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Psychedelic therapy (PT) is an emerging paradigm with great transdiagnostic potential for treating psychiatric disorders, including
depression, addiction, post-traumatic stress disorder, and potentially others. ‘Classic’ serotonergic psychedelics, such as psilocybin
and lysergic acid diethylamide (LSD), which have a key locus of action at the 5-HT2A receptor, form the main focus of this
movement, but substances including ketamine, 3,4-Methylenedioxymethamphetamine (MDMA) and ibogaine also hold promise.
The modern phase of development of these treatment modalities in the early 21st century has occurred concurrently with the
wider use of advanced human neuroscientific research methods; principally neuroimaging. This can potentially enable assessment
of drug and therapy brain effects with greater precision and quantification than any previous novel development in psychiatric
pharmacology. We outline the major trends in existing data and suggest the modern development of PT has benefitted greatly
from the use of neuroimaging. Important gaps in existing knowledge are identified, namely: the relationship between acute drug
effects and longer-term (clinically-relevant) effects, the precise characterisation of effects at the 5-HT2A receptor and relationships
with functional/clinical effects, and the possible impact of these compounds on neuroplasticity. A road-map for future research is
laid out, outlining clinical studies which will directly address these three questions, principally using combined Positron Emission
Tomography (PET) and Magnetic Resonance Imaging (MRI) methods, plus other adjunct techniques. Multimodal (PET/MRI) studies
using modern PET techniques such as the 5-HT2A-selective ligand [11 C]Cimbi-36 (and other ligands sensitive to neuroplasticity
changes) alongside MRI measures of brain function would provide a ‘molecular-functional-clinical bridge’ in understanding. Such
results would help to resolve some of these questions and provide a firmer foundation for the ongoing development of PT.
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INTRODUCTION
The use of psychoactive substances for medicinal or spiritual
purposes stretches back into pre-history [1], with the first recorded
study of psychedelics in a clinical context carried out on mescaline
in the early 20th Century. However, the wide-spread clinical use of
psychedelics began in the late 1940s [2] following the first
synthesis of lysergic acid diethylamide (LSD) by Albert Hoffmann
in 1943. This work occurred alongside the discovery of other key
classes of psychiatric drugs such as the neuroleptics (e.g.,
Chlorpromazine, first synthesized in 1951 [3]) and Mono-Amine
Oxidase Inhibitor (MAOI) anti-depressants (first recognized for
their mood-elevating effects in 1952 [4], which collectively led to a
new focus on biological mechanisms in psychiatry [5]. In the 1940s
psychedelics were often termed ‘psychotomimetics’ and were
thought to mimic the symptoms of psychiatric conditions,
principally schizophrenia. Interest in their therapeutic potential
grew throughout the 1950s, with large-scale use in the United
States, the United Kingdom and the Czech Republic [2] for a
number of psychiatric conditions. By 1961, more than 1000 scien-
tific articles on LSD had been published [6]. However, growing
concern about the recreational use of LSD, and its (perceived) links
to the anti-Vietnam war protests and general counter-culture
movement, led to it being banned in the US in the mid 1960s.

Most countries worldwide followed suit, encouraged by President
Nixon’s repressive “war on drugs”. Climactically, the 1971 United
Nations Convention on Psychotropic Drugs and the Misuse of
Drugs Act 1971 placed psychedelics into Schedule 1/Class A. This
implied they did not have any known therapeutic potential and
were considered to be highly addictive [7]. Concurrently,
psychedelic treatment models clashed somewhat with the
growing emphasis on randomized controlled trials as the gold
standard for proving treatment efficacy [8]. These factors
effectively halted clinical and mechanistic research into psyche-
delics for nearly 50 years [9].
The technology available for neuroscientific research in the

1950s was comparatively primitive by modern standards. While
initial electroencephalography (EEG) studies using LSD were
conducted in humans [10], there was relatively little opportunity
(in terms of both time, and the technology available) to carry out
any further neuroimaging work before the prohibition of the
1970s. This led to a number of stagnant decades in the
development of our understanding of the neural mechanisms
underpinning the effects of psychedelics in humans. Although the
main pharmacological mode of action of classical psychedelics as
5-HT2 receptor agonists was posited in the mid-1980s [11], and
confirmed with the use of the 5-HT2 antagonist ketanserin [12]
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and the development of 5-HT2A receptor (5-HT2AR) knockout
mice [13], translational neuropsychopharmacological work in
humans was strongly limited by regulatory difficulties until very
recently [14].
The resurgence of clinical research into psychedelics in the early

