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11.Childhood Asthma Management Program Research Group

Abstract

Objectives: We aimed to investigate the role of genetics in the respiratory response of asthmatic 

children to air pollution, with a genome-wide level analysis of gene by nitrogen dioxide (NO2) and 

carbon monoxide (CO) interaction on lung function and to identify biological pathways involved.

Methods: We used a two-step method for fast linear mixed model computations for genome-

wide association studies, exploring whether variants modify the longitudinal relationship between 

4-month average pollution and post-bronchodilator FEV1 in 522 Caucasian and 88 African-

American asthmatic children. Top hits were confirmed with classic linear mixed-effect models. We 

used the improved gene-set enrichment analysis for GWAS (i-GSEA4GWAS) to identify plausible 

pathways.

Results: Two SNPs near the EPHA3 (rs13090972, rs958144) and one in TXNDC8 (rs7041938) 

showed significant interactions with NO2 in Caucasians but we did not replicate this locus 

in African-Americans. SNP-CO interactions did not reach genome-wide significance. The i-
GSEA4GWAS showed a pathway linked to the HO-1/CO system to be associated with CO-related 

FEV1 changes. For NO2-related FEV1 responses, we identified pathways involved in cellular 

adhesion, oxidative stress, inflammation, and metabolic responses.

Conclusion: The host lung function response to long-term exposure to pollution is linked to 

genes involved in cellular adhesion, oxidative stress, inflammatory and metabolic pathways.
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Introduction

Epidemiological studies have demonstrated a strong association between exposure to 

ambient air pollution and adverse effects on childhood respiratory health1–3, with asthmatic 

children being more susceptible to the negative effects of air pollution4–6. Lower lung 

function levels in asthmatic and non-asthmatic children have been associated with short-term 

exposure to air pollution3, 7, 8, but the long-term effects of pollution on lung function are less 

well studied in asthmatic children9–12.

Known biological mechanisms by which air pollution can impair health include 

autonomic dysfunction, oxidative stress, and systemic inflammatory responses13–16. 

Respiratory response to air pollution varies between individuals suggesting that genetic 

susceptibility likely plays a role17. Recent genome-wide interaction analyses of chronic air 

pollution exposure indicated that gene-environment interactions are important for asthma 

development18 and for lung function decline in non-asthmatic adults19.

In asthma, also genes play a role in determining the susceptibility to the harmful effects of 

air pollution20 but the underlying biological mechanisms of air pollution-mediated health 

effects are not fully understood warranting further examination of the genes and pathways 

that might be involved.
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We previously investigated the longitudinal relationship between the 4-month average 

exposure to air pollution and post bronchodilator (BD) forced expiratory volume in 1 second 

(FEV1) and showed that among the measured air pollutants, long-term exposures to carbon 

monoxide (CO) and nitrogen dioxide (NO2) are associated with reduced levels of FEV1 in 

children with asthma21. In the current study we use a hypothesis-free, genome-wide analysis 

to investigate whether genetic variants modify the long-term effects of CO and NO2 on 

lung function in children with asthma, and with a pathway analysis we explore further 

plausible underlying biological pathways of CO and NO2 mediated effects on lung function 

in asthmatic children.

Materials and Methods

The Childhood Asthma Management Program (CAMP; ClinicalTrials.gov Identifier: 

NCT00000575) study design and methods have been described elsewhere22. Additional 

details on all methods used in the present report are provided in an online data 

supplement. In summary, children enrolled in CAMP were 5–12 years of age and had 

airway hyper-responsiveness to methacholine at study entry. 1,041 children entered the 

randomization phase and 311, 312, 418 children received budesonide, nedocromil, and 

placebo, respectively. All subjects were treated and followed for four years with visits at two 

and four months after randomization and at four-month intervals thereafter. Each parent or 

guardian signed a consent form and participants of 7 years of age and older signed an assent 

form approved by each clinical center’s institutional review board.

