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Abstract
Plant cell walls are dynamic structures that play crucial roles in growth, development, and stress responses. Despite our 
growing understanding of cell wall biology, the connections between cell wall integrity (CWI) and cell cycle progression 
in plants remain poorly understood. This review aims to explore the intricate relationship between CWI and cell cycle 
progression in plants, drawing insights from studies in yeast and mammals. We provide an overview of the plant cell cycle, 
highlight the role of endoreplication in cell wall composition, and discuss recent findings on the molecular mechanisms 
linking CWI perception to cell wall biosynthesis and gene expression regulation. Furthermore, we address future perspec-
tives and unanswered questions in the field, such as the identification of specific CWI sensing mechanisms and the role of 
CWI maintenance in the growth-defense trade-off. Elucidating these connections could have significant implications for 
crop improvement and sustainable agriculture.

Key message 
In this review, we provide a comprehensive exploration of the intricate relationship between plant CWI and cell cycle pro-
gression. By drawing parallels from studies in yeast and mammals, we offer new insights into this critical facet of plant cell 
biology. We underscore the role of endoreplication in cell wall composition and the molecular mechanisms linking CWI 
perception to cell wall biosynthesis and gene expression regulation. The review also identifies key research avenues that 
remain to be explored, such as specific CWI sensing mechanisms and the role of CWI maintenance in the growth-defense 
trade-off. Elucidating these links holds significant potential for crop improvement and sustainable agriculture, thus rendering 
our work of broad interest to researchers in plant biology, agricultural science, and sustainable farming practices.

Keywords  Plant cell wall integrity · Cell cycle progression · Endoreplication · Auxin · Cytokinin · Cell wall sensing · 
Growth-defense trade-off

Introduction

In contrast to animal cells, plant cells have a sturdy and 
organized protective extracellular matrix known as the 
plant cell wall. Plant cell walls are dynamic, complex struc-
tures rich in polysaccharides (cellulose, hemicelluloses, and 

pectins), playing a critical role in plant growth and devel-
opment. Given the crucial functions of the plant cell wall, 
plants must possess the ability to perceive and maintain its 
structural integrity. This enables them to initiate restora-
tive processes when needed. The maintenance of cell wall 
integrity (CWI) in plants involves specialized mechanisms 
initially identified in yeast (Bacete and Hamann 2020). 
These CWI mechanisms allow plants to respond adaptively 
to changes in cell walls created by both internal and exter-
nal stimuli, which is essential for plant plasticity. Hence, 
CWI mechanisms consistently survey cell wall functional 
integrity, initiating compensatory changes in cell walls and 
metabolism to maintain integrity in the face of develop-
mental processes and stress conditions. In the model plant 
Arabidopsis thaliana, the CWI maintenance mechanism uses 
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both osmo- and mechano-perception to detect and respond 
to cell wall damage (Gigli-Bisceglia et al. 2018; Bacete 
and Hamann 2020; Bacete et al. 2022). Notwithstanding 
its importance, how changes in CWI impact cell cycle pro-
gression remains unclear, highlighting the need for further 
research in this area.

This review aims to investigate the intricate interconnec-
tions between the cell wall and cell cycle in plants, particu-
larly how CWI regulates cell cycle progression. By drawing 
on insights from yeast and mammals, we will explore the 
lesser-known regulatory pathways controlling cell cycle 
activity in plants in response to changes in CWI. Further 
understanding of these connections has potential implica-
tions for crop improvement and the advancement of sustain-
able agriculture.

Overview of the cell cycle

The cell cycle, a central process in all living organisms, ena-
bles cells to grow, replicate their genetic material, and then 
segregate the copies into two genetically identical daughter 
cells (Fig. 1). Its core components and progression mecha-
nisms are shared across the biological spectrum. Yet, there 
are unique variations worthy of exploration. The interplay 
between the cell cycle and the extracellular matrix represents 

a fascinating area of study, particularly in organisms charac-
terized by strong cell walls like yeast and plants. This section 
aims to present a comprehensive understanding of the cell 
cycle, its regulatory processes, and the unique characteristics 
of the plant cell cycle.