21st Century has developed in a markedly different context with
the increased availability of sophisticated research technologies.
During the interlude in research efforts, impressive developments
in molecular, structural, and functional imaging techniques of the
human brain have occurred. Modern work has sought to apply
these novel technologies to the study of the ‘classic’ psychedelics
(LSD, psilocybin; a pro-drug that is metabolized to the active
substance psilocin, and N,N-Dimethyltryptamine; DMT) and
compounds with related or similar subjective effects (though
different pharmacological profiles), such as 3,4-Methylenedioxy
methamphetamine (MDMA), ketamine, and ibogaine.

ACUTE CHALLENGE STUDIES
While some early clinical trial work in the mid-2000s tested MDMA
in post-traumatic stress disorder [15], most of the initial studies in
the modern era focused on safety, tolerability, and evaluation of
acute effects in healthy subjects by harnessing the power of
modern neuroscience methods. These studies mostly used
functional Magnetic Resonance Imaging (fMRI) methods, with
some ancillary work using Magnetoencephalograhy (MEG) or
Electroencephalography (EEG). Resting-state data from these
studies has provided crucial insights into the acute brain-
network effects of compounds like psilocybin [16, 17], LSD
[18, 19], and MDMA [20]. A key discovery has been that classic
psychedelics have a profound impact on the normal large-scale
network patterns of brain connectivity, leading to a severe
disruption of the network structure [19, 21, 22]. These findings
have formed the foundation of modern theories of how
psychedelics exert both their acute and longer-term effects, e.g.,
the relaxed-beliefs under psychedelics or REBUS model [23], and
the cortico-striatal thalamo-cortical or CSTC model [24–26]. In
addition, task fMRI data from these studies have provided vital
insights with potential clinical relevance, such as the effect of LSD
on the brain’s response to positive hedonic stimuli such as music
[27, 28], effects of psilocybin on social and emotional processing
[29] and the effects of MDMA on the recall of positive and
negative emotional memories [30].
Molecular imaging of the direct action of psychedelics with

Positron Emission Tomography (PET) has been much less
exploited. This is likely due to the increased associated costs,
greater ethical and methodological difficulties (e.g. invasive
procedures, more medical supervision required, fewer research-
grade PET facilities), and, most crucially, the lack of 5-HT2AR
agonist PET radioligands most suitable for evaluation of the
pharmacological effects of agonist drugs. The utility of radioli-
gands such as [18F]setoperone, [18F]altanserine and [11C]
MDL100907 was limited by the methodological issues inherent
in the evaluation of agonist compounds using antagonist PET
radioligands [31].
The 5-HT2AR agonist PET ligand [11C]Cimbi-36 is relatively new

[32–34], has higher sensitivity to serotonin receptor agonists and
has so far been used at only two PET imaging sites [35, 36]. [11C]
Cimbi-36 has been used to demonstrate that the acute subjective
effects of psilocybin (or rather its active metabolite psilocin) are
related to its binding at 5-HT2A receptors [36]. Downstream
effects of psilocybin were evaluated previously using PET ligands
such as [11C]raclopride, to evaluate changes in dopamine release
[37] and [18F]fluorodeoxyglucose PET [38] to evaluate changes in
glycolysis and brain metabolism. A recent study examined the
relationship between 5-HT2AR binding with PET and long-term
changes in personality factors [39], and the same team also
reported neocortical 5-HT2AR binding to be negatively associated

with peak plateau duration of the psilocybin experience [40]. PET
investigations have also helped understand long-term effects on
serotonin brain markers, such as serotonin transporters and
5-HT2A receptors, following different degrees of recreational use
of MDMA and psychedelics [41].

