6 had better binding free energies with AURKB than

AURKA. The relative contribution of energy terms in the AURKs complexes is shown in Fig 7.

Fig 6. The percentage proportion of variance of AURKA and AURKB bound to HPM, MPY, and VX6.

https://doi.org/10.1371/journal.pone.0295741.g006

Table 1. Binding affinities of inhibitors to AURKA and AURKB calculated with MM/GBSA Approach a.

HPM-AURKA HPM-AURKB MPY-AURKA MPY-AURKB VX6-AURKA VX6-AURKB

Mean SEMb Mean SEMb Mean SEMb Mean SEMb Mean SEMb Mean SEMb

ΔEvdw -69.82 0.22 -87.48 0.45 -63.31 0.28 -69.43 0.50 -61.01 0.35 -69.74 0.37

ΔEele -0.01 0.42 -7.59 0.43 -2.37 0.15 -1.36 0.14 -4.17 0.19 -3.92 0.18

ΔEGB 23.76 0.44 34.71 0.41 22.77 0.18 22.37 0.20 18.83 0.23 20.81 0.21

ΔEsurf -7.02 0.02 -8.98 0.02 -6.22 0.02 -6.86 0.02 -5.82 0.02 -6.47 0.02

ΔGgas -69.83 0.67 -95.08 0.50 -65.88 0.33 -70.80 0.54 -65.19 0.37 -73.66 0.43

ΔGsolv 16.74 0.44 25.73 0.41 16.54 0.17 15.51 0.19 13.00 0.22 14.33 0.21

TΔS -23.98 2.02 -21.83 1.47 -23.68 1.36 -28.07 1.25 -21.64 1.96 -20.10 1.56

ΔGtotal -53.09 0.43 -69.34 0.33 -49.34 0.32 -55.28 0.49 -52.18 0.33 -59.32 0.42

a, unit of energy components are in kcal/mol.

b, Standard Error of Mean.

https://doi.org/10.1371/journal.pone.0295741.t001
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3.5. Binding selectivity uncovered by inhibitor-residue interaction analyses

To clarify the binding selectivity of the three inhibitors (HPM, MPY, and VX6) to AURKA

and AURKB, we used the MM/GBSA method to analyze the interactions between the inhibi-

tors and specific residues. Table 2 Demonstrate the decomposition of ΔGligand–residue values

into contributions from the sidechain and backbone of key residues in AURKA and AURKB

Fig 7. The relative contribution of binding energy terms for AURKA and AURKB complex calculated using MM/

GBSA method.

https://doi.org/10.1371/journal.pone.0295741.g007

Table 2. Interactions between important AURKA and AURKB residues and three inhibitors (all values in kcal/mol).

Inhibitor

HPM MPY VX6

AURKs Key residues Total Sidechain Backbone Total Sidechain Backbone Total Sidechain Backbone

