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ABSTRACT

Systemic combination chemotherapy and intrathecal chemotherapy markedly increased the
survival rate of children with ALL. In the past two decades, the use of minimal (measurable)
residual disease (MRD)measurements early in therapy improved risk group stratification with
subsequent treatment intensifications for patients at high risk of relapse, and enabled a re-
duction of treatment for low-risk patients. The recent development of more sensitive MRD
technologies may further affect risk stratification. Molecular genetic profiling has led to the
discovery of many new subtypes and their driver genetic alterations. This increased our
understanding of the biological basis of ALL, improved risk classification, and enabled
implementation of precision medicine. In the past decade, immunotherapies, including bis-
pecific antibodies, antibody-drug conjugates, and cellular therapies directed against surface
proteins, led to more effective and less toxic therapies, replacing intensive chemotherapy
courses and allogeneic stem-cell transplantation in patients with relapsed and refractory ALL,
and are now being tested in newly diagnosed patients. It has taken 50-60 years to increase the
cure rate in childhood ALL from 0% to 90% by stepwise improvements in chemotherapy. This
review provides an overview of how the developments over the past 10-15 years mentioned
above have significantly changed the diagnostic and treatment approach in ALL, and discusses
how the integrated use of molecular and immunotherapeutic insights will very likely direct
efforts to cure those children with ALL who are not cured today, and improve the quality of life
for survivors who should have decades of life ahead. Future efforts must focus on making
effective, yet very expensive, new technologies and therapies available to children with ALL
worldwide.

INTRODUCTION

Approximately one of 1,500 newborns develop ALL before
their 18th birthday. Long-term survival rates increased
from zero in the 1950s to over 90% in the past decade in
high-income countries (Fig 1).1-3 This is attributable to
stepwise refinement and intensification of chemotherapy
regimens to improve both systemic and CNS control, by
more sophisticated use of allogenic hematopoietic stem-
cell transplantation (HSCT), improved supportive care, and
more recently, improved risk stratification incorporating
genomic features and early treatment response quantified
by minimal (measurable) residual disease (MRD). In the
past decade, genomic analyses have identified many new
genetic subclasses of ALL, refining classification of ALL and
increased understanding of disease biology.4 For some
subtypes, precision medicine strategies have been or will
soon be introduced. The very recent introduction of im-
munotherapies, including bispecific antibodies, antibody-
drug conjugates (ADC), and cellular therapies, has changed
treatment for refractory/relapsed (r/r) ALL and is now
entering frontline trials.

We review how these developments have and will continue
to lead to significant changes in treatment of childhood
ALL. We anticipate that this will change ALL from an in-
curable disease in 1960 to a curable disease for (nearly) all
patients and will also significantly reduce the incidence of
major toxicities and thereby improve quality of life for
survivors.

CURRENT THERAPY

Treatment of childhood ALL involves multiagent chemo-
therapy, administered in rotating combinations combined
withCNSprophylaxis, administered over approximately 2-2.5
years. Regimens typically include induction, followed by one
or two consolidation courses, (delayed) intensification and
maintenance. Five drugs form the backbone: glucocorticoids
(prednisone and dexamethasone), vincristine, asparaginase,
methotrexate, and 6-mercaptopurine. Additional drugs in-
clude anthracyclines (daunorubicin and doxorubicin), cyto-
sine arabinoside (araC), and cyclophosphamide. Table 1
summarizes the most recent outcome data of the major
study groups worldwide.2,3,5-9
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Dexamethasone has greater antileukemic efficacy, but more
side effects, than prednisone.10 Regular 5- to 7-day pulses of
corticosteroids and vincristine are widely used during
maintenance, but their value is debatable and likely depends
on the other components of therapy and the patient subset.11

The benefit of high-dose versus intermediate-dose meth-
otrexate also depends on the type of ALL.12,13 Truncation of
the asparaginase schedule because of intolerance or silent
inactivation of the drug increases the relapse risk.14-16