Spirometry before and after the administration of two puffs of albuterol (bronchodilator) was 

conducted at randomization (RZ) and at follow up visits (n=13) according to the American 

Thoracic Society Standards23. Twenty-four hour average concentrations of CO and NO2 

were estimated for each metropolitan area using data from the United States Environmental 

Protection Agency’s Atmospheric Integrated Research Monitoring Network. The ZIP or 

postal code centroid coordinates were used to link participants to daily concentrations from 

the nearest monitor within 50 km that did not have missing data on that day (December 1993 

through June 1999). Averaging the daily pollution concentrations for the 4-month intervals 

between the clinic visits for lung function measurement created the moving averages.

Genome-wide single nucleotide polymorphisms (SNP) genotyping for CAMP subjects (their 

families and iControlDB controls) was performed on Illumina’s HumanHap550 Genotyping 

BeadChip (Illumina, Inc., San Diego, CA).

Statistical Analysis

Genome-wide interaction study—In a genome-wide interaction analysis the 

computational effort needed to evaluate the effects of hundreds of thousands SNPs on 

the longitudinally measured trait is prohibitively large with a classic linear mixed model 

(LMM) approach. We followed the Sikorska et al. conditional two-step approach for fast 

linear mixed model computations for genome-wide association studies (GWAS)24, a method 

to explore whether the longitudinal relationship between 4-month averaged pollution (CO 

and NO2) and post-BD FEV1 %predicted is modified by SNPs in the human genome. The 
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practical application of this approach is to be used as a surrogate of classic LMM, hence we 

performed the genome-wide scan for hundreds of thousands SNPs in a fast manner.

In summary, in the first step we fitted a LMM with subject-specific (random) intercept and 

slope for pollution exposure with all SNP terms omitted (main effect and interaction with 

pollutant) from the model. LMM tests were performed in the R programming language 

(version 3.5.0 (2018–04-23)), and code availability can be requested by the corresponding 

author.

At the second step, simple linear regression tests of SNPs genome-wide with an individual’s 

FEV1 response to CO and NO2 (subject-specific-random slopes of pollution as given by 

LMM in step 1), respectively were performed in PLINK25, using an additive allelic model. 

SNPs included in the genome-wide analysis had a minor allele frequency > 5% (n=474,792).

For estimating the exact effect size of the interactions and confirm statistical significance, 

top signals for SNP-pollution interaction as given by 2-step approach (P-value <10−5) 

were tested with the classic LMM including terms of pollution, SNP and SNP-

pollution interaction, (e.g., Bonferroni corrected minimally significant P-value being 

0.05/474,792=1.05E-07). Non-Hispanic white (Caucasian) CAMP subjects (n=522) were 

used as the primary study population and African-American CAMP subjects (n=88) served 

as the replication study population.

Pathway-level analysis for the genome-wide SNP by pollutant interaction 
analysis—To analyze pathway-level SNP- pollutant interactions we used the improved 

gene-set enrichment analysis for GWAS (i-GSEA4GWAS; http://gsea4gwas.psych.ac.cn/

inputPage.jsp)26, GSEA evaluates whether the distribution of genes sharing a biochemical or 

cellular function is different from the distribution of a ranked genome-wide gene list26, 27. 

Details on the i-GSEA4GWAS method are given in the supplementary material.

Input data to perform the pathway-level analysis of the SNP-pollution interaction analysis 

were P-values of the two-step genome-wide SNP-pollution interaction analysis in Caucasian 

CAMP subjects. We changed the default settings and selected specific parameters for the 

gene-set enrichment analysis; to avoid overrepresentation of SNPs in more than one gene 

we restricted mapping SNPs to +/−20kb around a gene. We selected additional filtering 

for gene set size, set to at least 5 genes, so any narrow functional categories would not 

be missed. Next, the default canonical pathway method of gene-sets was used for further 

analysis. These canonical pathways were extracted and curated from Molecular Signatures 

Database from a variety of online resources (MSigDB v2.5; http://www.broadinstitute.org/

gsea/msigdb/). The genome-wide P-values were transformed to –log (P-values), represented 

genes were mapped based on SNPs P-values, and the enrichment score was calculated.

