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Gut microbiome in healthy aging versus those associated with frailty
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ABSTRACT
As the proportion of older people in the world’s population steadily increases, there is an urgent 
need to identify ways to support healthy aging. The gut microbiome has been proposed to be 
involved in aging-related diseases and has become an attractive target for improving health in 
older people. Herein, we cover the relationship between the gut microbiome and chronological 
age in adults, and then, we discuss the gut microbiome features associated with frailty, as 
a hallmark of unhealthy aging in older people. Furthermore, we describe the effects of micro-
biome-targeted interventions, such as dietary patterns and consumption of probiotics, prebiotics, 
and synbiotics, on modulating the gut microbiome composition and further promoting healthy 
aging. Further studies are needed to explore the underlying mechanisms of gut microbiome- 
induced aging complications and to develop personalized microbiome-based strategies for redu-
cing the severity of frailty or preventing the onset of frailty in older adults.
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Introduction

Globally, the number of older people and their pro-
portion in the population are increasing. According 
to the World Population Prospects 2022, the propor-
tion of the global population aged 65 years or above is 
expected to increase from 10% in 2022 to 16% in 
2050, owing to declining fertility and increasing 
longevity.1 Nevertheless, an extension of lifespan 
does not necessarily mean an extension of healthspan, 
the functional and disease-free period of life; there is 
a gap of 9 years between lifespan and healthspan.2 It is 
therefore important to understand the mechanism of 
healthy aging and to identify appropriate interven-
tions that can delay disease onset and reduce severity 
of diseases in advanced ages.

Aging is a complex biological process that is 
induced by the accumulation of cellular and mole-
cular damage over time, such as stem cell exhaus-
tion, genetic instability, telomere attrition, cellular 
senescence, and deregulated nutrient sensing.3 

These result in chronic inflammation, which in 
turn increases the risk of various chronic diseases 
including type 2 diabetes, cardiovascular diseases, 
osteoarthritis, and Alzheimer’s disease.4 These defi-
cits also lead to increased frailty, which is a state of 

increased vulnerability to poor resolution of home-
ostasis when exposed to stressors.5 Aging processes 
are influenced by genetic and non-genetic (including 
lifestyle and environmental) factors, and thus, mod-
ulating non-genetic factors is a feasible strategy for 
promoting healthy aging.

Recent reports indicate that the gut microbiome 
has tremendous potential in affecting host health by 
fermenting indigestible food components into 
absorbable metabolites, maintaining the intestinal 
integrity, regulating the immune system, and pro-
tecting from pathogens.6 In addition, there is 
increasing evidence that dysbiosis of the gut micro-
biome is associated with the aforementioned age- 
related chronic diseases,7 which means that the gut 
microbiome may have the potential to act as a major 
regulator of the aging process. Therefore, in recent 
years, the gut microbiome has become an attractive 
target for interventions to promote healthy aging.

In this review, we summarize how the gut micro-
biome changes with age, whether there are differ-
ences in the gut microbiome composition between 
healthy and unhealthy aging, and whether gut 
microbiome-targeted interventions can improve 
older people’s health.
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The aging-related gut microbiome

The gut microbiome composition of adults is rela-
tively stable throughout life. In healthy adults, the gut 
microbiome is dominated by Firmicutes and 
Bacteroidetes, representing over 90% of gut microbes, 
and smaller proportions of Actinobacteria, 
Proteobacteria, and Verrucomicrobia.8 Despite the 
stability of the adult gut microbiome, chronological 
age is one of the factors that have large effects on 
inter-individual variations of gut microbiome com-
position in the Dutch,9,10 Belgian,11 American,12,13 

and Chinese populations.14

Studies of the gut microbiome of adults aged 
≤90 years have shown associations of individual 
gut microbial taxa with age (Table 1). For exam-
ple, in a study performed by our group on 890 
South Korean adults, the abundance of short 
chain fatty acid (SCFA)-producing bacteria, 
such as Dorea, Blautia, and Coprococcus, 
decreased with aging, while that of pathobionts, 
such as Streptococcus, Klebsiella, and 
Haemophilus, increased with aging. In addition, 
the abundance of Bacteroides decreased with 
aging, while Prevotella showed the opposite rela-
tionship in this population.17 A study of 1,596 
Japanese adults showed that the abundance of 
Blautia decreased with aging, consistent with 