Cell cycle and its phases

Cell division is a cornerstone process of cell biology, encom-
passing mitosis and meiosis in eukaryotic cells. This section 
will concentrate primarily on mitosis, a process that allows 
each new cell to receive a full set of chromosomes, thus 
conserving genetic consistency. Unlike prokaryotic cells that 
divide by a simpler method called binary fission, eukaryotic 
cells undergo a more complex division process. The process 
defines a series of events sequentially to ensure the proper 
chromosome duplication and segregation. The eukaryotic 
cell cycle is typically divided into four main phases: G1 
(Gap 1), S (Synthesis), G2 (Gap 2), and M (Mitosis) (Fig. 1). 
The G0 phase is a period of quiescence or differentiation 
where cells are not actively dividing (Pardee 1974) (Fig. 1). 
While well-defined in animals, its definition in plants is 
unclear due to varied interpretations and limited molecular 
distinctions from a prolonged G1 state. Despite this ambi-
guity, G0 cells can re-enter the cell cycle under favorable 
conditions, except for differentiated and/or senescent cells 
(Velappan et al. 2017).

G1, S, and G2 together are called interphase, which occu-
pies about 23 h of a 24-h cycle in a typical human cell prolif-
erating in culture. The remaining hour is taken up by mitosis, 
during which the cell’s chromosomes are divided and two 
new daughter cells are formed (Alberts et al. 2002). The 
cell cycle duration in Arabidopsis and yeast is significantly 
shorter than in human cells. In Arabidopsis, the cell cycle 
duration in the root meristem is typically around 15–20 h 
(Beemster et al. 2005), while in yeast, the cell cycle duration 
is typically around 90 min (Hartwell et al. 1974). However, 
the cell cycle duration for pericycle cells engaged in lateral 
root initiation in Arabidopsis has been reported to be as short 
as 8 h. This suggests that the cell cycle can be accelerated 
during lateral root development, which is important for the 
rapid formation of new lateral roots (Alberts et al. 2002).

The two major cell cycle phases are DNA duplication 
during the S phase, which takes around 10–12 h for the 
proper duplication: and chromosome segregation during the 
M phase, which takes less than an hour. M phase includes 
mitosis, where the duplicated chromosomes condense, the 
nuclear envelope breaks down, and the chromosomes align at 
the equator of the mitotic spindle during metaphase. This is 
followed by anaphase, where sister chromatids separate and 
move to opposite spindle poles. Finally, cytokinesis results 
in the complete division of the cell. Compared to replicating 
DNA and division, most cells require much more time to 
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Fig. 1   Diagram of the cell cycle. The key stages of the plant cell 
cycle, Synthesis (S) and Mitosis (M) phases, are separated by gap 
phases (G1 and G2). Regulatory checkpoints at G1/S, G2/M transi-
tions, during S phase, and before anaphase, are crucial for maintain-
ing DNA fidelity and regulating cell cycle progression. The term G0 
is used in plants for meristematic quiescence or terminal differentia-
tion, but its definition is unclear. In addition to the regular cell cycle, 
plants also exhibit a cell cycle variant known as endoreplication, in 
which nuclear DNA is replicated without subsequent cell division, 
resulting in increased ploidy levels or polyploidy
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grow and double their mass of proteins and organelles. This 
leads to the insertion of extra gap phases in most cell cycles 
to allow more time for growth. A G1 phase between the M 
phase and S phase is inserted where the primary focus of 
the cells is on growth and metabolic activities. A G2 phase 
between the S and mitosis allows cells to grow further and 
prepare for mitosis (Alberts et al. 2002).

