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ABSTRACT
Observational studies have shown that the gut microbiome is associated with frailty. However, 
whether these associations underlie causal effects remains unknown. Thus, this study aimed to 
assess the genetic correlation and causal relationships between the genetically predicted gut 
microbiome and frailty using linkage disequilibrium score regression (LDSC) and Mendelian 
Randomization (MR). Summary statistics for the gut microbiome were obtained from a genome- 
wide association study (GWAS) meta-analysis of the MiBioGen consortium (N = 18,340). Summary 
statistics for frailty were obtained from a GWAS meta-analysis, including the UK Biobank and 
TwinGene (N = 175,226). We used LDSC and MR analyses to estimate the genetic correlation and 
causality between the genetically predicted gut microbiome and frailty. Our findings indicate 
a suggestive genetic correlation between Christensenellaceae R-7 and frailty. Moreover, we found 
evidence for suggestive causal effects of twelve genus-level gut microbes on frailty using at least 
two MR methods. There was no evidence of horizontal pleiotropy or heterogeneity in the MR 
analysis. This study provides suggestive evidence for a potential genetic correlation and causal 
association between several genetically predicted gut microbes and frailty. More population-based 
observational studies and animal experiments are required to clarify this association and the 
underlying mechanisms.
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Introduction

Frailty is a clinical syndrome related to aging that 
mainly manifests as a state of nonspecific vulnerabil-
ity, reduced multisystem physiological reserves, and 
reduced resistance to stressors1. Frailty is a major 
public health challenge worldwide. A recent systema-
tic review and meta-analysis involving 62 countries 
and regions showed that the combined prevalence of 
physical frailty in older adults was 12%2. The preva-
lence of frailty has created a serious burden on older 
adults, families, and society. Several meta-analyses 
have shown that frailty is associated with an increased 
risk of all-cause mortality, cause-specific mortality 
from cardiovascular disease (CVD), cancer, and 
respiratory illness3–5. In addition, frailty also increases 
the cost of medical care for older people6, resulting in 
catastrophic health expenditure7. A recent simulation 
prediction study in Japan showed that by 2043, it is 

estimated that 97 billion US dollars will be spent on 
frail care8. However, there are no specific drugs to 
prevent and treat frailty, and non-drug interventions 
such as nutritional interventions are still one of the 
main means of preventing and treating frailty9.

Although the pathophysiological mechanisms of 
frailty have not been fully elucidated, current stu-
dies identify inflammation as one of the core 
mechanisms10,11. In recent years, a new hypothesis 
regarding the origin of inflammation in the diges-
tive tract, especially the imbalance of intestinal 
homeostasis, has attracted the attention of the aca-
demic community12. Previous studies have shown 
that intestinal ecological imbalance causes the 
transformation of gut microbiota to pathogenic 
bacteria and the reduction of microbial 
diversity13, thus increasing the permeability of the 
mucosal barrier and allowing bacteria and their 
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products to enter the human body through the 
intestine, leading to systemic inflammation14–16. 
Thus, it can be inferred that the gut microbiota 
may be related to frailty. Some observational stu-
dies have preliminarily explored this relationship. 
A cross-sectional study of older adults in South 
Korea found that the frailty score was positively 
correlated with the Bacteroides and negatively cor-
related with Prevotella 17. A recent systematic 
review and meta-analysis based on observational 
studies showed that the species richness index and 
species diversity index of gut microbiota in frail 
older adults were significantly lower than those in 
non-frail18. A systematic review involving 10 case- 
control and one cohort study found that, compared 
with healthy older people, frail older adults exhibit 
decreased gut microbiota diversity and lower abun-
dance of short chain fatty acids (SCFAs) 
producers19. Studies using mouse models also sug-
gested that changes associated with aging-related 
disorders and frailty in gut microbiota involved 
a decrease in SCFAs producers such as 
Akkermansia 20–23. SCFAs, as epigenetic modifiers 
of DNA and histone proteins, can participate in 
regulating age-related aging-associated chronic 
low-grade inflammation, muscle loss, glucose and 
lipid metabolism, and other pathophysiological 
process of frailty24,25.

