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Abstract

Introduction: Lung adenocarcinoma (LUAD) is the major type of non-small

cell lung cancer with low a survival rate caused by metastasis. SCN4B encod-

ing voltage-gated sodium channel β subunit is regarded as a metastasis-

suppressor gene. We aim to explore how SCN4B influences the progression

and prognosis of LUAD.

Methods: The gene expression profiles of 585 LUAD samples in TCGA and

GSE31210, GSE116959, and GSE72094 datasets from the GEO database were

downloaded for analysis. Differentially expressed genes were obtained through

the “limma” package. The “clusterProfiler” package was used to conduct

GSEA. Survival analysis was conducted via “survival” and “survminer”
packages. Transcription factors regulating SCN4B expression were screened by

correlation analysis and further predicted by FIMO. Infiltration of immune

cells was analyzed by CIBERSORT. ESTIMATE algorithm was used to evalu-

ate the immune-related scores.

Results: SCN4B expressed higher in normal samples than in LUAD samples

and higher in female samples than male samples. One hundred and twenty-six

pathways were significantly enriched between high and low SCN4B expression

groups. Six transcription factors’ expressions were positively related to SCN4B

expression, and ChIP-seq data from “Cistrome” verified that TAL1 and ERG

might bind to the upstream sequence of SCN4B. SCN4B expression was signifi-

cantly correlated with activated memory CD4 T cells, resting mast cells, and

monocytes. TMB status, three scores based on ESTIMATE algorithm, and

expression of three immune checkpoints showed significant differences

between SCN4B high- and low-expression groups. SCN4B could be considered

as an independent prognostic signature of LUAD patients that higher expres-

sion represents a better prognosis.

Conclusion: SCN4B expresses higher in normal samples, and SCN4B is able

to be an independent prognostic signature for LUAD patients. TAL1 and ERG

may regulate the expression of SCN4B by binding its upstream sequences. Our

research is valuable in improving the effectiveness of treatment in LUAD.
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1 | INTRODUCTION

Lung cancer is one of the leading causes of cancer death
with 1.2 million new cases arising annually.1 Almost 80%
of lung cancers are non-small cell lung cancers
(NSCLCs), and 40% of them are lung adenocarcinoma
(LUAD), which is mainly caused by smoking.2 The
reason for low survival rate despite prevention and treat-
ment is mostly distant metastasis. LUAD strongly trends
to metastasize to the brain.3 LUAD shows high rates of
somatic mutation and genomic rearrangement,4 which
affect key pathways in LUAD.5 Tumors of some patients
harbor somatically activated oncogenes such as
mutant EGFR1, and molecularly targeted therapies have
improved treatment for them.6 Alterations not only accu-
mulate in oncogenes but also in suppressor genes in can-
cer lines during evolution.7 It is a long way to understand
more about suppressor genes in LUAD for more effective
treatment, although there has been a lot of research
on LUAD suppressor genes, such as PRDM16,8

MIR99AHG,9 and TNNC1.10

Voltage-gated sodium channels (VGSCs) containing α
and β subunits in mammals work for the initiation
and propagation of action potentials in excitable cells.11

Besides electrical excitability, β subunits regulate
adhesion, migration, pathfinding, and transcription by
mediating multiple signaling pathways on different
timescales.12 There are five β subunits in mammals,
namely, β1, β1B, β2, β3, and β4, encoded by four genes:
SCN1B–SCN4B.13 Reduced β4 protein (encoded by
SCN4B) levels in breast cancer biopsies correlate with
high-grade primary and metastatic tumors. In contrast,
SCN4B overexpression can reduce cancer cell invasive-
ness and tumor progression.14 When SCN4B is inhibited,
colorectal cancer cell proliferation and metastasis are
promoted.15 Preserved SCN4B expression is an indepen-
dent indicator of favorable recurrence-free survival in
classical papillary thyroid cancer.16 These in vivo and
in vitro experiments indicate that SCN4B represents a
metastasis-suppressor gene. In NSCLC, VGSCs might be
an integral component of the metastatic process by regu-
lating intracellular sodium homeostasis.17,18

Metastasis is one of the reasons for the low survival
rate in LUAD, and SCN4B is proven to be a metastasis-
suppressor gene in many cancers, including lung cancer.
Hence, we aim to explore how SCN4B influence the
progression of LUAD and the prognosis, further aid to
improve treatment.