Mechanisms controlling cell cycle progression

Checkpoints and checkpoint pathways are crucial in oversee-
ing the cell cycle’s integrity, ensuring DNA integrity before 
replication and segregation, and preventing genetic errors. 
There are four primary checkpoints (Hartwell and Weinert 
1989): the G1–S checkpoint, where the cell assesses DNA 
integrity before entering the S phase; the S checkpoint, 
monitoring DNA synthesis to ensure accurate replication; 
the G2–M checkpoint, verifying that DNA replication is 
complete and undamaged before entering mitosis; and the 
spindle checkpoint, which ensures proper attachment of 
chromosomes to the spindle fibres before allowing the cell 
to progress from metaphase to anaphase during cell division. 
These checkpoints (Fig. 1) contribute to the precise regula-
tion of the cell cycle, safeguarding against errors that could 
lead to genomic instability and cellular dysfunction.

The cell cycle is meticulously regulated at these check-
points, primarily driven by the intricate interplay between 
cyclin-dependent kinases (CDKs) and cyclins. Cyclins are 
regulatory proteins that determine the progression of the 
cell cycle by activating CDKs. In plants, cyclins such as A-, 
B-, and D-type cyclins show distinct roles in the cell cycle, 
dictating the timing of cell cycle transitions (Inzé and De 
Veylder 2006).

CDKs, a highly conserved group of serine/threonine 
kinases, form complexes with specific cyclins at different 
cell cycle stages, thereby facilitating the phosphorylation of 
key target proteins necessary for advancing the cell cycle. 
Arabidopsis genome codes for about 30 CDKs and CDK-
like proteins, illustrating the complexity of CDK regulation 
in plants (Menges et al. 2005). In the context of plant cell 
cycle regulation, CDKs are organized into eight groups, with 
CDKA and CDKB playing central roles (Vandepoele et al. 
2002). CDKA’s activity peaks at G1/S and G2/M transi-
tions (Inzé and De Veylder 2006; Gutierrez 2009), while 
CDKBs exhibit distinct expression patterns during the cell 
cycle (Inzé and De Veylder 2006).

CDK inhibitors (CKIs) are vital in cell cycle regulation 
across eukaryotes. In yeast, CKIs like Sic1 control the G1 
phase, preventing premature S phase entry (Schwob 1994). 
In animals, two CKI families, INK4 and Cip/Kip, target spe-
cific CDKs in response to various cellular signals (Sherr 
and Roberts 1999). In contrast, plant CKIs such as ICK1/
KPR1 and ICK2/KRP2in Arabidopsis affect both mitotic 

and endoreduplication cycles, crucial for plant development 
and environmental adaptation (Wang et al. 2006). This regu-
latory complexity in plants extends to other key proteins 
that have adapted distinct functions in plants different from 
their well-defined roles in yeast and animals. For example, 
the WEE1 kinase in humans, yeast, and plants inhibits cell 
division by phosphorylating CDKs, but its roles differ sig-
nificantly beyond this (Détain et al. 2021). In plants, WEE1 
is crucial in stress responses, especially to DNA damage and 
environmental stresses like drought and salinity (Harashima 
et al. 2013; Crncec and Hochegger 2019). Additionally, the 
importance of WEE1 in development varies among plant 
species; for example, it’s critical in tomato development but 
not in Arabidopsis (De Schutter et al. 2007; Gonzalez et al. 
2007). This highlights how plants have uniquely adapted 
familiar cell cycle components to suit their specific life 
processes.

Transcriptional regulation is also essential for cell cycle 
regulation, and thus transcription factors have a prominent 
role. For example, in humans, thousands of enhancer RNAs 
and associated transcription factors exhibit a strong associa-
tion with the transcription regulated by the cell cycle (Liu 
et al. 2017). In the plant kingdom, a good example is the 
transition into the M phase, where the orchestration involves 
the interplay of G2/M-specific genes and their promoter-
bound mitosis-specific activator (MSA) element. This pro-
cess is regulated by R1R2R3-type MYB transcription fac-
tors (Chen et al. 2017). The MYB3R family comprises both 
activators (Act-MYB) and repressors (Rep-MYB), and their 
intricate interplay governs the surge in mitotic CDK activ-
ity before entering M phase (Chen et al. 2017). Moreover, 
MYB3Rs interact with RBR protein and E2Fs, forming a 
large protein complex named the DREAM/dREAM-like 
complex, involved in regulating proliferative and quiescent 
states (Magyar et al. 2016; Umeda et al. 2019). These factors 
coordinate various cell cycle regulators, ensuring cells enter 
mitosis only when prepared.