the results of a study of South Koreans, while 
that of another SCFA-producer, Roseburia, 
increased with aging.18 In a Chinese population, 
the enrichments of Bacteroides, Bifidobacterium, 
and Coprococcus, as well as various pathobionts, 
were observed in older people aged ≥50 years, in 
contrast to younger people aged <50 years. 
Additionally, the gut microbiome of older 
Chinese individuals was enriched by LPS bio-
synthesis- and SCFA degradation-related meta-
bolic pathways, which were also positively 
correlated with several species enriched in older 
adults, such as Escherichia coli, Klebsiella pneu-
moniae, and Bacteroides fragilis.19 The differ-
ences in aging-related gut microbial changes 
among populations may be related to differences 
in diets, lifestyles, or health conditions of popu-
lations, even among people belonging to the 
same ethnic groups. Nevertheless, it was also 
reported that there are common age-related gut 
microbial species in different ethnic populations, 
including Chinese, Israeli, and Dutch adults. 
Across all three populations, B. bifidum and 
B. breve showed negative associations with age, 
while multiple species from the genera Klebsiella, 
Campylobacter, and Streptococcus showed posi-
tive associations with age. This study also 

Table 1. Studies investigating associations between the gut microbiome and age.

Country N Age

Method of gut 
microbiome 
evaluation Gut microbes associated with increased age References

Italy 69 22–109 years 16S (V3–V4) Coprococcus, Roseburia, Faecalibacterium ↓ 
Oscillospira, Odoribacter, Butyricimonas, Eggerthella, Akkermansia, 

Anaerotruncus, Synergistaceae, Bilophila, Christensenellaceae ↑

Biagi, 201615

China 168 24–83 years 
90–102 years

16S (V4–V5) Clostridium cluster XIVa, Ruminococcaceae, Akkermansia,  
Christensenellaceae ↑

Kong, 201616

South Korea 890 20–90 years 16S (V3–V4) Bacteroides, Oscillospira, Dorea, Blautia, Coprococcus ↓ 
Streptococcus, Veillonella, Haemophilus, Klebsiella, Prevotella ↑

Lim, 202117

Japan 1596 20–83 years 16S (V3–V4) Blautia, Parabacteroides ↓ 
Roseburia ↑

Park, 202118

China 614 19–49 years 
50–87 years

Shotgun Alistipes putredinis, Barnesiella intestinihominis, Megamonas funiformis, 
Parabacteroides merdae, Subdoligranulum unclassified ↓ 

Bacteroides (B. cellulosilyticus, B. fragilis, B. intestinalis, B. ovatus, 
Bacteroides sp 4 3 47FAA, B. thetaiotaomicron), Bifidobacterium 
(B. longum, B. pseudocatenulatum), Clostridium bolteae, Escherichia 
(E. coli, Escherichia unclassified), Parabacteroides (P. distasonis, 
Parabacteroides unclassified), Ruminococcus gnavus, Klebsiella 
pneumoniae, Dialister invisus, Veillonella unclassified, Mitsuokella 
multacidawere, Coprococcus eutactus ↑

Yan, 202219

China 
Netherlands 
Israel

4346 
(China: 2,338 
Netherlands: 

1,133 
Israel: 875)

18–81 years 
(China: 26–76  

years 
Netherlands: 
18–81 years 

Israel: 18–70  
years)

Shotgun Common features in three cohorts 
Bifidobacterium bifidum, Bifidobacterium breve ↓ 
Campylobacter concisus, Citrobacter koseri, Klebsiella pneumoniae/ 

Klebsiella variicola group, Klebsiella oxytoca, Klebsiella pneumoniae, 
Veillonella atypica, Streptococcus gordonii, Lactobacillus salivarius, 
Pseudoflavonifractor capillosus, Clostridium saccharolyticum, 
Coprococcus catus, Ruminococcus lactaris, Klebsiella variicola/ 
pneumoniae, Butyrivibrio crossotus ↑

Zhang, 202120
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showed the significant enrichment of genes 
related to toxicity, bacterial communication, 
and adhesion in the gut microbiome of older 
adults.20 Although particular gut microbes are 
associated with chronological age, it is not 
known whether they are related to healthy or 
unhealthy aging.