2 | MATERIALS AND METHODS

2.1 | Datasets collection

We downloaded gene expression microarray data of
585 LUAD in The Cancer Genome Atlas (TCGA; https://
tcga-data.nci.nih.gov/tcga/) database, including 60 normal
samples and 525 tumor samples. There were 501 samples
with complete survival information for clinical informa-
tion (Table 1). At the same time, the maf file of LUAD
and CNV data for 516 LUAD samples was downloaded
for subsequent analysis.

In addition, we also downloaded the datasets
GSE31210 (Affymetrix Human Genome U133 Plus 2.0
Array), GSE116959 (Agilent-039494 SurePrint G3 Human
GE v2 8x60K Microarray 039381), and GSE72094
(Rosetta/Merck Human RSTA Custom Affymetrix 2.0
microarray) from the Gene Expression Omnibus
(GEO database; https://www.ncbi.nlm.nih.gov/geo/).
There were 226 tumor samples and 20 normal samples in

TABL E 1 Clinicopathological characteristics of LUAD patients

from TCGA-LUAD database.

Characteristics

Patients (N = 501)

No. %

Gender Female 271 54.09%

Male 230 45.91%

Age ≤66 (median) 259 51.70%

>66 (median) 242 48.30%

Grade I 269 53.69%

II 119 23.75%

III 80 15.97%

IV 25 4.99%

Unknown 8 1.60%

Survival time Long (>5 years) 251 50.10%

Short (<5 years) 52 10.38%

OS status Dead 182 36.33%

Alive 319 63.67%

Radiation Yes 416 83.03%

No 71 14.17%

Unknown 14 2.79%

Tobacco Yes 58 11.58%

No 361 72.06%

Unknown 82 16.37%
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the GSE31210 dataset, 210 of which contained valid sur-
vival information. The GSE116959 dataset consisted of
57 tumor samples and 11 normal samples, and 398 tumor
samples with complete and valid survival information
were included in the GSE72094 dataset.

2.2 | Identification of differentially
expressed genes (DEGs)

R package “limma” (http://master.bioconductor.org/
packages/limma/) was used to identify differentially
expressed genes (DEGs) between tumor and normal
samples. The criteria of jlog2(fold change [FC])j > 1.0 and
adjusted p-value <0.05 were used to filtrate the DEGs. The
immunohistochemistry (IHC) results from the Human
Protein Atlas (HPA; https://www.proteinatlas.org/)
database were downloaded for validation.

2.3 | Gene set enrichment analysis
(GSEA)

The samples in the TCGA dataset were divided into two
groups by the median expression level of the target gene.
The group with expression levels higher than the median
was classified as the high-expression group (HEG), and
the other was the low-expression group (LEG). The DEGs
between HEG and LEG were calculated by the “limma”
package. Then R package “clusterProfiler”19 (http://
master.bioconductor.org/packages/clusterProfiler/) was
used to conduct gene set enrichment analysis (GSEA),
and the standard of jNESj > 1 and p-value <0.05 was
used to screen significantly enriched pathways.

2.4 | Survival analysis

Survival analyses were performed using the Kaplan–Meier
method and the log-rank test by the survival package
(https://CRAN.R-project.org/package=survival) and surv-
miner package to estimate the overall survival (OS) rate of
different groups. A multivariate Cox regression model was
used to analyze whether the target gene could predict the
survival of LUAD patients independently of other factors.