NEUROIMAGING IN CLINICAL TRIALS
Inspired both by the historical reports of positive clinical effects
and results from modern acute challenge studies, researchers
began to investigate the potential of psychedelics in patient
groups, often with neuroimaging as an adjunct to the main
clinical trial outcomes. Again, (f)MRI has been the usual method
of choice in these studies because of its relatively low-cost and
non-invasive nature, with neuroimaging measures usually used
as an objective index of treatment effects, i.e., using scans
conducted before and after treatment rather than during acute
dosing. Initial studies in psilocybin for treatment-resistant
depression [42] and major depression [43, 44] have used this
approach, with other similar trials now underway evaluating the
therapeutic potential of psychedelics in various psychiatric
disorders including anorexia nervosa, Obsessive-Compulsive
Disorder (OCD), Post-Traumatic Stress Disorder (PTSD), chronic
pain, and addiction.
These studies have found that a number of changes (i.e.

identified by comparing before vs. after treatment) in brain
function can be meaningfully related to clinical outcomes. The first
open-label study in treatment-resistant depression patients [42]
showed that changes in cerebral blood flow (measured with
arterial spin-labelling MRI) in the amygdala were correlated with
changes in depression scores [45]. Differences in the functional
connectivity of the medial pre-frontal cortex and hippocampus
were also identified following treatment with psilocybin in the
same patient group. Further work from the same cohort has found
increased responses to emotional stimuli in the amygdala [46],
that changes in amygdala connectivity are predictive of some
clinical outcomes [47], and that patients show an increased brain
response to music stimuli following treatment [48]. Analogous
effects (changes in neural emotional processing, increased
positive affect, reduced anxiety) have also been reported in a
small group of healthy volunteers with one-week and one-month
follow-up assessments [49].
More recent work has shown decreases in brain modularity

(the tendency of the brain to function in well-defined networks).
Modularity was assessed in two groups; patients from the initial
open-label study [42] and patients from a double-blind study
where psilocybin was compared with the selective serotonin
reuptake inhibitor (SSRI) escitalopram [44]. Changes in mod-
ularity produced by psilocybin were related to change in clinical
outcome scores in both studies, while escitalopram produced no
such effects [50]. Despite some critiques of the statistical
methods used [51] these findings are broadly consonant with
the disruptive effects on network function seen in the acute-
challenge studies (plus increased connectivity seen in healthy
subjects over longer time-scales; [49], and suggest that these
effects might be central to psilocybin’s rapid anti-depressant
effects [52]. Another open-label study in patients with major
depressive disorder reported increases in cognitive (measured
by perseverative errors on a set-shifting task) and neural (as seen
by the dynamics of functional connectivity via fMRI) flexibility
which persisted up to four weeks post-treatment, as well as
reductions in glutamate and N-Acetylaspartate concentrations
(using Magnetic Resonance Spectroscopy; MRS) in the anterior
cingulate cortex [53].
Results from these (albeit few and relatively small) trials are

necessarily varied, as they have used different methods, analysis
approaches, and endpoints. One recent review of resting-state
psychedelic work [54] has made the points that there is a great
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variety of analysis methods in the literature, and over half the
published corpus consists of analyses of just two datasets. More
studies, larger, well-conducted clinical trials, standardisation of
methods, and independent replication of the effects described so
far are clearly badly needed. It remains to be seen if a reliable
imaging biomarker of the clinical response can be identified,
though the global effects on brain networks may be a potential
candidate in biomarker research efforts [52, 55, 56]. Additionally,
there is a current viewpoint that putative increases in neuroplas-
ticity likely underlie positive clinical effects of psychedelic therapy
[52, 57, 58], which is largely derived from pre-clinical work (for a
recent review see [59]. Neuroplasticity is a broad term that can
encompass several identified mechanisms from molecular pro-
cesses to large-scale brain activity dynamics. So far, the only
evidence of a possible neuroplastic effect of psychedelics in
humans have been with low-dose LSD [60] and ayahuasca [61].
Both studies which showed increased serum levels of brain-
derived neurotrophic factor (BDNF) in active treatment groups; a
peripheral and non-specific measure. While this is encouraging,
further work with more direct and brain-localized measures of
neuroplastic effects is urgently needed.