Centenarians (individuals aged 100 years and 
older) are considered as a model of healthy 
aging, as they have reached the extreme limits 
of human lifespan by surviving, escaping, or 
delaying age-associated diseases.21 To identify 
the longevity-specific gut microbiome features, 
Biagi et al. investigated the gut microbiome in 
Italian adults of a wide range of ages, including 
centenarians (99–104 years old) and semi- 
supercentenarians (105–109 years old). They 
found that the abundance of Coprococcus, 
Roseburia, and Faecalibacterium was negatively 
associated with age, while the abundance of 
Oscillospira, Odoribacter, and Butyricimonas was 
positively associated with age. In particular, 
the gut microbiome of semi-supercentenarians 
was enriched by Akkermansia and 
Christensenellaceae.15 Similarly, the enrichment 
of Akkermansia, Clostridium cluster XIVa, 
Ruminococcaceae, and Christensenellaceae was 
observed in the gut microbiome of long-living 
Chinese people (≥90 years old),16 suggesting that 
these taxa may contribute to longevity. However, 
it is important to note that long-living people are 
not uniformly healthy.

The gut microbiome and frailty

Although aging has several common features in 
health conditions, as described above, there are 
differences in the health status of each individual, 
even at the same age. Therefore, it is necessary to 
distinguish between the characteristics of the gut 
microbiome related to healthy and unhealthy aging 
for identifying the microbial signatures with poten-
tial for use in microbiome-based interventions tar-
geted to healthy aging in older people. In this 
review, we focus on the association of the gut 
microbiome with frailty as a hallmark of unhealthy 
aging in older people.

Frailty

Frailty is a common biologic syndrome in older 
adults and is characterized by reduced physio-
logical reserve and resistance to stressors, 
accompanied by increased vulnerability to nega-
tive health outcomes, such as falls, disability, 
and hospitalization.22 Frailty is also character-
ized by its high level of heterogeneity among 
people of a similar age.23 As the impairment of 
multiple systems is related to the progression of 
frailty, a frailty assessment is conducted through 
complex tests. Multiple frailty assessment 
instruments have been developed for application 
in various populations and forms of clinical 
practice. The two most commonly used frailty 
measurements are Fried’s Frailty Phenotype and 
Rockwood’s Frailty Index.24 In the Fried’s 
Frailty Phenotype model, people with three or 
more of the five phenotypes, including weak 
grip strength, low energy expenditure, slow 
gait speed, self-reported exhaustion, and unin-
tentional weight loss, are considered frail.22 In 
Rockwood’s Frailty Index of accumulative defi-
cits, frailty is defined as the sum of health def-
icits, such as signs, symptoms, disabilities, and 
diseases, divided by the total number of deficits 
measured.25 However, there is no gold-standard 
instrument for frailty. Despite the complexity of 
the frailty assessment, it is considered to be 
a better indicator of health status in older adults 
than chronological age, as frailty is a significant 
predictor of mortality in older people.5

Risk factors for frailty include sociodemographic 
(e.g., advanced age, female sex, and living alone), 
lifestyle (e.g., physical inactivity and low protein 
intake), clinical (e.g., chronic diseases, multimor-
bidity, and polypharmacy), and biological (e.g., 
inflammation and micronutrient deficits) 
factors.26 Among these, modifiable risk factors, 
such as lifestyle, can be potential targets for pre-
vention of frailty onset or progression. Recently, 
several studies have reported a link between the gut 
microbiome and frailty,27–32 suggesting that certain 
gut microbiome profiles may be another risk factor 
for frailty. At the same time, because the gut micro-
biome is potentially modifiable, it may be altered to 
prevent and treat frailty.
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Gut microbiome signatures in frail and non-frail 
older people

Differences in the gut microbiome composition 
between frail and non-frail older people have 
been described in multiple populations (Table 2). 
For instance, in the gut microbiome of Chinese 
community dwellers whose frailty was quantified 
using Fried’s Frailty Phenotype, the abundance of 
Prevotella, Faecalibacterium, Roseburia, and 
Blautia was significantly lower in frail older adults, 
while that of some beneficial bacteria, such as 
Akkermansia, Bifidobacterium, and Lactobacillus, 
as well as Klebsiella was higher than those in non- 
frail older adults.27 A lower abundance of 
Prevotella copri in frailer older adults was also 
observed in our study of Korean community 
dwellers,28 where the frailty assessment was per-
formed using the Korean Frailty Index.33 In addi-
tion, the Korean community dwellers’ samples 
were clustered into two enterotypes based on 
their gut microbiome composition, represented by 
Prevotella and Bacteroides, and none of the frail 
older adults’ samples were assigned to the 
Prevotella enterotype. The negative association of 
Coprococcus eutactus and positive association of 

