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ABSTRACT
Histone locus bodies (HLBs) are biomolecular condensates that assemble at replication-dependent 
(RD) histone genes in animal cells. These genes produce unique mRNAs that are not polyadeny-
lated and instead end in a conserved 3’ stem loop critical for coordinated production of histone 
proteins during S phase of the cell cycle. Several evolutionarily conserved factors necessary for 
synthesis of RD histone mRNAs concentrate only in the HLB. Moreover, because HLBs are present 
throughout the cell cycle even though RD histone genes are only expressed during S phase, 
changes in HLB composition during cell cycle progression drive much of the cell cycle regulation 
of RD histone gene expression. Thus, HLBs provide a powerful opportunity to determine the 
cause-and-effect relationships between nuclear body formation and cell cycle regulated gene 
expression. In this review, we focus on progress during the last five years that has advanced our 
understanding of HLB biology.
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Composition and function of histone locus 
bodies

RD histone genes do not contain introns, and thus 
the only pre-mRNA processing step necessary to 
produce a mature RD histone mRNA is cleavage of 
the pre-mRNA 4–5 nucleotides downstream of the 
3’ stem loop [1–4]. Like cleavage/polyadenylation, 
this cleavage reaction occurs between two cis ele-
ments in the pre-mRNA, the stem loop, which 
binds stem loop binding protein (SLBP), and 
a sequence (called the histone downstream ele-
ment or HDE) 3’ of the stem loop that base pairs 
with the 5’ end of U7 snRNA of the U7 snRNP 
particle (Figure 1). Because the U7 snRNP con-
centrates only in the HLB, the HLB was originally 
identified and distinguished from Cajal Bodies 
(CBs) by detection of the U7 snRNP-specific pro-
teins Lsm10 and Lsm11 in Drosophila tissues [5]. 
The HLB now is primarily defined by a large, 
mostly unstructured Cyclin E/Cdk2 substrate pro-
tein that in Drosophila is called Mxc and in 

humans is called NPAT, which is found at the 
promoters of all human RD histone genes [6–9]. 
NPAT/Mxc concentrates only in HLBs and is 
essential for HLB assembly and RD histone gene 
expression [8,10,11]. The C terminus of NPAT 
binds directly to the C terminus of the essential 
pre-mRNA processing factor FLASH [12], which 
like NPAT is required for HLB assembly [13,14]. 
Similarly, the C terminal region of Mxc interacts 
with the C terminal region of Drosophila FLASH, 
although the specific determinants of this interac-
tion are slightly different than in humans [15]. 
NPAT/Mxc and FLASH initiate the HLB assembly 
pathway because in their absence no other HLB 
factors are recruited to and concentrated at RD 
histone genes, whereas the absence of other factors 
(e.g. U7 snRNP) does not affect the ability of 
NPAT/Mxc and FLASH to form an HLB 
[8,13,16,17]. The molecular details of this assembly 
pathway remain incompletely understood, 
although a critical step is likely NPAT/Mxc 
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oligomerization, as point mutations in the 
N-terminal LisH domain of Mxc that prevent 
Mxc self-interaction abolish HLB assembly and 
RD histone gene expression in vivo [16]. The 
Coilin protein also uses N-terminal domain multi-
merization to drive CB assembly [18], suggesting 
common molecular strategies underlie nuclear 
body formation. Drosophila embryonic HLBs 
demonstrate several hallmarks of liquid droplets, 
suggesting that phase separation, perhaps resulting 
from multivalent interactions driven by Mxc mul-
timerization, also contributes to HLB assem-
bly [19].