However, it should be noted that owing to the 
limitation that observational research mentioned 
above cannot infer the causal relationship, it is still 
unknown whether there is a causal relationship 
between gut microbiota and frailty. Therefore, the 
exploration of the causal relationship between the 
two needs to be deepened. In recent years, statistical 
methods based on genome-wide association study 
(GWAS) have been proposed to estimate the corre-
lation and causality between traits. Linkage disequi-
librium score regression (LDSC) can evaluate the 
genetic correlation from GWAS summary statistics 
and is not biased by sample overlap26. Furthermore, 
Mendelian randomization (MR) has attracted wide 
attention in the medical field by inferring the causal 
relationship between variables by means of the 
instrumental variable of genetic variation. Because 
genotype precedes phenotype and alleles are ran-
domly assigned at conception, using genetic varia-
tion as an instrumental variable to estimate causality 
can avoid measurement bias, confounding bias, and 

reverse causality interference27. Therefore, this study 
assessed the genetic correlation and causal relation-
ships between the genetically predicted gut micro-
biome and frailty using LDSC and MR.

Materials and methods

Study design

We conducted LDSC and two-sample MR to esti-
mate the genetic correlation and causal relation-
ships between the genetically predicted gut 
microbiome and frailty. An overview of the study 
design is presented in Figure 1 (by Figdraw).

Data sources

Genetic variants associated with the gut microbiome 
were obtained from the largest GWAS meta-analysis 
published to date conducted by MiBioGen 
consortium28. This study coordinated 16S rRNA 
gene sequencing profiles and genotyping data from 
18,340 participants from 24 cohorts from the USA, 
Canada, Israel, South Korea, Germany, Denmark, 
the Netherlands, Belgium, Sweden, Finland, and 
the UK. Most of participants had European ancestry 
(N = 13,266). Among them, genus was the lowest 
taxonomic level, and 131 genera (including 12 
unknown genera) with a mean abundance higher 
than 1% were identified29.

We downloaded GWAS summary statistics for 
frailty via the GWAS catalog. This study included 
175,226 individuals of European descent (164,610 
UK Biobank individuals aged 60–70 years and 
10,616 Swedish TwinGene individuals aged 41–87  
years) and used the frailty index (FI) to measure 
frailty30. FI combines dozens of parameters, includ-
ing symptoms, signs, disease status, and disability, 
and reflects the accumulation of potential health 
deficits during the life course31.

Genetic IVs

We performed a series of selection criteria to filter 
eligible genetic IVs: (1) Since the number of eligible 
IVs less than the genome-wide significance threshold 
(p < 5 × 10−8) was extremely small, based on previous 
studies28,29,32,33, a relatively less stringent threshold (p  
< 1 × 10−5) was selected to capture potential sets of 
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variants likely to be enriched for association and 
obtain more comprehensive results34. (2) We con-
ducted a clumping procedure (R2 <0.001, window 
size = 10,000 kb) to exclude variants in strong linkage 
disequilibrium (LD) and ensure the independence of 
each SNP. (3) SNPs with a minor allele frequency of <  
0.01, ambiguous SNPs with non-concordant alleles, 
and palindromic SNPs were excluded. (4) We applied 
a PhenoScanner35,36 search to identify all known phe-
notypes associated with genetic IVs (p < 5 × 10−8). If 
the genetic IV is associated with any other known 
phenotype, it would be excluded from subsequent 
MR analysis. We also refer to the largest GWAS 
published to date, which included 20 dietary habits 
such as raw vegetable intake, fresh fruit intake, and 

oily fish intake et al37. We removed genetic IVs asso-
ciated with the aforementioned 20 dietary habits.

Statistical analysis

Genetic correlation analysis
We estimated the genetic correlation(rg) between 
gut microbiota and frailty using LDSC. GWAS 
summary statistics were filtered according to 
HapMap3 ref. Variants that were not SNPs (e.g., 
indels) and SNPs that were strand-ambiguous, 
repeated, and had a minor allele frequency (MAF) 
<0.01 were excluded. The LDSC examines the asso-
ciation between test statistics and linkage disequili-
brium to quantify the contribution of inflation 

Figure 1. Overview of study design.
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from a true polygenic signal or bias38. This method 
can evaluate genetic correlation from GWAS sum-
mary statistics and is not biased by sample 
overlap26. The z-scores of each variant from Trait 
1 are multiplied by the z-scores of each variant 
from Trait 2. The genetic covariance was estimated 
by regressing this product against the LD score39. 
The genetic covariance normalized by SNP- 
heritability represents the genetic correlation. p <  
0.0004 (0.05/119, after strict Bonferroni correction) 
was considered statistically significant. 0.0004 < p  
< 0.05 was considered to be suggestive evidence for 
potential genetic correlation.