2.5 | Immune cell infiltration analysis

CIBERSORT (Cell-type Identification By Estimating
Relative Subsets Of RNA Transcripts)20 was used to
calculate the relative proportions of 22 immune cells from
leukocyte gene signature matrix (LM22) in each EwS

sample. LM22 contains 547 genes that distinguish
22 human hematopoietic cell phenotypes, including naive
and memory B cells, seven T-cell types, NK cells, plasma
cells, and myeloid subsets.20 The immune score of the
samples was calculated using the “estimate” function
package (https://R-Forge.R-project.org/projects/estimate/).

2.6 | Screening of transcription factors
related to SCN4B gene expression

We performed differential expression analysis in LUAD
and adjacent samples in the TCGA-LUAD dataset, and the
transcription factors with significant differential expressions
were screened according to jlog2FCj > 1 and p-value <0.05.
Then the correlation between transcription factors and
SCN4B mRNA was calculated using spearman correlation,
and transcription factors significantly related to SCN4B
were screened according to p < 0.05 and Rho > 0.68.

2.7 | Prediction of transcription factor
binding sites

We download the sequence of 1000 bp upstream of the
start site of the SCN4B gene from UCSC (http://genome.
ucsc.edu/) and the motif files corresponding to transcrip-
tion factors from the JASPER database (https://jaspar.
genereg.net/). Then we used the online tool FIMO
(https://meme-suite.org/meme/tools/fimo) to predict
whether there was a transcription factor binding motif in
the upstream region of the SCN4B promoter.

2.8 | Statistical analysis

The Wilcoxon rank sum test was conducted to compare
the expression differences of SCN4B in LUAD and nor-
mal samples as well as other clinicopathological features.
Multivariate Cox regression proportional hazards model
determined the independent prognostic indicators for
LUAD. When the p-value is less than 0.05, the difference
is considered to be statistically significant. We used R
language (version 4.1.0) to perform all statistical analyses.

3 | RESULTS

3.1 | SNC4B significantly downregulated
in LUAD samples

Through differential expression analysis between tumor
and normal samples in TCGA-LUAD, SCN4B was found
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F I GURE 1 Expression of SCN4B in LUAD and normal samples. (A–C) Differential expression of SCN4B in TCGA, GSE116959, and

GSE31210 datasets. (D) Expression of SCN4B in different pathological stages (I, II, III, IV) in clinical information. (E,F) Differential

expression of SCN4B in age and gender. (G) Slices of SCN4B expression normal and pathological tissues in the HPA database. The

significance levels are: ns represents p > 0.05, * represents p ≤ 0.05, ** represents p ≤ 0.01, *** represents p ≤ 0.001, **** represents

p ≤ 0.0001.
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F I GURE 2 GSEA of LUAD samples of HEG and LEG. (A) The top 10 activated and inhibited pathways. (B) Ten pathways with the

smallest p-value.
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to be significantly lower expressed in cancer samples
(Figure 1A). This trend was further validated by other
two lung cancer datasets (GSE116959 and GSE31210)
(Figure 1B,C). The expression of SCN4B in tumor sam-
ples with different pathological stages (I, II, III, IV) was
analyzed, and the results showed the expression level
became much lower as the stage passed by from stage I to
stage III (Figure 1D). Considering gender and age,
SCN4B expression in the female group was significantly
higher than those in the male group (Figure 1E), while
there was no significant difference in relatively young
and old groups (median = 66 years old) (Figure 1F). The
IHC results in HPA database showed that SCN4B
expressed higher in normal tissues than in tumor tissues
in tissue level (Figure 1G). These results showed that the
expression of SCN4B in LUAD samples was significantly
downregulated.

3.2 | Pathways changes between high
and low SCN4B expression groups

According to the median expression level of SCN4B,
LUAD samples in the TCGA-LUAD dataset were divided
into two groups (HEG and LEG), and GSEA was per-
formed. The results showed that 126 KEGG pathways
were significantly enriched in the gene SCN4B HEG
compared to LEG (Table S1). The top 10 activated path-
ways were shown in Figure 2A, including cell adhesion
molecules, calcium signaling pathway, neuroactive
ligand–receptor interaction, and so on. Three pathways
(mismatch repair, aminoacyl-tRNA biosynthesis, and
protein export) were significantly inhibited in the SCN4B
LEG group. Ten pathways with highest significance were
shown in Figure 2B.