Therapeutic drug monitoring is used to detect silent inac-
tivation of asparaginase and facilitates the timely switch to
alternative asparaginases.17,18 How much asparaginase is
needed for each subtype defined byMRD or genetics remains
to be elucidated.19 The optimal length of ALL therapy is about
2-2.5 years for both boys and girls.20 Although 1-year total
therapy worsens the overall outcome, half of the patients are
long-term survivors with this shorter therapy and limited

maintenance duration,21 but it is unclear how to recognize
who will be cured with shorter therapy in advance.21 Gen-
otyping of the host to adapt chemotherapy is currently
limited to the detection of TPMT andNUDT15 polymorphisms
that influence 6-mercaptopurine metabolism, with clinical
consequences.22

Intrathecal therapy is essential to prevent CNS relapses.23

The benefit of triple intrathecal therapy (methotrexate,
hydrocortisone, and cytarabine) versus intrathecal meth-
otrexate is debatable; the intensity of intrathecal versus
systemic therapy may influence the site of relapse.24,25

Cranial radiotherapy reduces the CNS relapse rate only in
children with CNS3 disease, but does not influence survival
even in this group.26 A recent report from the Children’s
Oncology Group shows that outcome in T-cell (T)-ALL is
worse with CNS3 status, even with cranial irradiation.27
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FIG 1. Outcome of Dutch children with ALL from 1972 to 2020. DCLSG, Dutch Childhood Leukemia Study Group;
DCOG, Dutch Childhood Oncology Group.
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TABLE 1. Outcome Data of the Major Childhood ALL Trials Reporting on Representative Cohorts of Patients With ALL Published After 2015

Protocol Enrollment Period Patients, No. Age, Years 5-Year CIR, % 5-Year EFS, % 5-Year Survival, % Reference Remark

AIEOP-BFM 2000 dexamethasone arm 2000-2006 1,853 1-17 11 84 90 Moricke 2016151

AIEOP-BFM 2000 prednisone arm 2000-2006 1,867 1-17 16 81 91 Moricke 2016151

SJCRH total 16 2000-2017 598 0-18 7 88 94 Jeha et al2

COALL-07-03 2003-2010 773 1-18 13 84 91 Schramm 20199 10-year outcome data

UKALL 2003 2003-2011 3,126 1-24 11 85 90 Moorman et al3 10-year outcome data

DFCI-05-001 2005-2011 678 1-18 — 87 93 Vrooman et al5

COG 2006-2010 8,090 0-29.9 — — 91.5 Raetz et al6

NOPHO-2008 2008-2014 1,509 1-45 10 85 91 Toft et al7

Máxima/DCOG-11 2012-2020 778 1-18 8 89 94 Pieters et al8

Abbreviations: CIR, cumulative incidence of relapse; EFS, event-free survival.
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Flow cytometric detection of CNS leukemia is more reliable
than morphology and positivity is associated with inferior
outcome,28which is being tested in the ongoingALLTogether01
protocol. HSCT indications have been reduced by improve-
ments in chemotherapy and are currently T-ALL with induc-
tion failure,29 BCR::ABL1-positive ALL with a poor MRD
response, and subgroups of KMT2A-rearranged (KMT2A-R)
infantALL.30 Forhigh-riskALLsubtypes, includingKMT2A-R,31

hypodiploidy <44 chromosomes,32,33 and TCF3::HLF, its value is
unproven.

MRD

Monitoring early responses to chemotherapy by MRD sig-
nificantly improved the prediction of relapse and thereby
risk group stratification.MRD ismeasured byflow cytometry
using the leukemic immunophenotype or by PCR of clono-
typic Ig/TCR rearrangements or fusion genes and genomic
deletions.34 Next-generation sequencing–based MRD35,36 is
more sensitive and more specific. It has not yet been widely
implemented in clinical trials but may replace other tech-
nologies in the future. MRD-based stratification allows for a
reduction of treatment intensity, thereby improving the
quality of life for low-risk patients, while not jeopardizing
their high survival rate. Persistent MRD identifies a small
high-risk group who should be allocated to intensive che-
motherapy and HSCT37 or new precision medicine or im-
munotherapeutic options to increase survival. The latter
may have dual advantages since they also cause fewer side
effects.38