How NPAT and Mxc recognize RD histone 
genes is not understood. Neither protein has 
sequence-specific DNA binding activity, and thus 
may rely on other proteins to become located to 
RD histone loci. In mammalian cells, the H4-gene- 
specific transcription factor HiNF-P binds NPAT 
[20]. However, HiNF-P is not required for 

expression of RD histone genes other than H4 or 
for HLB formation [21], suggesting that other 
factors recruit NPAT to the other RD histone 
genes. In addition, 3D genome mapping 
approaches revealed that NPAT but not HiNF-P 
binds to a putative regulatory sequence found in 
association with the human chromosome 6 histone 
gene cluster [22]. Thus, NPAT can interact with 
the genome independently of HiNF-P, suggesting 
perhaps that it interacts with other sequence spe-
cific DNA binding proteins. In Drosophila, 
a possible candidate for a protein that assists 
Mxc in recognizing RD histone genes and initiat-
ing HLB assembly is the zinc finger protein 
CLAMP [23]. CLAMP is enriched in the HLB 
and binds a GAGA repeat element between the 
divergently transcribed H3-H4 promoters [23], a  
~300 bp region that drives activation of all five RD 
histone genes [24]. Depletion of CLAMP reduces 
both accessibility of chromatin at the Drosophila 

Figure 1. Model of HLB assembly and function. HLBs are primarily organized by NPAT/Mxc and FLASH, which bind to the C terminus 
of NPAT/Mxc. HLBs in S phase (left) are larger than HLBs in other phases of the cell cycle (right), likely because Cyclin E/Cdk2 
phosphorylation of NPAT/Mxc induces HLB reorganization and/or because mRNA synthesis via transcription and pre-mRNA 
processing is occurring within the HLB. Whereas some RD histone pre-mRNA processing factors like U7 snRNP and FLASH are 
constitutive residents of the HLB, other critical factors like the HCC are recruited only when histone genes are active. The assembly of 
the active cleavage complex (left) may utilize a pool of FLASH (and perhaps other factors) that is distinct from the pool of FLASH that 
binds to NPAT/Mxc and organizes the HLB. RNA pol II is enriched in the HLB, including in HLBs that are not actively synthesizing RD 
histone mRNA (J. Kemp and R. Duronio, unpublished). Whether concentrating RNA pol II in the HLB is functionally important and 
whether all the RNA pol II in the HLB is engaged in transcription during S phase are interesting open questions. Negative regulators 
of RD histone transcription like Drosophila Mute (GON4L/YARP in humans) are found concentrated only in the HLB, and likely 
modulate histone gene expression during the cell cycle in coordination with Cyclin E/Cdk2 activity. Note that the gene cluster at the 
top of the diagram is based on the arrangement of RD histone genes in Drosophila melanogaster, but conceptually applies to other 
RD histone gene clusters, which associate together in 3D space within the nucleus. Image created with BioRender.com.
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RD histone locus and RD histone gene expression 
[23]. However, CLAMP binds to many other 
GAGA repeats throughout the genome, particu-
larly those on the X chromosome necessary for 
sex chromosome dosage compensation [25], indi-
cating that other factors modulate where CLAMP 
interacts with the genome [26]. In addition, 
CLAMP can be recruited to the HLB when RD 
histone genes lack the GAGA repeat between the 
H3 and H4 promoters [27], suggesting that 
CLAMP recruitment to the HLB can be mediated 
by protein-protein interactions even without bind-
ing to DNA. Consequently, CLAMP binding DNA 
is not essential for HLB assembly [27]. A new 
bioinformatics study using publicly available 
ChIP seq data sets provides evidence for the loca-
lization of several DNA binding factors to the 
Drosophila histone locus [28]. Among these is the 
homeotic transcription factor Ubx, which is neces-
sary for maintaining cell identity at specific posi-
tions along the anterior/posterior body axis during 
development. This observation suggests possible 
cell-type-specific coordination between develop-
mental signaling and cell cycle control of RD his-
tone gene expression. This new list of factors 
expands the number of potential HLB components 
and regulators of histone mRNA synthesis, but 
experimental evidence is needed to determine 
their potential roles. Thus, how the key HLB 
assembly factor NPAT/Mxc becomes associated 
with RD histone genes remains an interesting 
open question.