THE FUTURE OF PSYCHEDELIC NEUROIMAGING
Key research questions
The pilot studies mentioned above have put psychedelic research
on a firmer and more objective scientific foundation, and have
had significant impact in both the scientific community and the
popular media [62]. The use of neuroimaging as a tightly-
integrated part of the methodology in key clinical trials has
facilitated this, not only by providing important scientific results
and informing theories of psychedelic effects, but also by
producing visually-arresting results (e.g., [21] that have been
reproduced extensively in the mainstream media. Portrayals of
results like these in the media can often be problematic in terms
of misrepresentations and may lead to exaggerated expectations
in patients. It is perhaps arguable whether the overall effect of the
mainstream media coverage of psychedelic research has been
wholly beneficial, however the impact is undeniable.
This general level of raised awareness, coupled with the

gradual relaxation of legal restrictions on research in some
jurisdictions (driven, at least partly, by the media coverage and
the consequent raised awareness), has prompted a psychedelic
‘gold rush’ [63]. Academic research is pressing forward globally
at a growing number of research centres, while newly formed
companies are seeking to commercialize psychedelic-assisted
therapies; with both spheres rapidly expanding the range of
compounds used and clinical indications being investigated. In
addition, early-stage efforts are underway to develop entirely
novel 5-HT2A active compounds [63], including attempts to
discover non-hallucinogenic analogues [64, 65]. At the time of
writing there are 96 registered clinical trials on the https://
www.clinicaltrials.gov/ website containing the search term
“psilocybin”, with even larger numbers also registered using
“MDMA” (112), and “LSD” (132), as well as some efforts with
“Dimethyltryptamine” (20), and “ibogaine” (4). This large number
of clinical trials clearly represents intense activity in this space,
motivated by the prospect of a new disruptive approach to the
treatment of psychiatric disorders. The transdiagnostic nature of
psychedelic therapy may provide additional treatment prospects
for a wide range of disorders, particularly in such difficult-to-
treat conditions as anorexia nervosa [66] that carry high
morbidity and mortality. However, the 50-year gap in scientific
research arising from legal prohibitions, has led to a severe
deficit in the breadth and depth of the basic-science evidence
base related to these treatments compared to other commonly-
used psychiatric drugs (e.g., SSRI anti-depressants, dopaminergic
anti-psychotics).

In our view there are several important outstanding questions
which, were they addressed in suitable studies, would represent a
significant step forward for the field, and provide a firmer support
base for the clinical development of such treatments. These
questions are:

1. The relationship between the acute brain effects of
psychedelics, and their longer-term (clinically-relevant)
effects.

2. The precise effect of psychedelics at the 5-HT2AR, including
dose-effect relationships, and how these are related to both
acute and longer-term subjective, physiological, and func-
tional effects.

3. The extent to which psychedelics promote neuroplasticity in
humans, over what time-scales, and the role neuroplastic
processes play in their longer-term (clinically-relevant)
effects.

Key research methods
While in vitro or pre-clinical in vivo work can help address some of
these questions, the limitations of animal models, including
important differences in the structures of the 5-HT2AR, its binding
with psychedelics in rodents versus humans [63], and potential
species differences in brain penetrance [67] mean that studies
with human subjects are required for a full assessment of these
compounds. Fortunately, this modern ‘second-wave’ of psyche-
delic research can take advantage of modern neuroimaging (and
other) technologies to address all these issues in a robust manner
in human subjects. MRI is a mature and widely available imaging
method which is sensitive to pharmacological effects [68–70].
Recent technical innovations in MRI technology such as acceler-
ated scanning with ‘multiband’ sequences [71], increased signal-
to-noise with multi-echo sequences [72], and standardised
processing pipelines [73] provide additional capabilities and
rigour for this technique. Molecular imaging with the 5-HT2A
agonist PET ligand [11C]CIMBI-36 can help elucidate the links
between dose and (both acute, and longer-term) clinically-
relevant effects [35, 36].
To assess neuroplasticity changes at a cellular/molecular level,