Successful examples of therapy reduction exist. In some
trials, MRD-based low-risk patients do not receive
corticosteroid/vincristine pulses, whereas medium-risk
patients do. MRD-guided reductions are possible such as
reduction of the intensification course and reduction of
cumulative anthracycline dose.8,39-42 The possibility of
therapy reductions confronts clinicians and patients/
parents with the dilemma of treating all low-risk pa-
tients with intensive therapy leading to the lowest relapse
risk but increased risk of side effects, versus deintensified
therapy for the majority of low-risk patients with better
quality of life but possibly a slightly higher relapse rate for a
few patients highly likely to be salvaged with rescue
therapy. Therapy reductions are mainly applied in good-
risk genetic subtypes, for example, ETV6::RUNX1, high
hyperdiploidy (51-67 chromosomes), and/or those with
negative end-of-induction MRD.43

SIDE EFFECTS

The most important acute side effects of chemotherapy
influencing quality of life are bacterial and fungal infections
caused by myelosuppression and the immunosuppressive
effect of glucocorticoids, vincristine-induced neuropathy,
methotrexate encephalopathy, pancreatitis,44 and intrace-
rebral venous thrombosis caused by asparaginase, and
osteonecrosis, myopathy, and behavioral problems caused

by glucocorticoids. Many side effects are reversible, but a
small percentage of patients with pancreatitis44 and about
60% of patients with symptomatic osteonecrosis45 experi-
ence long-term consequences. In patients receiving HSCT,
infertility and chronic graft-versus-host disease cause ad-
ditional serious toxicity. With current survival rates
of >90%, quality of life is receiving more attention, leading
to outcome indicators cocreated by professionals and sur-
vivors focused on toxicity-free survival.46,47

MOLECULAR GENETIC PROFILING

Genomic analyses have identified multiple subtypes of
B-progenitor (Fig 2) and T-lineage ALL, their drivers, and
cooperating genomic alterations, and showed that many
children have germline genomic variations that influence
leukemia susceptibility and treatment response. Constitu-
tional syndromes such as Down syndrome and ataxia tel-
angiectasia are associated with an increased risk of ALL.48

Genome-wide association studies identified multiple non-
coding polymorphisms influencing the risk of developing
ALL, commonly at loci encoding tumor suppressors or he-
matopoietic transcription factors (ARID5B, BAK1, CDKN2A/
CDKN2B, BMI1-PIP4K2A, CEBPE, ELK3, ERG, GATA3, IGF2BP1,
IKZF1 IKZF3,USP7, and LHPP). The risk associatedwith each is
subtle but combinatorial.49 Severalmay influence acquisition
of somatic driver alterations, such as germline GATA3 al-
terations and CRLF2 rearrangement in Ph-like ALL.50

Pathogenic germline coding variants have been described
in multiple genes in ALL, including TP53, PAX5, IKZF1, and
ETV6.51-53 These variants have been identified in both familial
ALL, which is rare, and sporadic cases with no known family
history, at a relatively high frequency (1%-2% of cases).
Several germline pathogenic variants show associationswith
ALL subtypes, such as TP53 and low hypodiploidy (30-39
chromosomes), and ETV6 with high-hyperdiploid ALL.
Germline IKZF1 variants also influence drug responsiveness
in ALL.54

Over 20 subtypes of B-ALL are now recognized, most of
which were unknown before genomic profiling as they are
not detectable by conventional cytogenetics55 (Figs 2 and 3).
Aneuploid B-ALL subtypes are high-hyperdiploid ALL
characterized by gains of at least five chromosomes, most
commonly 4, 10, 14, 17, 18, 21, and X, and favorable out-
come.56 Hypodiploid ALL, with multiple chromosomal
losses, has two subtypes associated with poor outcome:
near-haploid ALL with 25-29 chromosomes, and low-
hypodiploid ALL with 30-39 chromosomes.32,57 Low-
hypodiploid ALL is almost always associated with biallelic
TP53 alteration, including a germline variant in about half of
the pediatric cases; near-haploid ALL has a similar gene
expression profile and mutational spectrum (Ras pathway,
CREBBP) to hyperdiploid ALL, suggesting a common
origin.4,51,55 B-ALL with intrachromosomal amplification of
chromosome 21 (iAMP21) arises from breakage-fusion-
bridge cycles and chromothripsis of chromosome 21, and
rarely, constitutional alterations of chromosomes 15 or 21.58
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This subtype has been associated with poor prognosis,
ameliorated with more intensive treatment regimens.59