From in vitro biochemical experiments, we 
know a great deal about the molecular mechan-
ism of RD histone mRNA 3’ end formation, 
including a striking cryo EM structure of RD 
histone pre-mRNA bound to the active site in 
CPSF73 of the cleavage complex [29]. The 
N-terminus of FLASH interacts with the Lsm11 
protein of U7 snRNP, forming a molecular sur-
face that recruits the Histone Cleavage Complex 
(HCC) (Figure 1) [30]. The HCC is identical to 
mCF, a subcomplex of CPSF containing the 
HEAT domain protein Symplekin, which serves 
as a scaffold for the CPSF100/CPSF73 nuclease 
that cleaves RD histone pre-mRNA between the 
stem loop and HDE and then degrades the 3’ 
RNA product via a concerted exonuclease reac-
tion [31]. Interestingly, Symplekin/CPSF100/ 

CPSF73 also is responsible for cleavage of all 
other mRNAs prior to polyadenylation [4]. 
Thus, one function of the HLB may be to 
exclude polyadenylation factors that do not par-
ticipate in the RD histone pre-mRNA cleavage 
reaction. A caveat to this model is that in the 
absence of SLBP, FLASH, or U7 snRNP, 
Drosophila RD histone pre-mRNAs are polyade-
nylated as directed by cryptic poly A signals 
downstream of each RD histone gene [32]. In 
mammalian cells lacking SLBP some RD histone 
mRNA also becomes polyadenylated [33–35], 
a situation that can lead to genomic instabil-
ity [36].

The RD histone pre-mRNA cleavage reaction 
has been reconstituted in vitro using 
a combination of recombinant U7 snRNP and 
a 200 amino acid N-terminal fragment of 
FLASH, with nuclear extract as a source of the 
HCC [37], providing an experimental platform 
for detailed studies of the cleavage reaction. 
Other biochemical studies have revealed addi-
tional molecular interactions that could govern 
HLB assembly or be modulated by the biophysical 
properties of the HLB. A particularly interesting 
example is provided by GON4L/YARP [38], the 
human homolog of the Drosophila Mute protein 
(encoded by the muscle wasted gene) which func-
tions as a repressor of RD histone gene expres-
sion [39]. GON4L/YARP and Mute bind directly 
to the C terminal region of NPAT and Mxc, 
respectively. Interestingly, GON4L/YARP binds 
to the same 31 amino acids at the very 
C terminus of NPAT that FLASH does. GON4L/ 
YARP and FLASH use similarly structured 
SANT/Myb domains containing a bundle of 
three alpha helices that each binds to NPAT in 
a slightly different orientation [40]. NMR struc-
tural studies indicate that these binding events are 
mutually exclusive, setting up an interesting pos-
sible scenario in vivo in which multiple different 
NPAT complexes with different functional roles 
reside with the HLB. Alternatively, perhaps at the 
end of S phase, a GON4L/YARP repressor com-
plex displaces the active HCC/U7 snRNP from 
the C terminus of NPAT by binding in place of 
FLASH, thereby terminating RD histone mRNA 
biosynthesis both by preventing 3’end formation 
and down regulating transcription.
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In addition to trans-acting factors, a key com-
ponent of HLB organization is the RD histone 
genes themselves. As noted above, our knowledge 
of the cis acting elements that drive HLB assembly 
is limited, but it is clear from work in Drosophila 
that transcriptionally active histone genes provide 
a ‘seed’ for HLB assembly and growth [19,24]. 
Recent work in mammalian cells applying high- 
throughput sequencing techniques that probe 3D 
genome organization has provided insight into the 
arrangement of RD histone genes within HLBs. 
Each histone protein is encoded by multiple 
genes in eukaryotic cells, and in metazoans, these 
gene copies are clustered. For instance, the human 
and mouse genomes contain two major RD his-
tone loci, each of which contain clusters of multi-
ple RD histone genes (totaling about a dozen for 
each histone) [41]. These loci independently form 
an HLB, resulting in two large and two small HLB 
foci that are readily detected by NPAT staining 
[10,11,13,42]. At the human chromosome 6 
locus, three sub-clusters of histone genes that are 
interrupted along the length of the chromosome 
by non-histone genes are located closely together 
in 3D space, as revealed by HiC and RD-SPRITE 
analysis [7,22,43]. A fourth sequence within the 
cluster that lacks RD histone genes but binds 
NPAT is also closely associated with the three 
histone gene sub clusters in 3D space and may 
act as a regulatory element [22]. Thus, one possi-
bility is that oligomerization of NPAT bound at 
the promoters of each of these histone genes drives 
the aggregation of each of these genomic regions 
into one biomolecular condensate, perhaps via 
liquid–liquid phase separation.