3.3 | Transcription factors ERG and
TAL1 probably binded to SCN4B to regulate
its expression

We selected a total of 212 transcription factors that were
differentially expressed in LUAD samples (Table S2) and
calculated the correlation between the 212 transcription
factors and SCN4B in the TCGA-LUAD dataset. Accord-
ing to the standard of p < 0.05 and jcorrelationj > 0.68,
we finally found that six transcription factors were sig-
nificantly positively correlated with the expression of
SCN4B (Figure 3A–F). Then we searched for transcrip-
tion factor binding sequences in the upstream 1000 bp
region of the SCN4B promoter. According to p-
value < 10�4, we found that there might be a binding
site of transcription factor T-cell acute lymphocytic

leukemia 1 (TAL1, MA0091.1.meme) at about 835 bp
upstream of the SCN4B promoter, a binding site of
transcription factor nuclear factor 1 X-type (NFIX,
MA1528.1.meme) at about 574 bp upstream of the
SCN4B promoter, and a binding site of transcription fac-
tor erythroblast transformation-specific transcription fac-
tor ERG (ERG, MA0474.3.meme) at about 170 bp
upstream of the SCN4B promoter, suggesting that the
transcription factors TAL1, NFIX, and ERG could
regulate the expression of the SCN4B by binding to its
upstream sequences (Table S3). Furthermore, by
searching the ChIP-seq public database Cistrome
(http://cistrome.org/db/#/), we found that there was an
obvious binding peak of TAL1 on SCN4B in Leukemia
Cell dataset GSM112231121 (score = 2.594) (Figure 3G).
In the Breast dataset GSM72698222 (score = 2.391), the
ERG ChIP-seq results showed an obvious binding peak
on SCN4B (Figure 3H). The results verified the reliability
of TAL1 and ERG regulating the expression of SCN4B
by binding with it.

3.4 | Correlation between SCN4B and
immune infiltration in LUAD

The infiltration of 22 types of immune cells in the TCGA-
LUAD samples was calculated by CIBERSORT
(Figure 4A). The difference in infiltration ratios of
21 types of immune cells between HEG and LEG samples
was analyzed (immune cells with infiltration ratio of
0 was deleted). The infiltration ratios of 13 types
of immune cells were significantly different between
samples in HEG and LEG, including memory B cells,
plasma cells, CD8 T cells, resting memory CD4 T cells,
activated memory CD4 T cells, focal helper T cells, regu-
latory T cells (Tregs), monocytes, macrophages M1, mac-
rophages M2, resting dendritic cells, activated dendritic
cells, and resting mast cells (RMCs) (Figure 4B). Further
analysis of the Pearson correlation between SCN4B and
the mentioned 13 types of immune cells showed that the
expression of SCN4B was significantly correlated with
activated memory CD4 T cells, RMCs, and monocytes
(jcorj > 0.3 and p < 0.05) (Figure 4C–4E).

3.5 | SCN4B was an independent
prognosis factor for LUAD patients

Survival analysis was performed on the LUAD patients in
the TCGA-LUAD, and the results showed that the prog-
nosis of patients with low expression of SCN4B was rela-
tively poor (Figure 5A). Survival information from lung
cancer datasets GSE72094 and GSE31210 confirmed this
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result once again (Figure 5B,C). To determine whether
SCN4B expression was an independent prognostic factor,
clinical information (age, gender, stages) and SCN4B
expression value were included for multivariate Cox

regression analysis. The result showed that SCN4B was
an independent predictor of the outcome of LUAD
patients (HR: 0.87 [0.79–0.96] and p-value < 0.01)
(Figure 5D).