Significant genes in a pathway are defined as the genes mapped with at least one of the 

top 5% P-values of all SNPs (0.05* 474,792 = 23,740 SNPs). Each significant gene was 

represented by the SNP in that gene with the lowest genome-wide SNP-pollutant interaction 

P-value (top SNP per significant gene). We selected the top SNPs of all given pathways and 
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with classic LMM we estimated the interaction effect size for the gene-sets most significant 

SNP-pollutant interactions in Caucasians.

Results

All subjects in CAMP considered in this analysis were randomized and followed up during 

the trial period. A total of 1,003 of the 1,041 randomized children (96.3%) had pollution 

data available of which 610 were studied in the genetic analysis. At study entry the 

mean (SD) age was 9 (2.1) and geometric mean (min-max) PC20 1.1 (0.02–2.5) mg/ml. 

Table 1 shows the main characteristics of the participants. 82.5% of the children attended 

all visits during the 4-year trial (median number of completed visits=14 (range: 1–14)). 

Each participant had a median of 10 (range: 1–10) post-BD lung function measurements. 

Repeated FEV1 measurements increase the power of our statistical analysis to detect 

significant differences between means (8200 and 8600 observations for NO2 and CO 

analysis, respectively). Tables S1-S2 summarizes the 4-month moving averages pollutant 

concentrations during December’93-June’99, with number of observations, percentiles and 

interquartile range (IQR). CO and NO2 were weakly correlated (spearman rho=0.30).

Two-step genome-wide SNP by pollutant interaction analysis

Figure 1 presents an overview of our study design and results of the GWIS. After MAF 

pruning, 474,792 SNPs were included in the primary analysis, and the smallest P-values for 

SNP-NO2 and SNP-CO interactions with the 2-step approach were 1.37E-06 and 2.04E-06 

respectively, showing only suggestive evidence for genome-wide SNP-pollutant interactions 

(Table 2 and tables S3A and S4). The quantile-quantile (QQ) plots of the two-step GWIS 

are presented in Figures S1-S2, showing that the distribution of association P-values was 

similar to that expected for a null distribution and that no P-values met the conventional 

genome-wide statistically significant levels (e.g., Bonferroni corrected minimally significant 

P-value being 0.05/474,792=1.05E-07; see Figures S1 and S2).

Confirmation by classic linear mixed model testing

We selected the six top signals (P-value <10−5) SNP-NO2 interactions given by the two-step 

approach and with the classic LMM model we assessed the effect size of these interactions 

and compared their P-value as given by the two approaches. In Caucasians, change in post-

BD FEV1 %predicted per IQR increase in NO2 level ranged from −1.3 to 1.1 for the 6 SNP-

NO2 interactions. With the classic LMM model the P-values decreased for 5 out of 6 SNP-

NO2 interactions with values ranging from 1.3E-08 to 8.5E-06 (table S3A). Three SNP-NO2 

interactions reached genome-wide significance with the classic LMM: rs13090972 (80kb 

5’ of EPHA3) and rs958144 (162kb 5’ of EPHA3) near EPHA3 (LD between 2 SNPs 

r2=0.55) and rs7041938 in TXNDC8 – the latter in high linkage disequilibrium (r2=0.8) 

with rs12684188 in SVEP1 (Table 2). Similarly, in African Americans the P-values of 

associations were lower with LMM, but none reached genome-wide statistical significance 

(all P-values > 0.05; see table S3B). Table S4 shows that the seven top signals (P-value 

<10–5) SNP-CO interactions as given by the two-step approach did not reach genome-wide 

statistical significance with LMM. The change in post-BD FEV1 %predicted per IQR 
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increase in CO level ranged from −0.98 to 0.83 and P-values range from 9.69E-07 to 

1.26E-05.