The situation is a bit different in Drosophila 
melanogaster, where ~100 copies of a 5 kb gene 
cluster containing each of the RD histone genes 
(Figure 1) are organized into a ~0.5 Mb tandem 
array at a single locus on chromosome 2 [44]. 
Homologous chromosomes pair in Drosophila 
melanogaster, thus most diploid cells typically 
have one HLB because the homologous HLBs 
fuse into a single HLB when the chromosome 2s 
pair with one another [19]. In early embryonic 
development prior to homologous chromosome 
pairing, two HLBs are readily detected [19]. 
Interestingly, other fly species like D. virilis natu-
rally contain two histone gene clusters like humans 

[23], each of which can form an HLB that is 
independently active in histone mRNA transcrip-
tion [45]. The association of RD histone genes at 
different locations in the genome into a single 
HLB may provide a means of coordinating expres-
sion of the full complement of histone genes 
located a different genomic loci to achieve the 
correct level and stoichiometric amounts needed 
for proper genome assembly during S phase of the 
cell cycle [27,45].

Regulation of histone locus body formation

The beginning of Drosophila embryogenesis pro-
vides an excellent opportunity to analyze the de 
novo appearance of HLBs during animal develop-
ment. The initial stages of Drosophila embryogen-
esis are driven by gene products deposited into the 
egg by the mother and consist of 13 rapid nuclear 
division cycles that occur in a syncytium and lack 
G1 and G2 phases. Zygotic transcription is not 
required for embryonic development until the 
14th cycle when the cellular blastoderm forms 
and most maternal mRNAs are destroyed. 
Maternally provided gene products include RD 
histone mRNA and protein [46], which in flies 
[47] as well as zebrafish [48] require SLBP func-
tion for deposition into the egg and for normal 
progression through the early embryonic cycles. In 
addition, the amount of maternal histone influ-
ences the timing of onset of zygotic transcription 
in Drosophila embryos [49].

Although zygotic genome function in 
Drosophila is not required until nuclear cycle 14, 
there is a wave of zygotic transcription that begins 
earlier. This wave includes the initiation of zygotic 
RD histone gene expression precisely in nuclear 
cycle 11, which is also when HLBs are first 
observed [8,16,50]. A combination of quantitative 
live cell imaging and mathematical modeling 
revealed interesting properties of these newly 
formed HLBs during the nuclear cycles. The 
HLBs are disassembled during each mitosis and 
then appear and grow during each interphase 
immediately after the completion of mitosis [19]. 
HLB assembly can be modeled as a phase- 
separation processes driven by a single component 
(i.e. Mxc) in which HLB assembly is seeded by 
active histone genes and final HLB size is 
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determined by the number of active histone genes, 
or the seed size [19]. HLB growth in the syncytial 
Drosophila embryo is modulated by Cyclin E/ 
Cdk2, which acts to elevate the nuclear concentra-
tion of Mxc likely via direct phosphorylation of 
Mxc. Reducing Cyclin E/Cdk2 activity results in 
a failure of normal RD histone pre-mRNA proces-
sing, suggesting a link between HLB size and/or 
organization and efficient mRNA biosynthesis in 
Drosophila. Human HLBs also increase in size as 
cells enter S phase [13], an observation that also 
suggests HLB size increases the efficiency of RD 
histone mRNA production (Figure 1).

The concomitant appearance of HLBs and RD 
histone transcription in early fly embryos suggests 
that the two events are coupled, although whether 
nucleation of Mxc triggers RD histone gene tran-
scription or vice versa remains unclear. 
Nevertheless, several experiments clearly show 
that transcription of RD histone genes is necessary 
for the growth of HLBs to their full size: blocking 
transcription either with alpha amanitin or geneti-
cally results in very small foci of Mxc [19,24]. 
Moreover, the presence of these small foci indi-
cates that Mxc can locate to RD histone genes in 
the absence of transcription. The mechanisms by 
which RD transcription promotes HLB growth are 
not clear, but an interesting possibility is raised by 
the observation that the Cyclin L/Cdk11 complex 
acts to phosphorylate Ser 2 of the RNA pol II tail 
specifically at RD histone genes in human cells 
[33]. Cyclin L/Cdk11 is enriched near the 3’ end 
of RD histone genes and functions to promote 
RNA pol II elongation and the coupling of tran-
scription to 3’ end processing. Cyclin L/Cdk11 also 
is required for accumulation of FLASH, which it 
binds to and phosphorylates. Thus, perhaps the 
action of Cdk11 on transcribed histone genes trig-
gers the phosphorylation and retention of FLASH 
in the HLB, promoting HLB growth.