Specific features of the plant cell cycle

Cytokinesis and phragmoplast formation

Cytokinesis is a fundamental process in plant development 
that divides the cytoplasm of a dividing cell into two daugh-
ter cells. It is fundamentally different from cytokinesis in 
animals and fungi, and involves the de novo formation of a 
cell plate (Sinclair et al. 2022). The process starts with the 
phragmoplast guiding cytokinetic vesicles to the cell divi-
sion plane. Here, vesicles fuse to form a cell plate, with 
callose deposition playing a key role in its stiffening and 
maturation (Otegui et al. 2001; Seguié-Simarro et al. 2004; 
McMichael and Bednarek 2013; Smertenko et al. 2018). 
This intricate process is orchestrated by a complex interplay 
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of molecular components, including microtubules, microfila-
ments, and associated proteins like myosins and kinesins. 
In Arabidopsis, the preprophase band (PPB) and TON1/
TRM/PP2A complex determine the division plane early in 
mitosis (Van Damme et al. 2007; Spinner et al. 2013). To 
ensure successful expansion and maturation of the phrag-
moplast, proteins like myosin VIII, myosin XI members, 
Kinesin-12 POK1 and POK2, TAN1, AIR9, PHGAPs, and 
IQ67 DOMAIN (IQD) proteins contribute to its structural 
integrity (Wu and Bezanilla 2014; Stöckle et al. 2016; Abu-
Abied et al. 2018; Müller 2019). Proteins like KATANIN1 
and MACET4/CORD4 are vital for phragmoplast organiza-
tion, while SNARE proteins such as KNOLLE and SNAP33 
drive vesicle fusion and membrane organization (Lauber 
et al. 1997; Zhang et al. 2011; El Kasmi et al. 2013; Jürgens 
et al. 2015; Karnahl et al. 2017; Sasaki et al. 2019; Panteris 
et al. 2021). Small GTPases like RABA2 and RABA3 ensure 
precise vesicle targeting, and complexes like TRAPPII and 
the exocyst regulate cell plate assembly (Chow et al. 2008; 
Berson et al. 2014; Rybak et al. 2014). Membrane recycling 
through clathrin-coated vesicles, involving proteins like 
Clathrin Light Chain and Dynamin-Related Proteins, also 
plays a crucial role (Fujimoto et al. 2008; McMichael and 
Bednarek 2013).

In Arabidopsis, small GTPases, including RABA2, 
RABA3, and RABA1 members, ensure vesicle targeting 
(Chow et al. 2008; Berson et al. 2014), while tethering 
complexes like TRAPPII and exocyst sequentially regu-
late cell plate assembly, expansion and maturation (Rybak 
et al. 2014). Moreover, membrane recycling via clathrin-
coated vesicles plays a pivotal role during cytokinesis, with 
a range of associated proteins involved, including Clathrin 
Light Chain, Dynamin-Related Proteins, SCD1 and 2, Epsin-
like adaptors, and the T-PLATE. These intricate molecular 
processes ensure the successful formation of the cell plate 
during plant cytokinesis, a fundamental step in cell division 
and plant growth.

Recent studies have highlighted the species-specific 
nature of cytokinesis. Research on the impact of cytokinesis 
inhibitors like Endosidin7 (ES7) and microtubule disrup-
tors such as chlorpropham (CIPC) demonstrates the complex 
and varied responses in plant cytokinesis in Arabidopsis and 
maize (Allsman et al. 2023). ES7 induced cell plate defects 
in Arabidopsis without affecting callose accumulation or 
cell plate formation in maize. In contrast, CIPC treatment 
in maize occasionally led to irregular cell plates that split or 
fragmented but left cell-plate protein accumulation intact. 
This underlines the multifaceted regulation and the adap-
tive aspects of this crucial cellular process in different plant 
species.