F I GURE 3 Transcription

factors ERG and TAL1 combine

with SCN4B to regulate its

expression. (A–F) Analysis results of
the correlation between the six most

significantly correlated transcription

factors (TBX2, TAL1, PGR, NFIX,

MYOCD, ERG) and SCN4B mRNA.

(G,H) ChIP-seq database results.
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3.6 | Differences of mutation landscape
between high and low SCN4B expression
groups

Most human cancers are caused by somatic alterations,
leading to oncogene activation or tumor suppressor gene

inactivation. Systematic approaches based on sequences
of the human genome have made identifying cancer
genome alterations such as point mutations and copy
number increases or decreases possible.23 The somatic
mutation profile of TCGA-LUAD was used to observe the
difference in somatic mutation level between HEG and

F I GURE 4 Infiltration of immune cells. (A) Relative content of 22 types of immune infiltrating cells. (B) Difference in immune cell

infiltration between 21 types of immune-infiltrating cells (excluding all zero immune-infiltrating cells) in samples of HEG and LEG. **

represents p ≤ 0.01, *** represents p ≤ 0.001, **** represents p ≤ 0.0001. (C–E) Correlation of SCN4B’s expression and three significantly

different immune cells, activated memory CD4 T cells, resting mast cells, and monocytes.
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LEG, and the tumor mutation burden (TMB) was also
calculated. Mutation results showed that the gene TP53
mutation rate was the highest in both groups
(Figure 6A,B, high: 38%, low: 58%). TMB analysis showed
that there was a significant difference between HEG and
LEG (Figure 6C). Meanwhile, we analyzed the differ-
ences in CNV types between HEG and LEG and found
that the proportion of Diploid_normal_copy in HEG
(64.9%) was higher than that in LEG (43.6%). There were
significant differences by chi-square test in CNV types
between HEG and LEG (Figure 6D).

3.7 | Immunotherapy outcome
prediction between different SCN4B
expression groups

More and more patients with advanced lung cancer
benefited from immunotherapy, which promoted us to

screening immunotherapy candidates. Firstly, we esti-
mated ESTIMATE Score, Immune Score, and Stromal
Score by ESTIMATE and found these scores were signifi-
cantly higher in the HEG group than LEG group
(Figure 6E). Furthermore, we analyzed the difference of
eight immune checkpoint genes PD-1 (PDCD1), CTLA4,
PDL-1 (CD274), PDL-2 (PDCD1LG2), CD80, CD86,
LAG3, and TIGIT in HEG and LEG. Three immune
checkpoint genes CD86, CD80, and PDL-2 (PDCD1LG2)
significantly upregulated in HEG compared to LEG
(Figure 6F).

4 | DISCUSSION

SCN4B was explored in this study, focusing on its
function in LUAD. As a metastasis-suppressor gene in
many other cancers, SCN4B also inhibited the progres-
sion of LUAD. Higher expression of SCN4B indicated

F I GURE 5 Relationship between expression of SCN4B and prognosis and clinical traits. (A–C) KM survival curves of HEG and LEG in

TCGA, GSE72094, and GSE31210 datasets. (D) Multivariate Cox regression analysis. Samples with a hazard ratio greater than 1 have a

higher risk of death, and samples with a hazard ratio less than 1 have a lower risk of death compared with reference samples.

MA ET AL. 1241



a better prognosis. Furthermore, we found two
transcription factors, TAL1 and ERG, which might
regulate SCN4B’s expression by binding the upstream
sequences.