Chimeric fusion oncoproteins are a hallmark of B-ALL, and
commonly arise in utero, years before clinically manifest
leukemia, consistent with the requirement for additional
genomic alterations to promote leukemogenesis. Several
subtypes are defined by a single rearrangement, such as
ETV6::RUNX1, TCF3::PBX1, BCR::ABL1, and translocations in-
volving KMT2A.60 By contrast, several recently described
subtypes have multiple fusion partners converging on a
single gene: MEF2D-rearranged,61,62 NUTM1-rearranged,63

and ZNF384-rearranged ALL.64 NUTM1-rearranged ALL is
observed in infants without KMT2A-R.63 ZNF384 rear-
rangement is characterized by the expression of myeloid
antigens diagnosed as ALL or mixed-phenotype acute leu-
kemia that are otherwise biologically indistinguishable, and
prone to shift in immunophenotype during disease
progression64,65 or exposure to CD19-directed immuno-
therapy. Additional subtypes are defined by characteristic
alterations in specific genes (PAX5 P80R, PAX5alt with
heterogeneous PAX5 alterations, and IKZF1 N159Y).55,66

Rearrangement of DUX4 to immunoglobulin or other en-
hancers defines a subtype of favorable-risk ALL,67-69 albeit
with elevated levels of MRD early in therapy. Rare, but high-
risk cases have dual alterations that deregulate CDX2 and
encode UBTF::ATXN7L370. Ph-like (BCR::ABL1-like) ALL71,72

exhibits a transcriptomic signature similar to BCR::ABL1
ALL, and is the most genomically diverse form of ALL, with
rearrangements and mutations of at least 16 cytokine re-
ceptors and tyrosine kinases, most commonly deregulating

JAK-STAT and ABL1-class signaling pathways73 (Fig 4); this
subtype increases in incidence with age and is associated
with poor outcome.

Genomic subtypes are associated with relapse risk and
chemotherapy response,74 providing a rationale for com-
prehensive genomic analysis at diagnosis. Although inte-
grated whole-genome sequencing and transcriptome
sequencing provide the most detailed molecular portrait of
ALL, transcriptome sequencing provides an analysis of gene
expression, mutations, and chromosomal rearrangements,
and enables the identification of most risk-stratifying ge-
nomic alterations in ALL. Transcriptome sequencing also
identifies cases that phenocopy canonical subtypes with
similar gene expression but alternative genomic drivers (eg,
ETV6::RUNX1-like ALL).67,69,75 Notably, the time for patients
to be considered cured is 6 years after diagnosis, irrespective
of the prognosis of each genetic subtype.3 In combination
with MRD and cytogenetic abnormalities, copy-number
alterations (eg, the UKALL-CNA profile in the ALLTo-
gether01 protocol)38 are being incorporated into risk-
stratification algorithms.

Genomic alterations are less established in the management
of T-ALL, as this entity is less common, and more frequently
driven by noncoding, enhancer alterations that deregulate
T-lineage transcription factors and oncogenes that require
genome sequencing for identification.76 However, this land-
scape is changing, with recent studies comprehensively de-
fining the taxonomy of T-ALL and showing associations
between subtype, outcome, and treatment failure.77 Similarly,

KMT2A

KMT2A-like

Other

IKZF1 N159Y

MEF2D

NUTM1
Low hypodiploid

High hyperdiploid

Ph-likePh
CRLF2

non-Ph-like

PAX5 P80R
PAX5alt

iAMP21 Near haploid
Low hyperdiploid

CDX2/UBTF

DUX4

ZNF384-like

ZNF384

TCF3::PBX1

ETV6::RUNX1-like

ETV6::RUNX1

HLF

BCL2/MYC

FIG 2. Subtyping of B-ALL using whole-transcriptome sequencing. t-SNE depiction of childhood and adult
B-ALL adapted from Kimura et al.70 Subtypes are color-coded and labeled accordingly. t-SNE, t-weighted
stochastic neighbor embedding.
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acute leukemias of ambiguous lineage that exhibit either
minimal differentiation or immunophenotypic features of
multiple hematopoietic lineages (most commonly B and
myeloid, or T and myeloid) have been poorly characterized
from a genomic perspective. In addition to known asso-
ciations with KMT2A and BCR::ABL1, several new entities
have recently been identified that transcend immuno-
phenotypic criteria, including ZNF384-rearranged (either
B-ALL or B/myeloid) leukemia78 and BCL11B-rearranged
(early T-cell precursor [ETP] or T/myeloid) leukemia.79,80