the use of recently characterised PET ligands focusing on the
synaptic glycoprotein 2A (SV2A, a marker of pre-synaptic
terminals; [11C]UCB-J) and mitochondrial complex 1 (MC1, a
marker of mitochondrial density; [18F]BCPP-EF) offer promising
prospects [74–76]. SV2A is ubiquitously expressed on synaptic
terminals, regulates neurotransmitter release, and has a good
correlation with established markers of synaptic density such as
synaptophysin [74, 77]. While no obvious marker of post-synaptic
dendritic spines is currently evaluable using a specific PET
radioligand, the preponderance of mitochondria in the post-
synaptic over the presynaptic terminals [78] offers the interesting
possibility that the use of [11C]UCB-J and [18F]BCPP-EF may
provide information about changes in both pre- and post-synaptic
terminals. Several MRI-based techniques could also be employed
to complement PET methods to assess neuroplasticity changes.
These include diffusion tensor imaging (which can provide
information about structural connectivity as well as microstruc-
tural tissue properties), magnetic resonance spectroscopy (MRS)
for quantifying changes in metabolite levels, and various types of
functional MRI (principally, task and resting-state paradigms; [79]).
MRI-based methods are more indirect measures of neuroplasticity
changes than PET, but could provide complementary information
on, for instance, functional effects related to underlying mole-
cular/synaptic changes.

Study proposals
Specifically, regarding question 1, to our knowledge no published
study has so far examined both acute and longer-term effects on
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the brain in the same cohort. Some studies have identified
relationships between subjective or questionnaire measures of
acute effects and post-treatment neural responses (e.g., [48]).
However, directly testing the relationship between the network-
disintegration seen in acute fMRI studies [21] with longer-term
measures (of neuroplasticity, emotional function, or any of the
other previously identified post-dosing changes, both neurological
and behavioural/clinically-relevant) would be a crucial test of
current theories of psychedelic effects [23, 58].
Question 2 is a related issue, where [11C]CIMBI-36 PET could be

used to establish the relationship between drug plasma concen-
tration and 5-HT2AR occupancy (as in [36]). Such information is
typically acquired using an adaptive design and through
evaluating a time-course of occupancy following a single dose.
This allows the estimation of the relationship between plasma
concentration and 5-HT2AR occupancy following repeat-dose
administration, and is considered to be obligatory data in
determining dosing for Phase II and Phase III studies in modern
CNS drug development (see [80] for an example). Optimally, such
a study could be performed on the new generation of combined
PET/MR clinical scanners [81, 82] for simultaneous acquisition of
PET and MRI data during acute dosing of a psychedelic
compound, with additional follow-up multi-modal scans to assess
longer-term effects on neuroplasticity. Multi-modal imaging with
PET and (f)MRI would provide information on the molecular-
functional-clinical translational bridge, which could potentially
help define further novel treatment approaches and new targets
for future drug development.
Question 3 would also ideally be addressed with combined PET

and MRI methods, but using the metabolic and synaptic-density
PET ligands previously mentioned [74], plus complementary MRI-
based measures of plasticity, with assessment at multiple time-
points. What kind of time-scales these effects should be assessed
over is perhaps an open question, but recent work has shown that
clinical effects have a rapid onset within 24–48 h and can persist
for up to one year post-dosing [83].
For all the studies outlined above, certain ancillary measures

and assessments will be critical in developing our understanding
of both classic and novel psychedelic drugs. Measurement of drug
plasma concentration is critical for the comparison of dosing
protocols and routes of administration. In combination with the
concentration-occupancy relationship derived from a PET occu-
pancy study, these data will also allow a like-for-like comparison
between different psychedelic compounds. Moreover, question-
naires developed and used in previous psychedelic drug trials
[84, 85], or even additional brain-imaging technologies such as
MEG [18] or EEG-based measures of neuroplasticity (recently
shown to be sensitive to drug effects; [86–88]) could also be used,
in addition to the primary imaging techniques. Genetic poly-
morphisms in the 5-HT2AR have been shown to affect some
personality and cognitive factors [89, 90], clinical conditions [91]
and response to psychiatric medications [92]. Genotyping of
polymorphisms in the 5-HT2AR or other relevant molecular targets
in the psychedelic response pathway may therefore provide useful
information to enable a reduction of variability in other outcome
parameters, provide useful hints to underlying biological sub-
strates, or potentially provide means to stratify patients in future
studies. The combination of these ancillary measures with
multimodal neuroimaging would provide extremely rich data-
sets and enable a great number of instructive outcomes and
relationships to be assessed. This in turn would provide a platform
for future studies which could be focused on assessing the more
detailed causal linkages between these factors.
While the proposed studies are primarily focused on the brain,