Pathway-level analysis for the two-step genome-wide SNP by pollutant interaction analysis 
on FEV1 %predicted

For the i-GSEA4GWAS in Caucasian CAMP subjects, -log (P-values) of 474,792 

gene variants were imported and 265,485 variants were mapped on genes +/−20kb 

(total number of genes: 16,854). We identified one pathway interacting with CO 

(P-value=0.001) and 23 pathways interacting with NO2 (P-values: 0.0001–0.01). 

Table S5 presents the i-GSEA4GWAS suggested pathways for the two pollutants. 

Details for each individual pathway (SNPs, mapped genes, gene sets, FDR, P-value, 

description) of NO2 and CO mediated effects can be found http://gsea4gwas.psych.ac.cn/

getResult.do?result=13F3A972887892430E6A5C369D76FEAD_1372283303807 

and http://gsea4gwas.psych.ac.cn/getResult.do?

result=13F3A972887892430E6A5C369D76FEAD_1372284527739, respectively. All the 

pathways we present in our findings had FDR<0.25. In summary, the i-GSEA4GWAS 
showed a pathway (PAC1R; receptor of pituitary adenylate cyclase-activating polypeptide 

(PACAP)) to be associated with CO-related FEV1 changes. For NO2-related FEV1 

responses, we identified several pathways involved in inflammation, oxidative stress, the 

HO-1/CO system, calcium homeostasis, cellular adhesion and metabolic responses.

Within each gene-set/pathway there were significant genes (genes mapped with at least one 

of the top 5% of all SNPs-pollutant interactions in the 2-step genome-wide analysis). Each 

significant gene is represented by the SNP in that gene with the lowest genome-wide P-value 

of SNP by pollutant interaction (the top SNP per significant gene). Effect sizes of interaction 

of those SNPs with pollutants as given by LMM are shown in the supplementary material 

(see tables S6 and S7).

Discussion

Most gene–air pollution studies have focused on a few candidate genetic variations and 

investigated short-term exposures to pollution17. Although these small hypothesis-driven 

studies can contribute to our understanding of specific gene–pollution effects, they often fail 

to uncover novel disease-causing mechanisms and in some cases have not been replicated by 

subsequent studies28, 29. To the best of our knowledge, this is the first longitudinal GWIS 

on lung function response to ambient air pollution in asthmatic children. We used the 2-step 

approach as a screening tool to identify genes that may interact with air pollution while 

gaining computational time, and we confirmed the top hits of the 2-step approach with the 

classic LMM; we used the genome-wide output for a iGSEA4GWAS. Below we discuss the 

putative genes involved in air pollution effects on lung function in childhood asthma and the 

identified pathways.

At SNP-level, two loci, the EPHA3 (receptor tyrosine kinase of Eph family; location 3p11.2) 

and TXNDC8 (thioredoxin domain containing 8 (spermatozoa) or Spermatocyte/Spermatid-

Specific Thioredoxin-3; location 9q31.3) genes showed genome-wide statistical evidence 

for interaction with NO2 (with the classic LMM). The best-documented function of the 
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Eph-receptor/ephrin-A signaling is the regulation of cell adhesion and migration processes 

critical for a wide variety of including tissue remodeling and immune surveillance30, 31. 

Recent findings suggest that Eph-signaling is involved in pathological conditions such as 

lung cancer, yet its role in asthma is unknown32, 33. The fact that receptor tyrosine kinase 

pathways contribute to aspects of airway inflammation, airway hyper-responsiveness and 

remodeling of asthma34, suggests that we may have identified a novel receptor tyrosine 

kinases (EPHA3) important for the pathogenesis of asthma in response to NO2 in Caucasian 

children.