AURKA L139 -2.00 -2.12 0.12 -2.12 -1.96 -0.16 -2.29 -2.54 0.25

V147 -1.65 -1.79 0.14 -1.75 -1.68 -0.07 -1.76 -1.70 -0.06

L194 -1.09 -1.16 0.07 -0.54 -0.59 0.05 -0.81 -0.80 -0.03

L210 -1.46 -1.44 -0.02 -0.46 -0.39 -0.07 -0.88 -0.76 -0.12

Y212 -1.13 -1.28 0.15 -2.25 -2.27 0.02 -2.06 -1.91 -0.15

L215 -1.07 -0.63 -0.44 -1.72 -1.00 -0.72 -0.73 -0.30 -0.43

G216 -1.27 -0.72 -0.55 -1.31 -0.71 -0.60 -1.08 -0.61 -0.47

L263 -2.30 -2.50 0.20 -2.09 -2.19 0.10 -2.62 -2.63 0.01

F275 -3.63 -3.37 -0.26 -0.14 -0.15 0.01 -0.22 -0.19 -0.03

AURKB L83 -2.26 -2.36 0.10 -2.28 -2.19 -0.09 -2.32 -2.53 0.21

F88 -3.86 -3.48 -0.38 -4.38 -4.06 -0.32 -3.34 -3.17 -0.17

V91 -1.33 -1.34 0.005 -1.19 -1.28 0.09 -1.61 -1.57 -0.04

E125 -1.29 -1.08 -0.21 -0.16 -0.15 -0.01 -0.08 -0.06 -0.02

L138 -1.19 -1.21 0.02 -1.78 -1.89 0.10 -1.12 -1.15 0.03

L154 -2.17 -2.18 0.01 -0.94 -0.90 -0.04 -1.43 -1.24 -0.19

Y156 -1.27 -1.42 0.15 -1.38 -1.55 0.17 -2.01 -1.94 -0.07

G160 -1.52 -0.70 -0.82 -1.19 -0.57 -0.62 -1.48 -0.67 -0.81

L207 -2.13 -2.35 0.22 -3.04 -2.80 -0.24 -2.61 -2.65 0.04

F219 -2.43 -2.36 -0.07 -0.99 -0.94 -0.05 -0.93 -0.91 -0.02

https://doi.org/10.1371/journal.pone.0295741.t002
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bound by each inhibitor. We discovered that the sidechains of residues play an important role

in contributing energy to inhibitor-residue interactions. Fig 8 displays the key residues of

AURKA and AURKB that form important inhibitor–residue interactions with energies stron-

ger than -1 kcal/mol [63]. Additionally, to determine hydrogen bond interactions (HBIs)

between the inhibitors and AUKRA, and AURKB, we used the CPPTRAJ tool in Amber 21.

The results are summarized in Table 3.

Fig 8. Residues stronger than -1 kcal/mol are specified for inhibitor-residue interactions determined using the residue-based free energy decomposition

method. (A) the AURKA-HPM complex, (B) AURKB-HPM complex, (C) AURKA-MPY complex, (D) AURKB-MPY complex, (E) AURKA-VX6 complex

and (F) AURKB-VX6 complex.

https://doi.org/10.1371/journal.pone.0295741.g008

Table 3. Hydrogen bonding interactions between inhibitors and AURKA/B computed by the CPPTRAJ.

Complexes Hydrogen Bonds Distance (Å) Angle (˚) Occupancy (%)

HPM-AURKA Ala87-H-----HPM-N17 3.25 144.00 78.23

HPM-AURKB Lys38-HE2-----HPM-O36 3.29 138.31 34.32

MPY-AURKA Asp148-HA-----MPY-O26 3.55 138.44 44.09

MPY-AURKB Gly91-CA-----MPY-C24 3.70 148.61 70.51

VX6-AURKA Ala87-H-----VX6-N14 3.67 146.61 64.48

VX6-AURKB Ala88-H-----VX6-N14 3.64 148.54 74.39

https://doi.org/10.1371/journal.pone.0295741.t003
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For the HPM bound to AURKA and AURKB, HPM showed better interactions with L139,

V147, L194, L210, Y212, G216, L263, and F275 in AURKA and all the interactions were stron-

ger than -1kcal/mol (Fig 8A). Additionally, a Hydrogen bond interaction (Ala87-H-----

HPM-N17) was detected with an occupancy of 78.23% (Table 3). The HBI indicated that the

hydrogen atom of Ala87 residues engaged in hydrogen bonding with the nitrogen seventeen of

HPM. On comparison with the binding of HPM to AURKB, it was observed that the binding

modes of HPM with AURKB were like AURKA (Fig 8B). It was observed that the interactions

difference of HPM with residues (L139, L83), (V147, V91), (L194, L138), (L210, L154), (G216,

G160), (L263, L207) corresponding to AURKA and AURKB was less than 0.30 kcal/mol. The

interaction energy difference of HPM with F275 in AURKA and F219 in AURKB was

strengthened by 1.20 kcal/mol, indicating that these residues play a significant role in binding

selectivity of HPM to AURKA over AURKB.

In case of MPY binding to the AURKA, the interactions stronger than -1.00 kcal/mol were

observed in the residues L139, V147, Y212, L215, and L263 (Fig 8C). The hydrogen bond inter-

actions showed that the HA atom of Asp148 engaged in hydrogen bonding with the O36 of

MPY with an occupancy of 44.09%. The binding mode of MPY in AURKB was like AURKA

as the interacting residues (L139, L83), (V147, V91), (Y212, Y156), and (L263, L207) depicted

the better interactions with energy stronger than -1.00 kcal/mol. The binding interactions of

Fig 9. The binding modes of the inhibitors with the interacting residues of AURKA and AURKB proteins.

https://doi.org/10.1371/journal.pone.0295741.g009
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L207 and Y212 were strengthened by 0.95kcal/mol and 0.87kcal/mol, indicating these residues

were involved in the binding selectivity of MPY towards AURKA and AURKB [64].