PRECISION MEDICINE IN B-ALL

BCR::ABL1-rearranged (Philadelphia chromosome–positive,
Ph1) ALL was the first genetic subtype for which targeted
therapy became available. Several large collaborative studies
have shown that the addition of ABL tyrosine kinase in-
hibitors (TKI) to chemotherapy has improved outcome.81-83

Also, the need for HSCT in these patients has significantly
been reduced.83-85 Before the advent of TKI therapy, most
children with BCR::ABL1-positive ALL received HSCT; cur-
rently, only those with high MRD after two courses of
chemotherapy and TKI (5%-10%) are transplanted in first
remission. Imatinib and dasatinib are used because of more
safety data in pediatrics,86,87 whereas third-/fourth-gen-
eration TKIs such as ponatinib are commonly used in adults
because of the much higher prevalence of BCR::ABL1 and
ABL1-class Ph-like ALL in adults, and more data on TKI
safety. A randomized trial88 showed that dasatinib led to
better outcome than imatinib in childrenwithBCR::ABL1ALL,

but because of limited follow-up and the poor outcome
of imatinib-treated patients, this has not yet led to the
routine implementation of dasatinib.88 Very recently, highly
promising results were obtained with chemotherapy-free
treatment regimens in adult BCR::ABL1-rearranged ALL.
These protocols, consisting of a TKI (usually ponatinib) plus
several courses of blinatumomab and inotuzumab,89 showed
low toxicity and excellent early relapse-free survival rates,
raising the potential that adult BCR::ABL1-rearranged
ALL could be a favorable subtype, and that similarly fa-
vorable results may be observed in childhood BCR::ABL1-ALL
(Table 2).

Ph-like ALL is more common than BCR::ABL1 ALL in children
(approximately 10%-15% v approximately 2%-3%) but has
a similarly poor outcome without the use of TKIs.90 Both
have a very high incidence of IKZF1 deletions, which further
worsens their poor outcome.84,91 Rexinoids92 and FAK
inhibitors93 ameliorate the biologic effects of IKZF1 alter-
ations, but have not been tested clinically. The Máxima/
DCOG group observed improved outcomes by prolonging
therapy with a third year.8 Only one of eight BCR::ABL1-like
cases carry an ABL-class fusion (ABL1, ABL2, PDGFRB, CSF1R,
and very rare others) that can be targeted by the ABL TKIs.94

This led to the addition of TKIs to chemotherapy in small
cohorts with encouraging results,95 as well as for laro-
trectinib for NTRK3-rearranged Ph-like ALL96 (Fig 3). The
efficacy of TKIs in ABL1-class Ph-like ALL is being tested in
the COG/EsPhALL Ph1 ALL, ALLtogether1, and St Jude Total
Therapy 17 protocols.
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In BCR::ABL1-like cases with mutations activating JAK-STAT
signaling, approved JAK inhibitors such as ruxolitinib are
less consistently effective than ABL1 inhibitors in ABL1-class
cases.97 Ruxolitinib is being evaluated by the COG
(ClinicalTrials.gov identifier: NCT02723994), but outcome
data are not yet available.

Specific therapy protocols have been developed for KMT2A-R
ALL.98-100 Infants with lowMRD at the end of induction have a
better outcome when treated with ALL-like consolidation
(course 1B), and those with high MRD benefit from AML-like
consolidation therapy (ADE-MAE courses).101 KMT2A-R ALL
carries a specific gene expression profile including over-
expression of wild-type FLT3. Limited efficacy was
observed of a FLT3 inhibitor (FLT3i) as a single agent in infant
KMT2A-R ALL.102 A randomized study adding FLT3i to che-
motherapy showed no overall benefit, but suggested a
benefit in a small subset identified by inhibition of phos-
phorylated FLT3 or by ex vivo sensitivity to the compound.103

KMT2A-R ALL is mainly characterized by epigenetic abnor-
malities caused by the KMT2A fusion protein104 and shows
high sensitivity to demethylating agents and HDAC inhibitors
ex vivo.105 However, a clinical trial with azacytidine in infant