A recent striking observation of HLBs is that 
they accumulate large amounts of RNA polymer-
ase II, so much so that in Drosophila the 1 micron 
diameter HLB can readily be distinguished simply 
by staining for RNA pol II [15, 51–54] (Figure 2). 
Interestingly, recruitment of RNA pol II to 
embryonic HLBs in Drosophila occurs indepen-
dently of Zelda [52,55], a Zn finger domain pio-
neering transcription factor necessary for the 

initiation of zygotic transcription of much of the 
rest of the genes in the fly genome [56]. Thus, the 
activation of transcription of Drosophila RD his-
tone genes in the early embryo occurs through 
a mechanism that is distinct from other RNA pol 
II transcribed genes [55]. RNA pol II condensates 
have also been reported to associate with HLBs in 
human cells using live cell imaging approaches 
[57]. Whether all the RNA pol II present in 
HLBs is actively engaged in transcription is 
unclear, but one possibility is that the high con-
centration of RNA pol II in the HLB helps trigger 
rapid activation of RD histone gene expression, 
particularly in the fast G1-less cycles of early fly 
development where S phase occurs immediately 
after the completion of mitosis.

Other factors involved in mRNA synthesis can 
be enriched in the HLB, including Drosophila 
Prp40, which is best known for participating in 
spliceosome assembly [58], as well as subunits of 
the human Mediator complex, which promotes 
transcription [59]. Prp40 is needed for maximal 
histone gene expression but is not required for RD 
histone pre-mRNA processing [60]. In some trans-
formed human cell types, HLBs are sometimes 
found in association with CBs, and this association 
is reduced upon depletion of Mediator subunits 
which localize to the HLB/CB interface [59]. 
Because Lsm11 of the U7 snRNP is also enriched 
at this interface, Suzuki et al. proposed that CBs 
associating with HLBs may promote RD histone 
mRNA 3’ end processing [59]. However, not all 
HLBs associate with CBs and prior studies in flies 
and mice clearly indicate that RD histone gene 
expression and development do not require CBs 
[61,62]. Nevertheless, these types of cell biological 
observations suggest that the high rate of histone 
mRNA biosynthesis that occurs during S phase 
requires high local concentration of factors 
involved in RNA biosynthesis and/or metabolism. 
Evidence for this idea came from genetic analyses 
in Drosophila, indicating that efficient RD histone 
3’ end formation requires FLASH to be enriched 
in the HLB [63].

Like many other nuclear bodies, super- 
resolution imaging revealed that the spherical 
Drosophila HLB acquires a core/shell arrangement 
when histone genes are transcribed. Ser5 phos-
phorylated RNA pol II resides in the core together 
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with nascent histone mRNA and the N-terminus 
of Mxc [15] (Figure 2). The shell is enriched with 
the C-terminus of Mxc as well as the FLASH 
protein (Figure 1). This observation is somewhat 
counter-intuitive since the N-terminal region of 
FLASH is necessary for processing nascent RD 
histone mRNAs, which are enriched in the core 
domain. Small amounts of FLASH may dynami-
cally occupy the center of the HLB where mRNA 
synthesis is taking place (Figure 1), or processing 
of the transcripts might occur at the core/shell 
interface. Such a situation happens in the nucleo-
lus where rRNA transcription occurs at the 

interface between the fibrillar center (FC) and the 
dense fibrillar component (DFC), the two inner-
most phase separated compartments of the nucleo-
lus, with rRNA modification and processing steps 
taking place as the nascent RNA radiates into the 
DFC [64].