MR analysis
Before the MR analysis, we calculated the F-statistic 
of the microbiome IVs to determine whether there 
was a weak IV bias40. An F-statistic <10 indicates 
a weak IV bias41. The formula for F-statistics is 
shown in Figure 2.

In this study, we explored the causal relationship 
between the gut microbiome and frailty using five 
methods: inverse variance weighted (IVW), MR- 
Egger, weighted median, weighted mode, and 
Robust Adjusted Profile Score (RAPS). The IVW 
method is considered the most accurate and 
powerful method for estimating causal effects 
when all selected SNPs are valid IVs42.

A consistent casual effect of the gut microbiome 
on frailty across several methods could be more 
reliable33,43. In our study, the causal effect with an 
adjusted p < 0.0004 (0.05/119, after strict 
Bonferroni correction) in at least two analysis 
methods was considered significant. In at least 
two analysis methods, 0.0004 < p < 0.05, were con-
sidered to be suggestive evidence for potential 
causality. We applied the MR-Egger method to 
detect horizontal pleiotropy44. If pleiotropy was 
present, the analysis yielded an intercept of p <  

0.05. The Cochran Q test was used to assess hetero-
geneity. Outlier variants and potential horizontal 
pleiotropy were assessed using the MR-PRESSO 
method45. We eliminated outliers based on this.

All statistical analyses were performed using the 
LDSC Version 1.0.1, “TwoSampleMR” package27 

and the “MR-PRESSO” package in R version 4.2.0.

Results

LDSC regression analysis

We performed LDSC regression analysis to evalu-
ate the genetic correlation between 119 genus-level 
gut microbes and frailty. Owing to limitations such 
as low heritability and sample size, some genera 
cannot be used for the above analysis. Finally, we 
obtained the estimations of genetic correlation 
between the 61 genera and frailty. As shown in 
Table 1 and Figure 3, LDSC showed a suggestive 
correlation between Christensenellaceae R-7 and 
frailty (rg= −0.212, p = 0.047). Detailed information 
regarding all genetic correlation results is listed in 
Table S1.

MR analysis

According to the criteria of screening, 1132 SNPs 
were selected as IVs for 119 genus-level gut 
microbes. The F statistics of all selected IVs were >  
10, indicating a small possibility of weak instrument 
bias. Details of all the selected IVs are shown in 
Table S2. 12 genus-level gut microbes were exam-
ined to have suggestive associations with frailty in at 
least two MR methods (Table 2 and Figures 4, 5, 6). 
Scatter plots displayed the associations of the SNP 
effects on 12 genus-level gut microbes against the 
SNP effects on frailty. The results of the estimates of 
causal associations between 119 genera and frailty 
are presented in Table S3.

Figure 2. The formula for F statistics. Note: *p < 0.05

Table 1. The genetic correlations between gut microbes and frailty.
Trait1 Trait2 rg SE P-Value

Christensenellaceae R-7 Frailty −0.212 0.107 0.047
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Sensitivity analysis

Through visual inspection of the scatter plot, there 
were potential outliers of the IVs of Eubacterium 
ruminantium, Akkermansia, Butyrivibrio, 
Defluviitaleaceae UCG-011, Ruminococcus 1, and 
Allisonella. However, according to the results of 
the radial MR-Egger intercept and MR-PRESSO 
global tests, there was no evidence of horizontal 
pleiotropy (Table S5). In addition, no significant 
heterogeneity was found in the Cochran’s Q test 
(Table S4).

Discussion

To the best of our knowledge, this is the first study to 
explore the genetic correlation and potential causal-
ity between the gut microbes and frailty by using 
GWAS summary statistics. Our findings indicate 
a suggestive genetic correlation between 

Christensenellaceae R-7 and frailty. Moreover, we 
found evidence for suggestive causal effects of twelve 
genus-level gut microbes on frailty in the MR ana-
lysis. These results will help us further explore the 
role of the gut microbes in aging and provide refer-
ences for the development of future interventions 
and potential therapeutic targets.