Endoreplication and its role in plant development

Endoreplication, a cellular process also known as the endo-
cycle, is a common process in plants. It involves multiple 
rounds of DNA synthesis without cell division, resulting in 
polyploid cells with increased DNA content. This unique 
mechanism allows for enhanced cellular functions such as 
vibrant colours, improved nutrient storage, and stress resist-
ance (Edgar and Orr-Weaver 2001; Orr-Weaver 2015). It is 
especially prominent in higher plants and significant in cer-
tain cell types like the endosperm, contributing to metabolic 
activity, cell differentiation and rapid cell growth (Edgar and 
Orr-Weaver 2001; Bhosale et al. 2019).

The process of endoreplication involves multiple G and 
S phases leading to increased genetic material (Fig.  1) 
(De Veylder et al. 2002; Cook et al. 2013). This process 
is intricately regulated by a balance between CDK-cyclin 
complexes and CDK inhibitors, such as the SIAMESE/
SIAMESE RELATED (SIM/SMR) family, and involves the 
degradation of cyclins by the anaphase-promoting complex/
cyclosome (APC/C) (De Veylder et al. 2002, 2011; Cook 
et al. 2013). These pathways are modulated by protein com-
plexes, phytohormones and biostimulators (Kołodziejczyk 
et al. 2021). In particular, auxin significantly influences the 
switch from mitotic cycles to endocycles. High levels of 
auxin signaling maintain cells in mitotic cycles possibly 
through the expression of CYCLIN A2;3 (CYCA2;3), while 
lower levels prompt a transition to endocycles (Ishida et al. 
2010). Transcription factors also play a role, with factors 
like MED16, LMI1, SOG1, and E2Fa influencing the switch 
between mitotic cycles and endoreplication (Kołodziejczyk 
et al. 2021).

Extracellular matrix and cell cycle 
regulation: what do we know from other 
organisms?

Understanding the relationship between the extracellular 
matrix and cell cycle regulation is essential since any per-
turbations on the first can have deep impacts on the latter. 
This section provides an overview of this interplay in organ-
isms like yeast and mammals, serving as a comparative foun-
dation for plants. We will delve into specific mechanisms 
such as yeast’s CWI system and its effects on cell cycle 
progression, mammalian integrins’ role in modulating cell 
cycle phases, and the influence of matrix metalloproteinases 
(MMPs) on extracellular signaling and cell cycle regula-
tion. This knowledge provides a platform to compare these 
mechanisms in plant systems (Fig. 2).
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Cell wall/extracellular matrix control of cell cycle 
progression in the budding yeast

In the model yeast Saccharomyces cerevisiae, CWI sign-
aling is intricately involved in various cellular processes. 
It influences processes such as cell growth, cytokinesis, 
and cell separation. Defects in CWI signaling can lead to 
impaired cell separation during the cell cycle, as observed in 
mutant strains lacking key components of the CWI pathway 
(González-Rubio et al. 2023).

Key CWI sensors like Mid2 and Wsc1 initiate the 
response to cell wall stress (Levin 2011). These sensors 
activate Rho1, a GTPase, through the guanine nucleotide 
exchange factor Rom2 (Bickle 1998). Rho1 then triggers a 
cascade involving several elements: activation of the protein 

kinase C (Pkc1), followed by the MAP kinase cascade com-
ponents Bck1, Mkk1/2, and the MAP kinase Slt2 (Bickle 
1998; Kono et al. 2012). This pathway culminates in the 
activation of transcription factors Swi4 and Swi6, which 
regulate the activity of G1-specific cyclin genes and ensure 
the entry into the mitotic cycle (Fig. 2) (Nasmyth and Dirick 
1991; Kim et al. 2010). In addition to its role in cell wall 
remodeling, the CWI pathway significantly influences cell 
cycle progression (Quilis et al. 2021). The activation state of 
Mpk1 is closely linked to cell cycle regulatory proteins such 
as Cdc28, indicating a functional intersection between cell 
wall integrity and cell cycle regulation (Levin 2011). This 
pathway is intricately regulated throughout the cell cycle, 
with its signaling notably peaking during bud emergence, a 
critical phase for cell wall integrity and remodeling. Pkc1 