We screened six out of 212 transcription factors that
were highly expressed in LUAD samples by differential
gene expression analysis, and three of them, TAL1, NFIX,
and ERG, could regulate the expression of the SCN4B by

F I GURE 6 Gene mutation, immune checkpoints, and TMB in HEG and LEG. (A,B) TMB analysis in SCN4B HEG and LEG. (C) TMB

difference between HEG and LEG. (D) CNV type differences between HEG and LEG. *** represents p ≤ 0.001. (E) Immune Score,

ESTIMATE Score, and Stromal Score in HEG and LEG. (F) Expression of eight immune checkpoint genes in HEG and LEG.
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binding to its upstream sequences. ChIP-seq results in a
further step verified the reliability of TAL1 and ERG
regulating the expression of SCN4B by binding with
it. TAL1, namely, T-cell acute lymphocytic leukemia
1, also called SCL (stem cell leukemia), is a basic helix-
loop-helix transcription factor (bHLHa17), which is
essential in hematopoiesis.24 TAL1 is identified as one of
the hub genes in the transcription network of LUAD,
promoting the TGF-β signaling pathway by upregulating
the kinase insert domain receptor (KDR).25 TAL1 is
frequently downregulated in LUAD because it may be
silenced by hypermethylated CpG sites within its pro-
moter region, supporting TAL1 as a potential tumor sup-
pressor of LUAD.26 Another research also proves that in
lung cancer patients, downregulation of TAL1 is nega-
tively related to OS, suggesting TAL1’s suppressing func-
tion in lung cancer,27 despite TAL1 is considered to be an
oncogene in some diseases.28 Few studies are about the
relationship between TAL1 and SCN4B, so our research
provides a valuable finding that SCN4B may be one of
the genes regulated by TAL1 to control the progression
of LUAD. ERG encodes transcription factors of the eryth-
roblast transformation-specific (ETS) family, which play
a central role in angiogenesis, inflammation, cell prolifer-
ation, differentiation and apoptosis, etc. It drives tumor
progression and cancer-related phenotypes.29 Although it
is hard to be targeted for treatment as a transcription fac-
tor, its downregulation in LUAD together with SCN4B
shows a little part of the mechanism involved LUAD pro-
gression. According to our GSEA results, 126 pathways
were significantly enriched in HEG than in LEG. The top
10 activated pathways mostly focused on the main func-
tions of TAL1 and ERG, such as hematopoietic cell line-
age, complement and coagulation cascades, calcium
signaling pathway, vascular smooth muscle contraction,
and cell adhesion, indicating TAL1 and ERG might be
hub nodes in the network of SCN4B and LUAD.

Genetic changes in cancer cells and rearrangement of
tumor microenvironment components are key to cancer
progression.30 In this study, the infiltration ratios of
13 types of immune cells in LUAD were significantly dif-
ferent between HEG and LEG. Among the 13 types, the
score of activated memory CD4 T cells was negatively cor-
related with SCN4B expression, and the scores of RMCs
and monocytes positively correlated with SCN4B expres-
sion. Scn5a/Scn4b VGSC is key to the positive selection of
CD4+ T cells in the thymus by enabling the sustained
entry of Ca2+ into CD4+CD8+ double-positive thymo-
cytes, and SCN4B does not express in mature single-
positive thymocytes or peripheral T cells.31 High mast cell
abundance was correlated with prolonged survival in
early-stage LUAD patients and TP53 mutation,32 which is
consistent with our results. Interestingly, RMCs are

strongly associated with better OS, but activated mast cells
are related to adverse survival. The RMC-associated miR-
NAs work essentially in mRNAmetabolic process, calcium
modulating, p53 pathways, etc.33 A high infiltration ratio
of immune cells with high SCN4B expression infers that
SCN4B may aid in providing a relatively friendly tumor
microenvironment for immunotherapy in LUAD. Our
finding of higher expression levels of immune checkpoints
CD86, CD80, and PDL-2(PDCD1LG2) in HEG provided
clues for the immunotherapy of LUAD.

5 | CONCLUSIONS

In this study, we explored the influence of SCN4B on
LUAD. SCN4B expresses higher in normal samples, and
SCN4B is able to be an independent prognostic signature
that higher expression predicts better prognosis for LUAD
patients. Transcription factors TAL1 and ERG may regu-
late the expression of SCN4B by binding its upstream
sequences. Our research provides deeper insight into how
SCN4B influences the progression of LUAD and the prog-
nosis and is valuable in improving the effectiveness of
treatment in LUAD by suppressing metastasis.
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