Eubacterium coprostanoligenes are known to be 
associated with cholesterol metabolism46. Early ani-
mal experiments found that feeding Eubacterium 
coprostanoligenes significantly decreased blood cho-
lesterol concentrations in mice47 and rabbits48. 
A recent intervention experiment in mice also found 
that supplementation with a mixture of Opuntia ficus- 
indica, Theobroma cacao, and Acheta domesticus 
increased the abundance of Eubacterium coprostano-
ligenes in obese mice, thereby reducing serum choles-
terol levels49. Meanwhile, a large-scale study based on 
the UK Biobank found that lower levels of total, low- 
density lipoprotein (LDL), and high-density 

Figure 3. Circular heat map of suggestive genetic correlation between gut microbes and frailty.
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Table 2. Significant MR results of causal association between gut microbes and frailty.
Exposure Method N.snp beta 95%CI p

Clostridium innocuum Inverse variance weighted 9 0.023 (0.001,0.044) 0.036
Clostridium innocuum RAPS 9 0.024 (0.001,0.046) 0.043
Eubacterium coprostanoligenes Weighted median 13 0.068 (0.020,0.116) 0.006
Eubacterium coprostanoligenes Inverse variance weighted 13 0.054 (0.019,0.090) 0.003
Eubacterium coprostanoligenes RAPS 13 0.055 (0.016,0.094) 0.005
Eubacterium ruminantium Inverse variance weighted 18 −0.027 (−0.051,-0.003) 0.028
Eubacterium ruminantium RAPS 18 −0.029 (−0.050,-0.008) 0.007
Akkermansia Inverse variance weighted 10 −0.042 (−0.074,-0.011) 0.009
Akkermansia RAPS 10 −0.044 (−0.078,-0.010) 0.011
Bifidobacterium Inverse variance weighted 11 0.044 (0.010,0.079) 0.012
Bifidobacterium RAPS 11 0.045 (0.009,0.082) 0.015
Butyrivibrio Inverse variance weighted 13 −0.019 (−0.035,-0.003) 0.020
Butyrivibrio RAPS 13 −0.020 (−0.037,-0.003) 0.021
Catenibacterium Inverse variance weighted 4 −0.031 (−0.058,-0.003) 0.030
Catenibacterium RAPS 4 −0.031 (−0.061,-0.001) 0.046
Christensenellaceae R-7 group Inverse variance weighted 7 −0.059 (−0.107,-0.011) 0.017
Christensenellaceae R-7 group RAPS 7 −0.061 (−0.113,-0.008) 0.023
Defluviitaleaceae UCG-011 Weighted median 8 −0.042 (−0.082,-0.002) 0.039
Defluviitaleaceae UCG-011 Inverse variance weighted 8 −0.034 (−0.063,-0.005) 0.024
Defluviitaleaceae UCG-011 RAPS 8 −0.035 (−0.067,-0.004) 0.027
Howardella Weighted median 9 0.027 (0.001,0.053) 0.047
Howardella Inverse variance weighted 9 0.024 (0.004,0.045) 0.019
Howardella RAPS 9 0.025 (0.003,0.046) 0.028
Ruminococcus 1 Weighted median 9 0.069 (0.016,0.122) 0.011
Ruminococcus 1 Inverse variance weighted 9 0.054 (0.013,0.096) 0.010
Ruminococcus 1 RAPS 9 0.057 (0.016,0.098) 0.007
Allisonella Inverse variance weighted 8 0.032 (0.007,0.057) 0.012
Allisonella RAPS 8 0.034 (0.013,0.055) 0.001

Figure 4. Suggestive causal effects of 12 genus-level gut microbes on frailty.
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lipoprotein (HDL) cholesterol were associated with 
a higher prevalence of frailty50. It can be deduced from 
this that the higher the abundance of Eubacterium 
coprostanoligenes, the lower cholesterol level may be, 
which may increase the risk of frailty. However, it is 
worth noting that there is not yet sufficient evidence 
to support the association between Eubacterium 
coprostanoligenes and lower blood cholesterol concen-
trations in humans. Considering the racial differences 
between humans and animals such as rabbits and 
mice, future studies need to further explore whether 
the positive effect of Eubacterium coprostanoligenes 
on frailty is mediated by cholesterol concentration in 
human subjects.