Bacteroides fragilis and Clostridium hathewayi 
with the frailty index were also observed.28 

Another study investigating frailty association 
with the gut microbiome in community-dwelling 
females, whose frailty was quantified using 
Rockwood’s Frailty Index, from the TwinsUK 
cohort showed that Faecalibacterium prausnitzii 
was less abundant in frailer individuals, while 
Eubacterium dolichum and Eggerthella lenta were 
more abundant in frailer individuals.29

Older adults in nursing homes tend to be more 
frail34 and have a higher prevalence of polyphar-
macy than do community-dwelling older adults.35 

Nevertheless, a decrease in F. prausnitzii abun-
dance was consistently observed in the frailer 
older adults in the nursing home population, simi-
lar to what was observed in community-dwelling 
populations. In addition, more abundant 
Flavonifractor plautii were observed in the frailer 
individuals. The frailty of the nursing home popu-
lation was measured using the Clinical Frailty 
Scale.30 Recently, a study comparing the micro-
biome of skilled nursing facility-dwelling older 
adults (SNFDs), community-dwelling older adults 
(CDs), and younger adults was reported.31 In the 

Table 2. Studies investigating associations between the gut microbiome and frailty.

Country Participants (n, age range) Frailty instruments

Method of gut 
microbiome 
evaluation Gut microbes associated with increased frailty References

China Community dwellers 
(94, 70–92)

Fried’s Frailty 
Phenotype

16S (V3–V4) Parabacteroides, Akkermansia, Klebsiella, 
Bifidobacterium, Lactobacillus, Pyramidobacter, 
Alistipes, Dysgonomonas ↑ 

Faecalibacterium, Roseburia, Prevotella, Megamonas, 
Blautia, Phascolarctobacterium, Megasphaera, 
Haemophilus ↓

Xu, 202127

South 
Korea

Community dwellers 
(176, 70–90)

Korean Frailty 
Index

16S (V3–V4) Bacteroides fragilis, Clostridium hathewayi ↑ 
Prevotella copri, Coprococcus eutactus ↓

Lim, 202128

UK Younger community 
dwelling female twins 
(728, 42–86)

Rockwood’s Frailty 
Index

16S (V4) Eubacterium dolichum, Eggerthella lenta ↑ 
Faecalibacterium prausnitzii ↓

Jackson, 201629

US Nursing home older adults 
(166, 65–?)

Clinical Frailty 
Scale

Shotgun Bacteroides dorei, Flavonifractor plautii ↑ 
Bacteroides vulgatus, Anaerostipes hadrus, 

Faecalibacterium prausnitzii ↓

Haran, 202130

US Skilled nursing facility 
dwellers (SNFD) 
(22, 65–97) 
Community dwellers 
(CD) (25, 65–91) 
Young adult (YA)  
(95, 18–55)

Rockwood’s Frailty 
Index 
Fried’s Frailty 
Phenotype 
Physical Activity 
Scale for the 
Elderly

Shotgun Clostridium species ↑ in SNFD 
no Prevotella-rich enterotype in SNFD

Larson, 202231

Multiple 
(meta- 
analysis)

Community dwellers, 
nursing homes, 
hospitalized  
(340, 63–83)

Fried’s Frailty 
Phenotype 

Clinical Frailty 
Scale 

Groningen Frailty 
Indicator 
etc.

Shotgun, 16S Eggerthella lenta, Eubacterium cylindroides, 
Eubacterium dolichum ↑  

Alistipes shahii, Faecalibacterium prausnitzii, 
Roseburia inulinivorans ↓

Almeida, 202232
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study, the frailty was assessed using Rockwood’s 
Frailty Index, Fried’s Frailty Phenotype, and the 
Physical Activity Scale for the Elderly. The gut 
microbiome of the SNFDs had a significantly 
increased abundance of Clostridium species. In 
addition, the study participants were clustered 
into three enterotypes that were dominated by 
Ruminococcus, Bacteroides, and Prevotella, based 
on their gut microbiome composition, and SNFD 
samples were classified only as the Ruminococcus 
or Bacteroides enterotype. Authors of the above 
study also investigated the abundance of virulence 
genes in the gut microbiome of older adults and 
showed that more virulence genes were enriched in 
SNFDs than in CDs, indicating that frailer older 
adults tend to have more virulence genes in their 
gut microbiome.31