KMT2A-R ALL did not show promising results.106 Recently,
precision medicine therapies have focused on components of
the KMT2A protein complex such as DOT1L and menin. The
clinical effect of DOT1L inhibitors was disappointing, but
recent phase I/II trials with menin inhibitors showed
promising early results,107 leading to development ofmultiple
upcoming trials. Because of high BCL2 expression, venetoclax
has also been studied in KMT2A-R ALL.108 Venetoclax also
showed promising preclinical activity in TCF3::HLF rearranged
ALL108,109 and T-ALL (see below). Finally, because of the as-
sociation of low-hypodiploid ALL and TP53mutations, TP53 is
an attractive therapeutic target, but this has not yet led to
clinical trials.

PRECISION MEDICINE IN T-ALL

Precision medicine is more difficult in T-ALL.110 Nelarabine
is a DNA-terminating nucleoside prodrug that is metabo-
lized into arabinosylguanine nucleotide triphosphate and
preferentially accumulates in T lymphoblasts.111 It was highly
active in early-phase trials for r/r T-ALL but was also as-
sociated with significant and often severe neurotoxicity.112

COG ALL0434 demonstrated that it could be added safely in
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newly diagnosed T-ALL/lymphoma (T-LLy) and improved
outcome modestly, with a notable impact on CNS
relapses.13,113 The COG also tested the proteasome inhibitor
bortezomib in T-ALL/T-LLy with complicated results but a
suggestion that bortezomib improved outcome in
T-lymphoblastic lymphoma.114 Preclinical data have shown
alterations in BCL2 signaling pathways in T-ALL, with the
ETP subset showing BCL2 dependence and remaining non-
ETP cases dependent on BCL-XL.115 These observations
prompted efforts to target these pathways with navitoclax
(BCL-XL) and/or venetoclax (BCL2). Promising results of an
early-phase clinical trial resulted in a trial of low-dose
navitoclax plus venetoclax in r/r pediatric B- and T-ALL
(ClinicalTrials.gov identifier: NCT05192889).116 Ex vivo drug
sensitivity studies showed that subsets of T-ALLs are very
sensitive to dasatinib, with LCK activation driving dasatinib
sensitivity associated with high BCL-XL and low BCL2
expression.108,117 These results raise the possibility of testing
subtype-specific targeted therapies in T-ALL (Table 2).

IMMUNOTHERAPY

Immunotherapy has revolutionized the landscape of B-ALL
therapy, showing very high remission rates in highly re-
fractory patients118 and significantly less acute toxicity than
intensive chemotherapy. Three approaches have become
mainstays of treatment for r/r ALL and are now being tested
in newly diagnosed patients (Table 2).

Blinatumomab is a bispecific T-cell engager genetically
engineered monoclonal antibody recognizing CD19,
expressed on the surface of essentially all B-ALLs, and CD3,
expressed on the surface of essentially all T cells. Dual binding
by blinatumomab brings cytotoxic T cells to CD191 B cells,
enabling cell killing. Because blinatumomabhas a short half-
life, it is administered by continuous infusion, typically for
28 days. The side-effect profile of blinatumomab is very
different from that of chemotherapy with little neutropenia
or mucositis, but some unique CNS toxicities, including
seizures and hallucinations, and occasional development of
cytokine release syndrome (CRS), usually in patients with
high disease burden. Blinatumomab was demonstrated to be
highly active in r/r adult and then pediatric B-ALL,119 leading
to testing in randomized trials for the first relapse of ALL in
North America and Europe. These showed that replacing one
to two cycles of intensive chemotherapy with blinatumomab
in children with high- and intermediate-risk relapsed ALL,
followed by HSCT, significantly improved outcomes with
this approach now considered to be standard of care.120,121

The COG also showed that replacement of one cycle of
intensive chemotherapy with blinatumomab and addition
of two cycles later in therapy improved outcome for chil-
dren with lower-risk first relapse of B-ALL, but this benefit
was limited to those with bone marrow relapse, whereas
those with isolated CNS relapse fared poorly.122 A very re-
cent pilot study in KMT2A-R infant ALL showed that ad-
dition of blinatumomab to the Interfant-06 backbone

TABLE 2. Precision Medicine and Immunotherapy

Target Subtype of ALL Precision Medicine/Immunotherapy

BCR::ABL1 Mainly B-lineage ALL ABL TKI such as imatinib, dasatinib, and ponatinib