The second top signal locus, TXNDC8, belongs to the thioredoxin reductase enzymes, 

a well-characterized subfamily of selenoproteins that perform an essential redox role in 

immune cells35. Recent studies indicated that Thioredoxin system may contribute to the 

pathogenesis of COPD, asthma and lung injury and suggest that this pathway may be 

used in future therapeutic applications36. The genome-wide top hit SNP (rs7041938) in 

TXNDC8 found to modify the NO2 effects on FEV1 in Caucasian subjects is in high 

linkage disequilibrium (r2>0.8) with rs12684188 in SVEP1 (sushi, von Willebrand factor 

type A, EGF and pentraxin domain containing 1; location 9q32). In a recent GWAS, a 

locus containing the SVEP1 gene showed signals of association with FEV1 decline in 

non-asthmatic adults37. In our asthmatic children the interaction P-value of the SVEP1 
variant did not reach significance. SVEP1 codes for a protein called polydom, which is 

recognized as a cell adhesion molecule with a biological role in cellular adhesion and/or in 

the immune system38, 39; but its role in asthma has not been investigated so far. We were 

unable to replicate these loci in African-Americans and it would be important to replicate 

our finding in other populations in the future.

The pathway analysis helps to clarify biological plausible connections for our GWAS hits 

with one another. Some of the pathways identified from our iGSEA4GWAS analysis have 

been previously found to play a role in asthma and be related to cellular adhesion and 

immune response, as do so our GWAS top loci. The first genome-wide gene by interaction 

study on asthma development identified genes involved in glycosphingolipids biosynthesis, 

G-protein coupled receptor signalling and adhesion18. Similarly, our iGSEA4GWAS 
identified sphingolipid (glycosphingolipid metabolism pathway), G-coupled receptor (gs-

pathway, agpcr-pathway, plce-pathway) and epithelial adhesion (HSA04514 cell adhesion 

molecules pathway) pathways in lung function response to NO2, pointing to the same 

direction. Sphingolipids and altered sphingolipid metabolism have emerged as potential key 

contributors to the pathogenesis of asthma40. Orosomucoid-like 3 gene (ORMDL3) and the 

asthma susceptibility locus 17q21 have been strongly and reproducibly linked to childhood 

asthma41.

The role of airway epithelial barrier function (HSA04514 cell adhesion molecules 

pathway) in the susceptibility to develop allergic asthma has been extensively studied and 

polymorphisms in adhesion molecules genes have been associated with asthma and asthma 

severity42–44. It is plausible that exposure to NO2 induces oxidative stress with cellular 

barrier damage and inflammatory responses. In the supplementary material we describe in 

more detail how pathways involved in inflammation and oxidative stress (NOS1, HSP27, 

IL10, Heme biosynthase) may be linked to NO2 exposure and how they are inter-related.
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Metabolic pathways (feeder of glycolysis and obesity pathways) are activated to compensate 

the cellular demands to stress and the HO-1/CO system may protect against oxidative 

stress and inflammation. In line with our findings, a GWIS study of non-asthmatic adults, 

identified a mechanistic link between adiponectin (a metabolic biomarker with modulating 

action on inflammatory processes systemically and locally in the lung) and cadherin 13 as 

a biologically plausible pathway for modifying the air pollution exposure effect on lung 

decline19.

Oxidative stress has been associated with calcium influx regulation, two responses observed 

in our pathway analysis as well45, 46. Interestingly, a proteomic-based study has shown that 

allergen-induced early asthma response in rats is associated with glycolysis, calcium binding 

and mitochondrial activity47, supporting our identified underlying molecular mechanisms for 

response to environmental toxicants in asthma.

The iGSEA4GWAS of CO interactions suggested the neuropeptide pituitary adenylate 

cyclase-activating peptide receptor (PAC1R) pathway in CO-related response. The ligand 

of PAC1R (PACAP) can induce bronchodilation and endogenous regulation of airway tone 

by means of a CO-dependent mechanism with local HO-1/CO release in the airway smooth 

muscle, and it also has pro-inflammatory functions that require calcium regulation48–50. 

Furthermore, PACAP, acting through type 1 PACAP receptor, exerts a potent protective 

effect against oxidative stress-induced apoptosis51.

Our childhood asthma study had the advantage of having a long follow-up period with high 

attendance of the subjects and repeated lung function measurements, air pollution levels 

during that period and genomic data. The two-step approached used for longitudinal data24 

provided shorter processing time and we confirmed its accuracy, i.e., at a second stage the 

genome-wide top signals found by the two-step approach were confirmed by LMM testing.