Cell cycle regulation of the HLB

Live imaging of human cells has provided new 
insight into how HLB regulation occurs in cano-
nical G1-S-G2-M cells cycles rather than the rapid, 

Figure 2. Active Drosophila HLBs display a core shell arrangement and are enriched in RNA polymerase II. High-resolution confocal 
images of Drosophila neuronal cells in the embryonic ventral nerve cord stained for Mxc (cyan), histone mRNA (magenta), and RNA 
polymerase II (yellow). The arrows indicate the HLB of two neuroblast stem cells in S phase as indicated by high level of cytoplasm 
histone mRNA (asterisks). Note the focus of nascent histone mRNA coincident with high amounts of RNA pol II that are both 
surrounded by a shell of Mxc protein. The arrowhead indicates an HLB in a quiescent cell that displays a more closed configuration 
of Mxc. Note that this HLB has RNA pol II, even though it is not in S phase, as indicated by the lack of RD histone mRNA. Scale bar =  
2 microns.
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specialized cycle of early development. RD histone 
mRNA accumulates to high levels during S phase, 
and this results from a combination of the activa-
tion of histone pre-mRNA processing and tran-
scription at the G1-S transition [65]. A critical step 
in activation of RD histone gene expression is 
phosphorylation of NPAT/Mxc by Cyclin E/Cdk2 
[8,66] (Figure 1). Careful single cell imaging of live 
human cells revealed that RD histone transcription 
begins to increase prior to S phase at the restric-
tion point, a time late in G1 when cells activate 
Cyclin E1/Cdk2 and commit to entering S phase 
[42]. Cyclin E1/Cdk2 phosphorylates NPAT [9], 
and this phosphorylation is required for transcrip-
tion of RD histone genes [66]. Accordingly, addi-
tion of a potent Cyclin E1/Cdk2 inhibitor rapidly 
shuts off histone transcription [13]. HLB assembly 
and growth, as measured by co-recruitment of 
NPAT and FLASH, are also initiated at the restric-
tion point, but do not require Cyclin E/Cdk2 
activity and HLBs are present even when RD his-
tone genes are not transcribed [13]. Thus, as in 
Drosophila, there is a concomitant activation of 
histone gene expression and HLB formation, sug-
gesting that the two are mechanistically coupled 
via Cyclin E/Cdk2 activity, and once fully formed, 
HLBs are maintained even after the cessation or 
inhibition of RD histone gene transcription. 
Interestingly, this mechanistic coupling can be 
bypassed in specialized developmental situations: 
late-stage Drosophila ovaries transcribe RD histone 
genes independently of S phase and Cyclin E/Cdk2 
activity to load maternal RD histone mRNAs into 
the developing oocyte [46]. Finally, the human cell 
analyses also revealed a second wave of NPAT 
phosphorylation in G2 that is controlled by 
another Cdk kinase (likely Cyclin A2/Cdk2 or 
Cyclin A2/Cdk1). The function of this phosphor-
ylation event is not known, but it could be 
involved in disassembling the HLB during mitosis.

Other signaling pathways may provide regula-
tory inputs into RD histone gene expression dur-
ing the cell cycle via HLBs. For instance, the cAMP 
signaling modulator EPAC1 forms biomolecular 
condensates within the nucleus after cAMP synth-
esis [67]. Some (but importantly not all) of these 
condensates associate closely with HLBs and the 
chromosome 6 histone locus in human cells. 
Moreover, ectopic expression of EPAC1 coupled 

with cAMP-analog stimulated formation of 
EPAC1 condensates results in activation of histone 
gene expression independently of cell cycle pro-
gression. The biological role of this histone stimu-
latory pathway is unknown, but this report 
highlights the possibility that organizing histone 
genes into the HLB may permit cells to modulate 
histone gene expression by accessing different sig-
naling modalities via biomolecular condensates 
that associate with HLBs.