A recent meta-analysis of previous studies on gut 
microbiome composition in frail and non-frail older 
adults, including community dwellers, hospitalized 
individuals/nursing home residents, and chronic 
kidney patients, showed a lower relative abundance 
of F. prausnitzii, Alistipes shahii, and Roseburia inu-
linivorans species and a higher relative abundance of 
E. lenta, Eubacterium cylindroides, and E. dolichum 
in frail older adults than in non-frail older adults.32

Collectively, these studies used different kinds of 
frailty instruments based on different theoretical con-
cepts; this may limit the comparability of research 
results, considering that there is high heterogeneity 
in the strength of associations between different 
frailty instruments and total mortality.36 

Nevertheless, there are some consistent frailty- 
related features of the gut microbiome. A decrease 
in the abundance of butyrate-producing bacteria, 
especially Faecalibacterium, Roseburia, and 
Coprococcus, has consistently been observed. 
Butyrate plays an important role in inflammation 
regulation by inhibiting the production of pro- 
inflammatory cytokines, such as IFN-γ, TNF-α, IL- 
1β, IL-6, and IL-8, and stimulating the induction of 
IL-10 and TGF-β. In addition, butyrate plays a crucial 
role in enhancing the barrier function of intestinal 
epithelial cells via upregulating the expression of 
mucin 2 (MUC2) and tight junction proteins.37 

Thus, the reduction of the abundance of butyrate- 
producing bacteria in frail older adults may lead to 
a decrease in butyrate levels, and in turn, an increase 

in gut permeability, resulting in the entrance of bac-
teria and their products into the circulatory system 
and a chronic low-grade inflammatory status known 
as inflammageing. Inflammageing is a strong risk 
factor for multiple aging-related diseases and physical 
and cognitive disability, all of which are typical ele-
ments in frailty.38 Therefore, butyrate-producing bac-
teria may have the propensity to improve frailty in 
older people.

The reduced abundance of Prevotella was also 
consistently observed in frailer older adults. 
Prevotella is one of the most dominant genera in 
the human gut microbiome, but the role of its 
members is not completely understood and has 
remained controversial. Previous studies have 
shown that Prevotella is more abundantly found 
in populations with a high-fiber diet,39,40 and this 
genus is involved in improving glucose metabolism 
induced by dietary fiber.41 In contrast, other stu-
dies have shown that increased Prevotella spp. 
abundances are associated with new-onset rheuma-
toid arthritis, insulin resistance, and persistent gut 
inflammation.42–44 These discrepancies may be due 
to the species-level and strain-level diversity of 
Prevotella. In the human gut, Prevotella spp. mainly 
comprise P. copri and Prevotella stercorea, but 22 
additional Prevotella species-level genome bins 
were recently identified using metagenomic 
approaches.45 In addition, P. copri comprises four 
genetically and functionally distinct clades.46 

Therefore, further studies on the function of 
Prevotella in healthy aging are needed in consid-
eration of the species- and strain-level variability.

Another frailty-related gut microbiome feature is 
an increase in the abundance of pathobionts such as 
Eggerthella, B. fragilis, C. hathewayi, and 
Enterobacteriaceae. Eggerthella is considered an 
opportunistic pathogen, and it is associated with 
several chronic diseases, such as rheumatoid arthri-
tis, multiple sclerosis, and inflammatory bowel 
disease.47–49 A recent study showed that E. lenta 
induced Th17 cell activation via a strain-specific 
enzyme, cardiac glycoside reductase 2 (Cgr2), and 
then increased IL-17A production in the gut, result-
ing in intestinal inflammation. C. hathewayi is asso-
ciated with type 2 diabetes and coronavirus disease- 
19 disease severity,50,51 and it is involved in the 
production of trimethylamine, the precursor of the 
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proatherogenic compound trimethylamine N-oxide 
(TMAO), from choline.52 Although additional 
pathophysiological mechanisms need to be further 
elucidated, these results suggest that changes in the 
gut microbiome in frail older adults may be closely 
related to the control of host metabolism and 
inflammation and, thus, hold potential as 
a therapeutic target to ameliorate frailty (Figure 1).