ABL-class abnormalities: ABL1, ABL2, PDGFRB,
CSF1R

Ph-like ALL with ABL-class abnormalities ABL TKI such as imatinib, dasatinib, and ponatinib

NTRK3 rearrangement Ph-like ALL Larotrectinib

JAK-STAT signaling Ph-like ALL JAK inhibitors such as ruxolitinib

FLT3 KMT2A-rearranged ALL FLT3 inhibitors such as lestaurtinib and midostaurin

Epigenetic abnormalities KMT2A-rearranged ALL Demethylating agents such as azacytidine; HDAC
inhibitors such as panobinostat

Components of the aberrant KMT2A complex such
as menin and DOT1L

KMT2A-rearranged ALL Menin inhibitors, DOT1L inhibitors

BCL2 KMT2A-rearranged ALL, TCF3::HLF-rearranged
ALL, immature T-ALL

Venetoclax

BCL-XL T-ALL Navitoclax

Purine nucleoside pathway KMT2A rearranged ALL, T-ALL Clofarabine in KMT2A-rearranged ALL, nelarabine in
T-ALL

Proteasome T-ALL Proteasome inhibitor such as bortezomib

LCK Mature T-ALL Dasatinib

CD19 B-lineage ALL Blinatumomab

CD19 B-lineage ALL CD19-directed CAR T cells

CD22 B-lineage ALL Inotuzumab

CD22 B-lineage ALL CD22-directed CAR T cells

CD7 T-ALL CD7-directed CAR T cells

CD38 T-ALL Daratumumab

Abbreviations: CAR, chimeric antigen receptor; TKI, tyrosine kinase inhibitors.
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significantly improved outcome.123 Multiple cooperative
groups are now testing blinatumomab in newly diagnosed
ALL, with some adding the agent to backbone therapy and
others using it to replace components of chemotherapy.

Inotuzumab is an ADC composed of amonoclonal antibody
recognizing CD22, expressed on most B-ALLs, and the
chemotherapy agent calicheamicin. After binding to
surface CD22, inotuzumab is internalized and then cal-
icheamicin is released into the cell by the lysozyme. The
landmark INO-VATE trial showed that inotuzumab was
superior to intensive chemotherapy for adult r/r ALL.124

Phase I and II trials conducted by the COG and European
groups showed excellent activity in pediatric r/r ALL, with
remission rates over 50%, allowing many patients to
proceed to HSCT.125-127 Inotuzumab is administered with
once a week intravenous 1-hour infusions for 3 weeks, and
is well tolerated in heavily pretreated patients. One
challenge is the potential for hepatic toxicity if given
relatively close to previous HSCT or proximate to subse-
quent HSCT.Most pediatric trials have used inotuzumab as
a single agent, whereas current trials are combining it with
chemotherapy generally to replace other components
such as anthracyclines. Several groups (COG and ALLto-
gether) are now testing inotuzumab in patients with newly
diagnosed ALL.

The progress with antibody-based therapy is less in T-ALL.
The anti-CD38 monoclonal antibody daratumumab has
shown good efficacy in preclinical models of T-ALL and in
small clinical series of relapsed T-ALL.128,129 Except for in-
fusion reactions, no significant side effects have been re-
ported. Studies on newly diagnosed T-ALL are planned.

Chimeric antigen receptor (CAR) T-cell therapy has re-
cently entered the mainstream. Development of highly
active (third-generation) CAR T cells required genetically
engineered constructs with an extracellular ScFv antibody
fragment that recognizes a cellular target such as CD19
with intracellular CD3zeta and costimulatory domains
(41BB or CD137) or CD28 that mediate cell expansion,
persistence and engagement, and cytotoxicity.130 CD19-
directed CAR T cells were shown to be highly active in
pediatric r/r ALL, with complete remission (CR) rates over
90% in heavily pretreated patients, most of whom failed
three or more lines of therapy and had relapsed after
HSCT.131-134 When treated with high disease burden, there is
a high risk of CRS, including severe fluid overload, hyp-
oxemia, and hypotension. Patients with severe CRS had
very high interleukin-6 levels, and tocilizumab, a mono-
clonal antibody that inhibits binding of IL-6 to the IL-6
receptor, was highly effective in treating CRS,135 which was
critical to the clinical development of CAR T cells.131 The
CD19 CAR T-cell agent tisagenlecleucel was US Food and
Drug Administration approved in 2017 for children and
young adults with r/r ALL on the basis of the worldwide
ELIANA trial.132 Subsequent real-world experience with
tisagenlecleucel in r/r pediatric ALL showed very similar