HLBs and genomic instability and disease

Coordinated regulation of RD histone genes is 
critical to maintain genome stability and normal 
development. For instance, aberrant chromosome 
segregation occurs in the Drosophila male germ 
line when Mxc function is compromised [68], 
and slbp mutant zebrafish display defects in neu-
ronal development in part due to disruption of cell 
proliferation [69,70]. Consequently, increasing evi-
dence implicates mutations in HLB factors in 
human disease. NPAT mutations have been linked 
to both Hodgkin’s lymphoma and ataxia disorder 
in humans [71,72]. In Drosophila, depletion of 
Mxc causes hyperplasia in larval lymph glands, 
which are sites of hematopoiesis in flies, and serves 
as a model for human leukemia [73]. This pheno-
type is also observed when other Drosophila HLB 
proteins such as Spt6 and Mute are knocked down 
in larval lymph glands or when ectopic expression 
of polyadenylated RD histone mRNA is induced, 
suggesting correct regulation of RD histone 
mRNA biosynthesis is necessary for proper 
lymph gland formation. Mxc was also shown to 
be required for proper division and differentiation 
of neural lineages in larval and adult brains [74]. 
This study found similar results when histone gene 
expression was knocked down, further suggesting 
that proper transcription and processing of RD 
histone mRNA is required for normal cell cycle 
progression and maintenance of neural lineages.

Other work suggested that the human protein 
Fused in Sarcoma (FUS) interacts with the U7 
snRNP complex during S-phase and binds at RD 
histone gene promoters [75]. FUS has a wide range 
of roles in genome maintenance, RNA processing, 
and DNA recombination [76,77] and FUS gene 
mutations have been identified in familial 
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amyotrophic lateral sclerosis (ALS) patients 
[78,79]. Many of these mutations occur in the 
NLS of the FUS protein and lead to cytoplasmic 
aggregation of the typically nuclear protein. 
Interestingly, these cytoplasmic FUS aggregates 
sequester several RNA binding and processing 
proteins, most notably U7 snRNP [80]. Mutation 
or depletion of the FUS protein led to reductions 
of RD histone gene expression and an increase in 
misprocessed polyadenylated RD histone 
RNA [80].

The tumor suppressor p53 binding protein 1 
(53BP1) is responsible for maintaining genome 
integrity in part through its promotion of the non- 
homologous end joining (NHEJ) DNA repair 
pathway. However, recent work found a p53 inde-
pendent function for 53BP1 in maintaining geno-
mic integrity through the activation of histone 
gene expression [81]. 53BP1 in conjunction with 
ATP citrate lyase (ACLY) begin a cascade which 
leads to acetylation of histone H3 and H4 residues, 
specifically at the promoter of the SLBP gene, 
which induces the production of the SLBP protein 
necessary for RD histone mRNA biosynthesis. 
Knockout of either 53BP1 or ACLY results in 
downregulation of SLBP and in turn lowered 
expression of RD histone genes and an increase 
in misprocessed poly-adenylated RD histone 
mRNA [81]. The decrease in RD histone expres-
sion due to SLBP downregulation led to delays in 
cell cycle progression and increased chromosomal 
rearrangements. Increased double-strand breaks 
due to lowered histone expression were also 
observed upon knock-down of Drosophila Mxc in 
larval lymph glands [74].

The common finding of these recent publica-
tions connecting HLB proteins, diseases, and 
genomic integrity can be distilled down to 
reduced expression of the replication- 
dependent histone genes and the increased pre-
sence of poly-adenylated histone mRNA. While 
the individual HLB proteins affected vary across 
these observed disease states and genomic per-
turbations, it is clear the proper regulation and 
production of histones is key to maintaining 
normal cell proliferation, differentiation, and 
genomic integrity. As such, the possible involve-
ment of mutation or misexpression of HLB pro-
teins in human disease is perhaps unsurprising. 

As we begin to look more deeply at the role of 
histone production in human malignancies, 
more connections between the proteins that 
govern HLB formation and RD histone mRNA 
biosynthesis are likely to arise. Furthermore, 
given the high evolutionary conservation of 
HLB components involved in histone mRNA 
biosynthesis, work in experimentally tractable 
organisms like Drosophila and zebrafish should 
continue to reveal concepts and mechanisms 
that are broadly applicable to our understanding 
of the formation of biomolecular condensates in 
the nucleus and their role in the control of gene 
expression.
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