Microbiome-targeted interventions to improve 
health status in older people

The fact that the gut microbiome is associated with 
health status in older people means that the mod-
ulation of the gut microbiome has the potential to 
promote healthy aging. Microbiome-targeted inter-
ventions include probiotics, prebiotics, synbiotics, 

and diet. Although many microbiome intervention 
studies have been conducted in animals, such as 
mice, rats, and drosophila, this review focused on 
intervention studies in humans. We performed 
a PubMed search using the following search terms 
“((prebiotics or probiotics or synbiotics or diet) 
AND (gut microbiome)) AND (elderly[Title/ 
Abstract] OR older[Title/Abstract])” with the filter 
“Full text, Randomized Controlled Trial, English, 
Aged: 65+ years”. After screening, we identified 23 
studies relevant to our interests (Table 3). Most 
intervention studies on older people did not assess 
improvements in frailty or specific diseases but 
instead examined other health effects such as 
changes in gut microbiome composition, metabolic 
and inflammatory biomarkers, or cognitive 
functions.

Figure 1. Gut microbiome signatures in healthy and frail older adults. Created with BioRender.com.
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Probiotics, prebiotics, and synbiotics

According to the definition by the International 
Scientific Association for Probiotics and 
Prebiotics (ISAPP), probiotics include any “live 
microorganism that, when administered in ade-
quate amounts, confers a health benefit on the 
host”79 and prebiotics include any “substrate that 
is selectively utilized by a host microorganism, 
conferring a health benefit”.80 More recently, the 
ISAPP defined synbiotics as “a mixture comprising 
live microorganisms and substrate(s) selectively 
utilized by host microorganisms that confers 
a health benefit on the host”.81 Probiotics, prebio-
tics, and synbiotics are considered to be a cost- 
effective strategy for improving gut microbiome 
homeostasis and health status.
Lactobacillus and bifidobacterium are the most 
commonly used probiotics. Several clinical trials 
have demonstrated that probiotics have beneficial 
potential for decreasing inflammatory levels and 
improving cognitive function in older people. For 
example, the intake of a probiotic mixture 
(B. bifidum G9–1, B. longum MM2, and L. gasseri 
KS-13) for 3 weeks in healthy older adults resulted 
in a significant increase in IL-10 levels and an 
increase in the prevalence of an anti- 
inflammatory commensal bacterium, 
F. prausnitzii,53 which was associated with less 
frail phenotypes.29,30,32 Intervention studies of 
another probiotic mixture (B. longum Bar33 and 
Lactobacillus helveticus Bar13) and Clostridium 
butyricum for 30 days and 12 weeks, respectively, 
also showed significant improvements in 
immunity.55,61 In the latter study, increases in the 
abundance of beneficial bacteria, such as 
Akkermansia muciniphila and Alistipes putredinis, 
were observed after the intervention.61 

Additionally, the consumption of probiotics con-
taining B. bifidum BGN4 and B. longum BORI for 
12 weeks by healthy older adults significantly 
increased levels of serum blood brain-derived neu-
rotrophic factor (BDNF), which is known to be 
essential for learning and memory, while signifi-
cantly reducing the abundance of inflammation- 
causing gut bacteria, including Eubacterium, 
Allisonella, and Prevotellaceae.56 In older adults 
with declining memory, L. plantarum OLL2712 
consumption for 12 weeks significantly improved 

composite memory and visual memory and 
decreased the relative abundances of 
Lachnoclostridium, Monoglobus, and Oscillibacter, 
which are related to the inflammatory response.59 

Similarly, the intake of probiotics is reported to be 
effective in improving cognitive function.58,62 In 
addition, 1-year daily supplementation with 
L. reuteri 6475 reduced bone loss in older women 
with low bone mineral density,54 and the abun-
dance of L. reuteri was increased by the interven-
tion compared to the baseline.82 Collectively, these 
studies demonstrate that the consumption of pro-
biotics may inhibit the growth of inflammation- 
related gut microbes and/or promote the growth 
of beneficial gut microbes, which in turn may have 
effects such as improving immune function, cogni-
tive function, and even bone health in older people.

Prebiotics include polyols (e.g. xylitol, sorbi-
tol, and mannitol), oligosaccharides (e.g. inulin, 
fructooligosaccharides [FOS], and galactooligo-
saccharides), and fibers (e.g. cellulose, pectins, 
and β-glucans). Intervention studies with wheat 
bran arabinoxylan oligosaccharides, chicory 
long-chain inulin, and resistant starch for 10  
days, 2 months, and 12 weeks, respectively, in 
older participants showed a significant increase 
in the abundance of Bifidobacteria.63,64,67 

Resistant starch consumption resulted in 
a significant increase in the relative proportion 
of fecal butyrate in older adults.63 However, 
chicory long-chain inulin consumption did not 
change fecal SCFA concentrations or affect 
immunity.67 Furthermore, wheat-bran arabinox-
ylan oligosaccharide supplementation did not 
result in changes in metabolic biomarkers and 
fecal calprotectin levels.64 These intervention 
studies showed that these dietary supplements 
are bifidogenic but failed to induce changes in 
measured outcomes in older people.