they may also provide wider insights. The highly-potent action of
LSD at the BDNF TrkB receptor has recently been highlighted in
pre-clinical work [93], with other work showing potent anti-

inflammatory effects of psychedelics in animal disease models
[94], and effects on gene expression [95]. Taken together, these
results suggest psychedelics may have a wide range of effects on
systemic biological variables including neurotrophic factors,
inflammatory markers, epigenetic features, and possibly others.
Investigation of these effects alongside the proposed neuroima-
ging studies (using appropriate blood/tissue sampling) should also
be a high priority. The relationship between the acute/longer-term
brain effects and potential changes in these circulating biomarkers
is currently unknown, but such investigations may lead to insights
into the role these systemic biological changes may have in the
therapeutic response.
The studies outlined above are undeniably ambitious. They

would require significant resources and investment to accomplish,
as well as the use of cutting-edge and somewhat limitedly
available technology (e.g., combined PET/MR imaging systems,
relatively novel PET ligands). Nevertheless, they are feasible with
current methods, and achievable over a reasonable timescale. We
have focused on studies with the 5-HT2AR agonist ‘classic’
psychedelics (psilocybin, LSD, DMT), but analogous questions
and study outlines could be framed around other novel therapies
(ketamine, MDMA, ibogaine etc). with appropriate modifications
to the methods (e.g., different PET ligands specific to the
pharmacology of the compounds, other MRI modalities, or
particular tasks/stimuli). We have also assumed here that these
studies would essentially be analogous to early-phase (I/IIa) clinical
trials and use healthy subjects, but follow-up studies with clinical
populations or inclusion of some of these measures in later-phase
clinical trials would also be highly desirable. Care would need to
be taken in such cases to minimise the impact of the
neuroscientific research on the therapy protocol. These follow-
up studies might be particularly valuable in defining biomarkers or
neurophenotypes (based on multi-modal imaging) and their
relationships to treatment response, in order to stratify patients
and deliver personalized treatments. As a possible example, a
current issue of debate is the extent to which conventional
psychiatric treatments such as SSRIs are likely to interact with
psychedelic drugs in patient populations [96]. This is a compli-
cated problem as the interaction can conceivably occur at a
number of levels, including peripheral pharmacokinetic interac-
tion (which could be monitored using standard blood pharmaco-
kinetics), central pharmacokinetic interactions (such as
competition at the 5-HT2AR between the drug and endogenous
serotonin, or antidepressants that have a clinically significant
affinity for the 5-HT2AR), or pharmacodynamic interactions such
as synergistic or antagonistic effects on second messenger
systems or neuroplasticity. Evaluation on each of these levels will
require specific protocols that lie beyond the scope of this paper,
but the studies proposed here would provide a solid methodo-
logical platform and greatly help to inform such efforts. An
interesting ‘precision psychiatry’ approach to psychedelic clinical
research has recently been proposed by [97]. These authors
suggest that the variability in individual response (both the acute,
and longer-term clinical responses) could be captured by
computational approaches which leverage resting-state fMRI data
combined with population-level maps of the 5-HT2AR and gene
expression data. These data could then theoretically be used to
predict responses to treatments, stratify patients in clinical trials,
and select the most appropriate treatments and doses for an
individual patient. The authors list a number of pre-requisites for
the success of this approach, including: (a) larger study samples,
perhaps orders of magnitude larger than extant data, (b) studies
which follow-up patients over longer periods, (c) studies which
use multiple drugs and multiple patient cohorts with different
conditions, and (d) standardised acquisition and analysis methods.
These are not likely to be met in the short-term, however the
studies proposed herein may be helpful in providing accurate
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maps of 5-HT2A receptor distribution (or other relevant PET
measures), in providing an expanded database of (f)MRI data, and
in the use of the various ancillary measures outlined above. The
aims of Moujaes et al. are highly commendable, however the
history of truly useful (at an individual level) imaging-based
biomarkers in psychiatry is, at best, mixed (see [98] for a recent
review). The working feasibility of such an approach therefore
remains to be seen, but the studies proposed here may be a
highly useful initial step along the road to a true precision
psychiatry paradigm.