Allisonella was associated with decreased bone 
mineral density and bone metabolic indicators in 
postmenopausal women51. Additionally, it was 
more abundant in individuals with a high inflam-
matory index52. Interleukin 6 (IL-6) and tumor 
necrosis factor-alpha (TNF-α) have been 

recognized as the biomarkers of frailty53,54. The 
proinflammatory properties of Allisonella seem to 
be a possible explanation for its suggestive associa-
tion with frailty. In addition, this study found that 
a higher abundance of Bifidobacterium may 
increase the risk of frailty, similar to a previous 
observational study18. Bifidobacterium is consid-
ered to be a physiologically beneficial bacterium 
that can maintain intestinal homeostasis, regulate 
immune function, and reduce the growth of harm-
ful bacteria55. Surprisingly, an increased abundance 
of Bifidobacterium was found in both Parkinson’s 
patients56 and frail older people18. A previous case- 
control study also found a significantly higher pro-
portion of Bifidobacterium in patients with active 
inflammatory bowel than in healthy controls57. 
Given that direct evidence is currently lacking, 
further exploration of the relationship between 
Bifidobacterium and frailty is warranted in the 
future.

Figure 5. Scatter plots for causal effects of gut microbes on frailty. Note: (a) Clostridium innocuum-frailty (b) Eubacterium coprosta-
noligenes-frailty (c) Eubacterium ruminantium-frailty (d) Akkermansia-frailty (e) Bifidobacterium-frailty(f) Butyrivibrio-frailty
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Moreover, researchers analyzed the gut microbiota 
characterization of 29 subjects using Illumina MiSeq 
sequencing and found that the abundance of 
Howardella in the prediabetic group was significantly 
higher than that in healthy subjects58. Recent studies 
have pointed out that diabetes and concomitant 
impaired glucose homeostasis and dysregulated 
nutrient-sensing participate in pathways linked to 
the metabolism of aging, which may weaken physio-
logical reserves and lead to frailty59. This may be one 
of the potential mechanisms underlying the sugges-
tive association between Howardella and frailty. 
A study of 85 community-dwelling adults suggested 
that the module of co-occurring microbial genera 
composed of Ruminococcus, Eggerthela, and 
Coprobacillus was positively correlated with the frailty 
index, and the association remained robust after cor-
rection for body mass index (BMI), subject age, anti-
biotic use, and other confounding factors60. Another 

study reported that Ruminococcus 1 was associated 
with lower adjusted body weight in older men61. This 
further implies that the cooperation between 
Ruminococcus 1 and other virulent symbionts may 
be involved in chronic inflammation62 and the sub-
sequently acceleration of the aging process and frailty 
trajectory60.

In addition to the above five gut microbiota, we 
identified six genera that may be associated with 
a reduced risk of frailty. The first was Eubacterium 
ruminantium. A previous study involving 27 hos-
pitalized elderly patients showed that the abun-
dance of Eubacterium ruminantium in 
participants with frailty was lower than that in the 
non-frailty group63. The second was Akkermansia. 
The relative abundance of Akkermansia genus was 
higher in chronic kidney disease patients with 
sarcopenia64 and community-dwelling older adults 
with frailty65 but lower in cirrhotic patients with 

Figure 6. Scatter plots for causal effects of gut microbes on frailty. Note: (a) Catenibacterium-frailty (b) Christensenellaceae R-7 group- 
frailty (c) Defluviitaleaceae UCG-011-frailty (d) Howardella-frailty (e) Ruminococcus 1-frailty(f) Allisonella-frailty
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sarcopenia66. Although the results of few popula-
tion-based studies are inconsistent, MR results sug-
gested that Akkermansia may have a potential 
negative effect on frailty. These further supports 
previous animal experiments21,22. The third was 
Butyrivibrio. There is currently no observational 
study that has found an association between 
Butyrivibrio and frailty. However, a recent cohort 
study found that increased abundance of 
Butyrivibrio was associated with 1-year improve-
ment in insulin status among elderly 
Mediterranean population at high cardiovascular 
risk.67 In general, Eubacterium ruminantium 68,  