Synbiotics are combinations of probiotics and 
prebiotics, which may synergistically act in the 
gut to confer beneficial effects on host health. For 
example, consumption of a synbiotic formula of 
three probiotics (L. plantarum PBS067, 
L. acidophilus PBS066, and L. reuteri PBS072) 
with active prebiotics (inulin and FOS) in older 
patients with metabolic syndrome (MetS) for 2  
months significantly improved metabolic para-
meters, such as waist circumference, total 
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cholesterol levels, and triglyceride levels, and 
reduced serum hsCRP and TNF-alpha levels.69

The number of probiotics, prebiotics, and synbio-
tics intervention studies in older adults remains lim-
ited. Although several studies, including the above 
examples, have shown that the consumption of pro-
biotics, prebiotics, and synbiotics may improve health 
in older people, their efficacies may vary depending 
on dosage and treatment duration.83,84 It is also still 
unclear how long these effects will last after cessation 
of supplementation. For example, the probiotic loads 
in feces dropped to baseline within 1 month after 28  
days of 11-strain probiotic consumption in healthy 
young adults,85 but in the gut of 30% of healthy 
young individuals taking B. longum AH1206 for 2  
weeks, B. longum AH1206 remained detectable for at 
least 6 months after consumption cessation.86 These 
studies indicate that the persistence of probiotics in 
the gut after consumption cessation can be influenced 
by the probiotic strain and/or the host. As most 
studies discussed in this section did not conduct 
follow-up assessments, or conducted follow-up only 
for 1–2 weeks after probiotics treatment, longer fol-
low-ups are needed to determine the long-term 
effects of probiotics in older people. In addition, the 
efficacy of probiotic gut mucosal colonization during 
consumption varies among different persons, 
depending on baseline host transcriptional and 
microbiome features.85 Therefore, more intervention 
studies are needed involving probiotics, prebiotics, 
and synbiotics in a larger number of older adults to 
assess their effects on improving older adult health, to 
determine the optimal formula, dosage, and admin-
istration duration and to develop methods for pre-
dicting individual responses to treatment.

Diet

Recent studies have shown that specific dietary 
factors may influence older adult health through 
the modulation of gut microbiome. Examples of 
such studies are presented below.

The MedDiet is characterized by a high intake of 
vegetables, legumes, fruits, nuts, and olive oil, a low 
intake of red meats and refined grains, and a low-to 
-moderate intake of wine.87 Adherence to the 
MedDiet has a protective effect on the development 
of frailty88,89 and beneficial effects on the improve-
ment of inflammation90 and cognitive function in 

older people.91 Ghosh et al. performed a 1-year 
MedDiet intervention in older people across five 
European countries to investigate whether it could 
induce alterations of the gut microbiome and con-
tribute to the reduction of frailty as assessed by 
Fried’s Frailty Phenotype. A higher level of adher-
ence to the MedDiet was associated with increased 
abundance of P. copri and butyrate-producing bac-
teria, such as F. prausnitzii, Roseburia hominis, 
Eubacterium rectale, and Eubacterium xylanophi-
lum; these taxa have been associated with reduced 
frailty and inflammatory status and improved cog-
nitive function. This study indicated that the 
MedDiet can beneficially modulate the composi-
tion of the gut microbiome, which has the potential 
to improve frailty in older adults.74

Polyphenols, which have antioxidant and anti- 
inflammatory activity, are degraded into active phe-
nolic metabolites by gut microbes; consequently, 
polyphenols and/or their metabolites may affect 
gut microbial composition.92 A polyphenol-rich 
diet intervention for 8 weeks significantly reduced 
blood pressure and levels of serum zonulin, which is 
an intestinal permeability marker involved in tight 
junction modulation, in older adults, and induced 
significant increases in the abundance of butyrate- 
producing bacteria Butyricicocci and F. prausnitzii in 
the gut microbiome.70 Additionally, these butyrate- 
producing bacteria were positively correlated with 
serum theobromine and methylxanthines derived 
from cocoa and/or green tea, and these metabolites 
were inversely correlated with serum zonulin.71 