Saccharomyces cerevisiae Arabidopsis thaliana

marymarmarPrimrimrimP iPPPPriPriPPPPrPPPPPPPPPriirii arar
cell wallwawawaaawaaacceecccececceceeelllllllee   wwwwwwwaaawaaawwwwwwwwwwwwaaaaaacc

yy

THE1

Apoplast

SecondarydadaSeSecondcondcondononcondononcondononondonncooonnononnononnnnnnnnnn aandndddddddddnnnnnnnnnnnnnooooonooococonnSSSSSSSSSSSSSS
cell wallcecell wawawall waeeeecccccccceeceecccccccccccelleecccelleeccceeel

yy

MiddleMMidMMMMidMMM
ellamemmmmmammlamlll emmal mlal memamlaamlamlalalalala eleeleeleeeeeemmmmmmmmmammamaamaaamaamammamamaamaammmmmmmmmmmmmmmmmmmmmmmmlllllaaaaaaaaaaaaaaaaaaa llallamamamama

ChitinnnCCCCCChhCCCCCCCCCCCCCCCCCCCCChChhhhihittininnnnnnnCCCCCCCCCCCCCCCCCCCCCCCChhhhitiiitiittttttCCCCCCCCCCCCCCCCCCCCCCChCCCCCCCCChhhCCCCCChCCChCCChCChhChhCCCCCCChhhCCCCCCCCCCChhhhCCCChhhhhCCCCC iihihhhhhihihihhhhiihhhhhhhhhhhhhhhhhhhhhhhhhh

 β-1,3 & β-1,6 --&&&&&& ββββββββββββββββββββ ,,,,βββββββββββββββ 1111 333333 &&&&&&&&&&&&&&&&&& ββββββββββββββ11 333333 &&&&&&&&&&&&&& ββββββ-βββββ-ββββ------1111 666666&&&&& 11111111111111ββββββββββββ-βββ-ββββ &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& βββββββββββββββββββββββββββββββββββ11111111111111 &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&333333333333,,1111111111ββββββββββββββββββ ,,,,333333,,,,,,,,,,,,,,,11111111111111111111111111111111--βββ-β-ββββ-β-βββββββββββββββββββββββ 33333333333333333333333333 66666666666666666666
glucansaaaaaaggggglgllglll anangggggggg cccccc nnnnnnnnnsnsssgggggggggggglglg anannnnnnnnnnnnnuuuuuuccccccccccccccccccccccc ssssssssnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnaaaaaaaaccccccccccccccccccccuullllllllgggggggggggggg sssssssssssssssssssssssssssssssss

MannoproteinsppMannaaaaaaMMMMMaMaaaaaaaaaaaaaaaaaaaaaMM nnnnanaaanaannnnnnnnnnnnnnoo oteinopopooopopopoprorororororororoo nnininnniiiiiiiinnnnnniin

Periplasmic PP
space

Wsc1Mid2

Homo sapiens

Extracellular matrixlauuuuul
(collagen, proteoglycans,eteteteott

hyaluronic acid, etc.)iccninnnic
g , p g y ,g , p g y ,

Integrins

MMPs Extxx racellular
spapp cecc

FER?

Rom2

Rho1

Pkc1

Swi4
Swi6

Bck1

Mkk1/2

Slt2

MAPK
module

SBF complex

Mck1

Cdc6

DNA replication

FAK

CDKIs
P27, p21

Auxins

Endoreplication

ERF115

Cell division

MYB46

NIA1

NIA2

CKX2

CKX3

CK

CYCD3;1
CYCB1;1

Cell elongation

Erk1/2
AKT
Smad

P

TGF-β1

Smad7

Smad3

Smad2

P

P

Smad3
Smad4Smad2

Smad4

G1/S checkpoint

G1/S checkpoint

G1/S checkpoint? Feedback?