results to this pivotal trial with CR rates about 85% (almost
all MRD-negative), event-free survival of 50%-55% at
12 months, and overall survival of about 75% at 12 months,
all dramatically better than any other therapy.136 CAR
T-cell therapy is also effective in CNS leukemia137,138 and
other extramedullary sites,139 and its efficacy was shown in
high-risk leukemias including infant KMT2A-R ALL,140,141

although perhaps less in ALL with TP53 aberrations. CAR
T-cell therapy appears curative by itself in some cases,
with the longest-responding patient now 11 years post-
infusion without subsequent therapy and dozens of pa-
tients in CR 51 years. However, about 50% of patients
relapse with either CD191 disease (loss of CAR T-cell
persistence or activity) or CD19-negative disease (anti-
gen escape).134 Several factors predict the lack of response
and/or relapse142-144: high disease burden, loss of MRD
response, early (within approximately 6 months) loss of
B-cell depletion, and low plasma levels of fludarabine as
part of the preinfusion lymphodepletion schedule.142-145

Loss of B-cell aplasia is a surrogate marker of CAR ac-
tivity since CD19 CAR T cells also kill normal B cells. A
critical question is whether CAR T cells should be used as a
definitive therapy or as a bridge to HSCT.146 The nature of
the CAR costimulatory domain (41BB v CD28) influences
persistence, and this may influence the decision for de-
finitive versus bridge therapy.

CAR T cells directed against CD22 have also been tested,147

generally showing high activity but less persistence than
CD19-CARs, and there is great interest in testing dual tar-
geting of CD19 and CD22, either with bicistronic CAR con-
structs allowing CAR T cells to recognize both proteins, or
with mixtures of individual CD19- and CD22-targeted
CARs.148

As there are no cell surface markers distinguishing normal
andmalignant T cells, the development of CART cells against
T-ALL has the risk of CAR T-cell fratricide. However, several
strategies to overcome this risk have been developed, and the
first successful small studies with CAR T cells directed
against CD7 have been reported.149,150

Given the impressive activity in r/r ALL, there is great in-
terest in testing CAR T-cell therapy in earlier phases of
disease such as high-risk first relapse or very high-risk
newly diagnosed ALL.

In conclusion, in the past two decades, the use of MRD
significantly improved stratification with subsequent
treatment reductions or intensifications that improved
outcome. More recently, molecular genetic profiling led to
the discovery of many new genetic subclasses, which has
increased our understanding of the biological basis of ALL,
improved risk classification, and enabled refinement of
precision medicine regimens. Very recently, immunother-
apeutic approaches, including bispecific antibodies, ADC,
and cellular therapies, led to more effective and less-toxic
therapies replacing intensive chemotherapy courses and
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HSCT in relapsed ALL and are now being tested in newly
diagnosed patients.

It has taken 50-60 years to increase the cure rate in
childhood ALL from 0% to 90% by stepwise improvements
in chemotherapy. The developments described herein have
been developed over the past 10-15 years and will very likely
direct efforts to cure those children with ALL who are not

cured today, and improve the quality of life for survivors who
should have decades of life ahead. The results discussed here
are limited to countries that have next-generation se-
quencing assays and targeted treatment options at their
disposal. Achieving cure that is truly universal will require
development of cost-effective mechanisms to make these
new technologies and therapies available to children with
ALL worldwide.
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1Princess Máxima Center for Pediatric Oncology, Utrecht, the
Netherlands
2Department of Pathology and Hematological Malignancies Program,
Comprehensive Cancer Center, St Jude Children’s Research Hospital,
Memphis, TN
3Division of Oncology, Center for Childhood Cancer Research, Children’s
Hospital of Philadelphia, Philadelphia, PA

CORRESPONDING AUTHOR

Rob Pieters, MD, PhD, MSc, PrincessMáxima Center, Heidelberglaan 25,
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