NOVEL OR ‘SECOND GENERATION’ 5-HT2A COMPOUNDS
Extensive efforts are currently underway to develop novel 5-HT2AR
agonists and test their clinical effects [63]. Recently a prominent
psychedelic researcher [99] has warned of the danger of
‘psychedelic exceptionalism’, or the belief that psychedelics are so
uniquely powerful and important that they are not bound by the
normal rules of clinical governance, ethics, or science. We agree this
is a concern, and clearly these novel compounds should be
approached using similar paradigms to those developed and used
successfully for other novel central nervous system (CNS) drug
candidates over the last 50 years. As such, a translational framework
for assessing novel neurologically-active compounds that has
become established in the field in recent years is the “three pillars”
approach. This was first outlined by [100] and subsequently further
developed with specific reference to neuroimaging methods [101],
the three pillars being: (1) tissue exposure (2) target engagement,
and (3) pharmacologic activity. Tissue exposure (does the
compound enter the brain in clinically significant concentrations
at clinically tolerable doses?) can be established by radiolabelling
the drug with a suitable radionuclide and conducting a PET
biodistribution study [102–104]. Target engagement (does the
compound bind to the target receptor?) can be assessed with [11 C]
Cimbi-36 PET to determine 5-HT2AR occupancy and any offsite
binding that may affect the tolerability or safety of new compounds
can be assessed using other suitable PET radioligands.
The third “pillar” (pharmacologic activity; does the drug cause

downstream effects on physiology, brain activity, or some other
relevant measure?) can be assessed in a number of ways, most
obviously in the current case, putative biomarkers of psychedelic
response such as brain network segregation/modularity measured
with fMRI [21, 50] and/or PET neuroplasticity changes. In addition
to being consistent with general procedures carried out in clinical
drug development, this workflow may provide us with key insights
into the unique molecular and functional effects of these novel
compounds for use in basic-science research and the future
development of pharmaceutical drug candidates.

THE ROLE OF PSYCHOTHERAPY
The roadmap outlined herein is concerned largely with founda-
tional neuropsychopharmacology, with the most appropriate study
participants likely being healthy subjects. However, as noted above,
neuroimaging has so far played an important role in some clinical
trials of psychedelic therapy (e.g., [50, 53]) and will likely continue to
do so. Modern psychedelic therapy is conceptualised by many as
“psychedelic-assisted psychotherapy” where the therapeutic benefit
is thought to come from a synergistic combination of the drug and
accompanying psychotherapy [105, 106]. However, this perspective
has recently been challenged by others, asserting the primacy of
the drug effects in the therapeutic action [107]. It is relatively well-
established that psychotherapy of various types can produce
measurable changes in brain function (recent reviews: [108, 109]). A
worthwhile aim of clinical (neuroimaging) studies would therefore
be to attempt to disentangle the contributions of the drug and
therapy components in driving both neurological and clinical
effects. Such investigations would need to be relatively large-scale,

multi-arm experiments that aim to control multiple aspects of the
patient experience in a systematic manner; a serious challenge.
Detailed discussion of these issues is well outside the main scope of
this proposal, however this is an area that is likely to be hotly
debated and intensively investigated as these treatments develop
further, and neuroimaging may well play an important role in such
studies.

CONCLUSIONS
Neuroimaging technology has played a key part in the modern
understanding and development of psychedelic therapies and will
likely continue to do so. Our purpose in this perspective piece has
been to outline current findings and chart a way forward to
address several issues of fundamental importance in the further
development of these drugs and associated therapies. Broadly,
these studies aim to establish a conceptual ‘molecular-functional-
clinical bridge’ by characterising the relationship between acute
and longer-term (clinically-relevant) effects, investigation of the
5-HT2A receptor and its association with functional and clinical
effects, and investigations focused on neuroplasticity. These
studies rely on multimodal neuroimaging (PET and MRI) as a core
set of technologies, combined with ancillary measures (e.g.
genotyping, subjective measures, pharmacokinetics, EEG/MEG).
Neuroimaging methods adapted from the development of other
CNS/psychiatric therapies have a lot to offer in this space and
should be adopted. While ambitious, these studies are perfectly
tractable, and would provide a solid basic-science foundation for
the further development of these therapies.
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