These studies indicated that a polyphenol-rich diet 
may contribute to reinforcement of the intestinal 
barrier through increased butyrate and/or specific 
metabolites (owing to the resulting increase in the 
abundance of butyrate-producing bacteria).93 

Although the intervention failed to show improve-
ment in inflammatory markers, a polyphenol-rich 
diet has the potential to attenuate the risk of inflam-
mation, by improving intestinal barrier function, 
which is closely associated with the development 
and progression of frailty.94

In older adults, an inadequate protein intake is 
associated with an increased risk of developing sarco-
penia and frailty95,96. The current recommended diet-
ary allowance (RDA) for protein is 0.8 g/kg/day, but 
higher-protein intake than the RDA has been pro-
posed to prevent or postpone frailty in advanced 
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age.96 There are several interventions to determine the 
effects of high protein intake on the gut microbiome 
in older adults. A high-protein diet (HPD, 1.5 to 2.2 g/ 
kg/day protein) consumption with and without 
a probiotic and/or prebiotic in healthy older women 
did not significantly change their general wellness but 
increased fat-free mass. The HPD intervention 
induced increases in the abundance of Lactobacillus, 
Lactococcus, and Streptococcus and decreases in the 
abundance of butyrate-producing bacteria, Roseburia, 
and Anaerostipes in the gut microbiome.73 Because 
reduced abundances of butyrate producers have been 
consistently observed to be associated with frailer 
phenotypes, as discussed earlier, HPD-associated 
changes in the gut microbiome may be unfavorable 
for older adults’ gut microbiome health. However, in 
other two HPD intervention studies on older adults 
(1.6 g/kg/day protein for 10 weeks and 1.2 g/kg/day 
protein for 6 months), no significant changes were 
observed in the gut microbiome after the 
interventions.77,78 Alternatively, intakes of 1.6 g/kg/ 
day protein for 10 weeks increased circulatory con-
centrations of TMAO,76 a bacterial metabolite derived 
from dietary choline and carnitine that is associated 
with an increased risk of cardiovascular diseases.97 

Therefore, it is necessary to comprehensively evaluate 
whether an HPD is beneficial to the health of older 
adults in various aspects.

The effects of changes to dietary habits, includ-
ing the examples presented above, may vary 
depending on an individual’s baseline gut micro-
biome composition. Recently, Karakan et al. 
reported that in patients with irritable bowel syn-
drome (IBS), specific personalized diets designed 
using machine-learning algorithms considering 
individual gut microbiome profiles improved IBS 
symptom severity and significantly increased the 
abundance of Faecalibacterium in the gut micro-
biome, compared with a standard IBS diet.98 To 
improve frailty more efficiently in older people, it is 
necessary to apply personalized dietary interven-
tions based on an individual’s gut microbiome 
composition, as demonstrated in the IBS study.

Conclusions and future perspectives

Recent studies have highlighted that the gut micro-
biome is associated not only with age but also with 
frailty in older people. These findings indicate that the 

gut microbiome may play an important role in the 
aging process. However, most studies reporting 
frailty-related gut microbiome features have been 
conducted with a cross-sectional study design, which 
cannot distinguish whether frailty-related gut micro-
biome features are the cause or effect of frailty. Long- 
term longitudinal studies are needed to identify causal 
relationships between the gut microbiome and frailty 
or unhealthy aging. In addition, considering the high 
variability of specific species and strains, metage-
nomic analyses with a strain-level resolution are 
warranted.

Various microbiome-targeted interventions to 
improve health in older adults have been per-
formed, and the effects of interventions varied 
across studies. In the case of probiotics, prebio-
tics, and synbiotics, the response to treatment 
can be affected by dosage, duration, and their 
components. Furthermore, each individual’s age, 
sex, lifestyle, health condition, and baseline gut 
microbiome composition can influence the 
response to treatment. Therefore, it is necessary 
to develop algorithms that can maximize the 
personal effect of a given intervention. Most 
intervention studies for modulating the gut 
microbiome composition and improving health 
status have been conducted in conjunction with 
a diet that was already in practice, including 
specific dietary habits or the use of probiotic 
species. As there is mounting evidence for sev-
eral microbial and metabolite candidates asso-
ciated with healthy aging, such as F. prausnitzii 
and butyrate, clinical trials for these candidates 
are needed to test their safety and efficacy in 
reducing the severity of frailty or delaying the 
onset of frailty in older adults. It is also impor-
tant to gain a better understanding of the 
mechanism of action of the gut microbiome in 
age-related diseases and frailty in older people.
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