Lastly, VX6 bound to AURKA and AURKB interacted with four residues, (L139, L83),

(V147, V91), (Y212, Y156), and (L263, L207) as show in (Fig 8E and 8F). VX6 formed HBI

with AURKA (Ala87-H----VX6-N14), and AURKB (Ala88-H-----VX6-N14) with an occu-

pancy of 64.48% and 74.69%, respectively. The interactions of VX6 with L139 and L263 in

AURKA were strengthened by -2.29 and -2.32kcal/mol as compared to the binding of VX6 to

L83 and L207 with AURKB, which showed that these residues are important for the binding of

VX6 to AURKA and AURKB. The binding modes of the inhibitors with the interacting resi-

dues are shown in Fig 9.

Further, the distances between the hydrogen bond forming residues with the inhibitors

were calculated to analyze the stability of the complexes. The analysis of AURKA complexes

showed that the distance between HPM and Ala87 at the start of simulation was 3.25 Å which

gradually increased to 4.5 Å at 60 ns but it dropped to 2.5 Å at 75 ns and then remained in this

range till 225 ns. The distance increased to 5 Å towards the end of simulation. Similarly, the

average distance between MPY and Asp148 3.5 Å during 250 ns simulation. The distance

between VX6 and Ala87 was 3.5 Å in most of the frames while in some frames it reached 5 Å

Fig 10. The distance plots of hydrogen bond forming residues of AURKA with HPM, MPY and VX6 inhibitors for entire simulation time.

https://doi.org/10.1371/journal.pone.0295741.g010
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(Fig 10). On the other hand, the distance between HPM and Lys38 of AURKB was in the range

of 3.5 Å most of the time. The average distance between MPY and Gly91 was 4 Å and the dis-

tance between VX6 and Ala88 was 3 Å (Fig 11).

The role of residual contribution in the total binding free energy was further estimated by

alanine scanning. Table 2 indicates that F275 play an important role in binding free energy of

HPM-AURKA complex. In MPY-AUKRA complex, Y212 showed better contribution in bind-

ing free energy while in VX6-AURKA complex, the major energy contribution was exhibited

by L263. In the AURKB complexes, F88 showed major contributions in all complexes. These

residues were mutated to alanine and then their effect on total binding free energy was calcu-

lated by alanine scanning. The reduction in the binding free energies upon mutation is shown

in Table 4. The mutation of F275 to alanine in HPM-AURKA complex reduced the binding

free energy to -49.07 with an energy loss of -4.01 kcal/mol. The mutation of Y212 in

MPY-AURKA caused an energy loss of -2.23 kcal/mol while the mutation of L263 in

VX6-AURKA complex resulted in an energy loss of -4.73 kcal/mol. In AURKB complexes, the

mutation of F88 to alanine showed the more energy loss in HPM-AURKB complex with a

value of -4.07 kcal/mol. The loss of energy due to mutation in these residues indicated the sig-

nificance of these residues in total binding free energy of complexes.

Fig 11. The distance plot of hydrogen bond forming residues of AURKB with HPM, MPY and VX6 inhibitors for entire simulation time.

https://doi.org/10.1371/journal.pone.0295741.g011
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4. Conclusion

Molecular dynamics simulations were conducted on three AURKA and AURKB systems

bound by three inhibitors (HPM, MPY, and VX6) to gain insights into their binding selectivity

for anti-cancer drug development. The study revealed that the structural flexibility of two

regions L4 and L5 in AURKA was higher than that of AURKB, and these domains exhibited

distinct internal dynamics behavior. MM/GBSA calculations showed that the binding free

energies of HPM, MPY, and VX6 with AURKB were higher than the AURKA complexes, indi-

cating the superior selectivity and binding ability of inhibitors towards AURKB. Furthermore,

residue-based free energy decomposition analysis identified four common residue pairs (L139,

L83), (V147, V91), (L210, L154), and (L263, L207) that played a significant role in inhibitor

binding affinity, suggesting their crucial role in determining the selectivity of inhibitors

towards AURKA and AURKB. These findings could provide a better understanding of the

molecular mechanisms and structure-affinity relationships for designing highly selective

AURKs inhibitors.
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