EGF FGF

ILs TNF

CWI
damage

Plasma
membrane
damage

Bending

Wounding
(CWI damage)

Cell wall
remodeling

TGF-βR1

Fig. 2   Pathways controlling cell cycle progression in function of the 
integrity of the cell wall or extracellular matrix are similar in dif-
ferent eukaryotes. In the yeast Saccharomyces cerevisae, CWI and 
plasma membrane damage initiate downstream responses, culminat-
ing in a G1/S cell cycle arrest, with receptors Mid2 and Wsc1 playing 
key roles in damage detection. Similarly, in humans such as Homo 
sapiens, damage to the extracellular matrix is detected by integrins, 
which trigger comparable transduction cascades resulting in G1/S cell 
cycle arrest, a process also elicited by extracellular matrix modifica-
tions via metalloproteinases (MMPs). The TGF-β pathway also con-

trol cell proliferation, regulating ECM synthesis and degradation, 
and modulating tissue remodeling processes. Integrins, as primary 
receptors for ECM proteins, establish bidirectional communication 
with growth factor and cytokine receptors. In plants like Arabidopsis 
thaliana, varied pathways respond to folding and wounding, influenc-
ing cell elongation or division and prompting cell wall remodeling, 
detected by THESEUS1 (THE1). FERONIA (FER) could also play a 
role due to its effect on auxin concentrations, however, while implied, 
the explicit link to the cell cycle checkpoint remains to be confirmed 
(dotted lines)
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not only responds to cell wall stress but also impacts nuclear 
functions, including the arrest of secretion response and 
G2/M progression, and phospholipid biosynthesis, further 
underscoring the pathway's expansive role in cell cycle pro-
gression and cellular integrity (Levin 2011). Protein phos-
phatases, such as Ptc1, negatively regulate MAPK pathways 
by dephosphorylating cascade components (González-Rubio 
et al. 2019). Ptc1 specifically dephosphorylates Mkk1 in 
the CWI pathway (Jiang et al. 1995; Du et al. 2006). The 
absence of Ptc1 leads to functional defects associated with 
CWI pathway activation, including altered growth, cell 
separation, and mitochondrial inheritance (Du et al. 2006; 
González et al. 2006; Li et al. 2010; Tatjer et al. 2016). Ptc1 
also affects other physiological processes, such as the tar-
get of the rapamycin 1 (TORC1) complex, which regulates 
nutrient availability and cell proliferation (González et al. 
2009). The mechanisms underlying these effects, including 
the involvement of Slt2 kinase activity, are still being inves-
tigated (Sánchez-Adriá et al. 2022).

The plasma membrane and the cell wall both pose sig-
nificant challenges to maintaining cell integrity. Yeast CWI 
pathways are capable of sensing and responding to mem-
brane damage (Bickle 1998). Plasma membrane damage 
activates a novel G1 checkpoint that involves the Mck1-
dependent degradation of Cdc6 and stabilization of Sic1 
(Al-Zain et al. 2015). Mck1, a yeast glycogen synthase 
kinase-3 (GSK-3) kinase, plays a crucial role in ensuring 
proper DNA replication, preventing DNA damage, and 
maintaining genome integrity by inhibiting Cdc6 (Fig. 2) 
(Ikui et al. 2012).

This intricate network, from CWI perception by sensors 
to the eventual cellular response mediated by transcription 
factors, underscores the importance of CWI in maintaining 
cell structure and function. Understanding these mechanisms 
in yeast provides valuable insights into similar processes in 
plants, enriching our grasp of how cells maintain integrity 
against environmental challenges.