69Akkermansia 21 and Butyrivibrio 70 are believed 
to be new generation of “possibly helpful microbe” 
with the ability to produce SCFAs. SCFAs may 
prevent or alleviate frailty in the following ways: 
First, they regulate the differentiation, recruitment, 
and activation of immune cells, and reduce the 
secretion of inflammatory cytokines to play an 
anti-inflammatory role71,72. Second, they promote 
cognitive function by influencing the integrity of 
microglia and microglia-related activation involved 
in neuroinflammation, inducing the secretion of 
glucagon-like peptide 1 (GLP1) and peptide YY 
(PYY)73. Third, they regulate the synthesis and 
degradation of muscle proteins to maintain muscle 
quality and function74. In addition, they mediate 
the nuclear erythroid 2-related factor 2 (Nrf2)- 
related pathway, which can reduce oxidative and 
mitochondrial stress to delay aging75.

We found that a higher abundance of 
Catenibacterium may be associated with a lower 
risk of frailty. A recent study on patients with 
chronic liver diseases found that the abundance of 
Catenibacterium was lower in the sarcopenia 
group76. However, other studies have not obtained 
such significant results77. As a gram-positive anae-
robic bacteria78, Catenibacterium typically has 
proinflammatory property and is highly abundant 
in obesity and infectious diseases79,80. However, 
our study implied that frailty seems to be associated 
with a lower risk of frailty. This finding may need 
further validation in experimental studies, as only 
four instrumental variables may have implicit 
associations.

We also found a suggestive genetic correlation 
and causal association between a higher abun-
dance of Christensenellacea R-7 and a lower risk 

of frailty, which further corroborates the findings 
of previous observational studies. A cross- 
sectional study including 35 Italian community 
dwellers over 70 years old reported that the abun-
dance of Christensenellaceae in physical frailty and 
sarcopenia (PF&S) group was significantly lower 
than non-PF&S group81. It seems to be gradually 
being identified as a potential biomarker of long-
evity in studies on the characteristics of the gut 
microbiome from centenarians82,83. Age-related 
adipose tissue dysfunction can lead to the infiltra-
tion of immune cells, secretion of proinflamma-
tory cytokines and chemokines, and increased 
senescence-associated secretory phenotype84. 
Chronic low-grade inflammation, insulin resis-
tance, metabolic disturbances, and redistribution 
of adipose tissue caused by the above pathophy-
siological changes are considered core processes 
of frailty85,86. As a butyrate-producing bacterium, 
Christensenellaceae R-7 is associated with lower 
insulin resistance87, reduced visceral adipose tis-
sue accumulation, immune regulation, and 
improved metabolic health88. This appears to be 
the underlying mechanism of its suggestive causal 
effect on frailty.

Finally, a higher abundance of Defluviitaleaceae 
UCG-011 may be associated with a lower risk of 
frailty. A previous study found that, after dietary 
intervention in mice with cognitive impairment 
induced by a high-fat diet, the abundance of 
Defluviitaleaceae UCG-011 increased89. After her-
bal interventions in mice with depression and cog-
nitive decline induced by chronic mild stress, the 
abundance of Defluviitaleaceae UCG-011 also 
increased90. This implies that Defluviitaleaceae 
UCG-011 may participate in the protection of cog-
nitive function as a component of the gut-brain 
axis.

However, this study has some limitations. 
First, the gut microbiome may be influenced 
by demographic factors, diet, or drugs et al. 
Most of them have heterogeneity, inter- 
individual variability, and low heritability 
(representing the variance explained by genet-
ics), which decreases the statistical efficacy and 
robustness of the results. Second, although most 
individuals in the GWAS meta-analysis of the 
gut microbiome were of European descent, there 
was still the possibility of interference by a small 
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number of participants from other races, which 
may cause minimal bias and affect the univers-
ality of the results. Moreover, to obtain more 
comprehensive results and conduct horizontal 
pleiotropy detection and sensitivity analysis, 
selected genetic IVs did not reach the traditional 
GWAS significance threshold (p < 5 × 10−8), 
which may increase the possibility of false 
positives.

Conclusion

In summary, this study provides evidence for 
a suggestive genetic correlation between the geneti-
cally predicted Christensenellaceae R-7 and frailty. 
Furthermore, MR analysis indicated suggestive 
causal effects of genetically predicted 12 genus- 
level gut microbes on frailty.
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