We could not find a second study of asthmatic children with similar design, repeated 

lung function measurements, population characteristics, genome-wide genotyping and air 

pollution data. Although population stratification is less likely to bias estimates of gene-

environment interaction effects52, we used as our primary study only Caucasian CAMP 

subjects and found no evidence of stratification in our Q/Q plots. For replication studies, 

definition and measurement of the exposure and/or outcome is critical to the success of 

gene–environment investigations, therefore we decided to use the second largest ethnic 

subgroup of the CAMP as our replication population (although of relative small size), to 

ensure that the genotyping, outcome and exposure were measured reliably and consistently. 

This reduced power and potential different linkage disequilibrium patterns in the replication 

population represent limitations of this study.

After testing for pollution effect modification at the SNP-level, we performed the pathway 

approach to assess the overall evidence of interaction of pollution with a group of 

functionally related genes, thus incorporating prior biological knowledge. Our pathway-

level analysis of SNP-pollution interactions identified biological plausible mechanisms for 

pollution-mediated asthma progression in children that are generally consistent with the 

SNP-level analysis.
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Our findings highlight the promise of pursuing genome-wide gene-environment interaction 

studies in smaller populations with high quality longitudinal exposure information by 

showing that they can identify biologically relevant effects of these exposures. We conclude 

that genetic susceptibility to traffic-related air pollutants such as with CO and NO2 are 

linked to oxidative stress and inflammation pathways, while metabolic pathways including 

calcium homeostasis and the HO-1/CO pathway may play a cytoprotective role against 

oxidative stress and inflammation. Our findings may represent the first step for functional 

research and pharmacological developments for protection against the detrimental effects of 

air pollution on asthma severity and progression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
presents the flow chart with the analytic steps and summary of results of the genome-wide 

gene by pollutant(s) interaction study. Top hit SNPs (P<10−5) interacting with pollutants 

in Caucasians were selected and with LMM we assessed the interaction effect size and 

p-values. Genome-wide significant interactions (P<10−7) were tested for replication in 

African-Americans.

CO: carbon monoxide; NO2: nitrogen dioxide; LMM: linear mixed model; SNP: single 

nucleotide polymorphism, MAF: minor allele frequency; GWAS: genome wide interaction 

study; iGSEA4GWAS: improved gene-set enrichment analyses for GWAS; FEV1: forces 

expiratory volume in 1 second
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Table 1.

Population characteristics

N= 1003

City; n (%)

Albuquerque 121 (12.1)

Baltimore 126 (12.6)

Boston 123 (12.3)

Denver 141 (14.1)

San Diego 122 (12.2)

Seattle 136 (13.6)

Saint Louis 133 (13.3)

Toronto 101 (10.1)

Sex; n (%)

Males
Females

602 (60)
401 (40)

Treatment Group; n (%)

Placebo 407 (40.6)

Budesonide 298 (29.7)

Nedocromil 298 (29.7)

Ethnicity; n (%)

Caucasians 677 (67.5)

African-Americans 137 (13.7)

Hispanics 97 (9.7)

Other 92 (9.2)

Annual Income ≥30K USD; n (%)

Yes
No

728 (76)
235 (24)

In utero smoking exposure; n (%)

Yes
No

114 (14)
854 (86)

Pre bronchodilator lung function at randomization; mean (SD)

FEV1%predicted 93.8 (14.3)

FVC %predicted 104.0 (13.1)

FEV 1 /FVC% 79.7 (8.3)

Post bronchodilator lung function at randomization; mean (SD)

FEV1%predicted 103.0 (12.8)

FVC %predicted 106.5 (12.8)

FEV 1 /FVC% 85.5 (6.5)
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FEV1 : forced expiratory volume in 1 second; FVC: forced vital capacity; SD: standard deviation; =>30K USD: equal or more than 30,000 United 

State Dollars
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