Extracellular matrix control of cell cycle progression 
in mammals

Integrins and focal adhesion kinase (FAK)

Integrins are adhesive receptors that play a critical role in 
cell cycle regulation by detecting and responding to signals 
from the extracellular matrix (ECM). They are essential for 
cell adhesion, survival, proliferation, differentiation, and 
migration (Moreno-Layseca and Streuli 2014). Integrins are 
heterodimeric receptors composed of one of 18 α and 8 β 
subunits. They are activated by ligand binding and mechani-
cal force, which induces a conformational shift mediated by 
cytoplasmic proteins such as talin and kindlin (Lagarrigue 
et al. 2020, 2022; Lu et al. 2022).

Integrin engagement with the ECM leads to the formation 
of various adhesion complexes, including focal adhesions 
(FAs) and the activation of focal adhesion kinase (FAK). 
This activation, involving FAK’s trans-autophosphorylation 
at Tyr-397, initiates various downstream signaling pathways 
crucial for cell cycle regulation (Calalb et al. 1995; Acebrón 
et al. 2020). FAK, upon activation, phosphorylates targets 
like cyclin-dependent kinase inhibitors (CDKIs) p27 and 
p21, as well as cyclins D1 and A2, facilitating the transition 
from the G1 to the S phase of the cell cycle (Fig. 2) (Walker 
and Assoian 2005; Moreno-Layseca and Streuli 2014; Jones 
et al. 2019). During the G1 to S transition, integrin-FAK 
signaling activates the PI3K/AKT and MAPK/ERK path-
ways, upregulating cyclin D and degrading CDKIs to pro-
mote cell cycle progression (Zhu et al. 1996; Brunet 1999; 
Shanmugasundaram et al. 2013). Additionally, cyclin A2/
CDK1 regulates FA and actin filament dynamics, crucial for 
FA growth, stability, and cell morphology changes necessary 
for mitosis entry (Jones et al. 2018; Gough et al. 2021). In 
the G2 phase, integrin adhesion influences the stimulation 
of PLK1, aiding in the transition to mitosis, with changes in 
cell morphology and traction forces being essential for suc-
cessful cell division (Vianay et al. 2018; Kamranvar et al. 
2022).

In plant cells, while integrins are not present, analogous 
mechanisms involving cell wall integrity receptors play a 
similar role in perceiving the extracellular environment. 
Plant CWI receptors detect changes in the cell wall compo-
sition and structure, triggering signaling pathways. These 
receptors, in a similar way to integrins in animal cells, sense 
mechanical signals from the cell wall, influencing cellular 
processes (Bacete and Hamann 2020).

Cytokines and growth factors

In animals, growth factors and cytokines in animals play 
a critical role in the regulation of the cell cycle, especially 
through their interactions with the ECM. The ECM serves 
as a major reservoir of these signaling molecules, which 
are bound within the matrix along with bioactive fragments 
produced from MMPs (Hynes 2009). This sequestration and 
subsequent release of growth factors from the ECM influ-
ence immune cell proliferation and differentiation, directly 
impacting cell cycle progression. Growth factors, binding 
to receptor tyrosine kinases (RTKs), initiate critical cell 
cycle events. These RTKs activate downstream signaling 
pathways, controlling CDK-cyclin complex activities, and 
influencing essential cellular functions such as migration, 
survival, and differentiation (Jones & Kazlauskas 2000; Wee 
& Wang 2017). Dysregulation in these pathways, as seen in 
notable RTK families like the EGF receptor, insulin receptor, 
PDGF receptor, and NGF receptor, often results in cancerous 
growth (Wang et al. 2017; Wee & Wang 2017).
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Among the various ECM-bound molecules, transforming 
growth factor-beta (TGF-β) is particularly noteworthy for its 
multifaceted roles in development, tissue repair, and immune 
cell function. TGF-β interacts with its receptors to activate 
Smad proteins, which then regulate gene transcription, bal-
ancing ECM production and degradation. (Neuzillet et al. 
2015; Meng et al. 2016; David and Massagué, 2018). The 
signaling cascade ultimately leads to the imbalance between 
ECM production and degradation, modulating tissue remod-
eling processes (Frangogiannis 2020).

In plants, while growth factors as such are not present, 
analogous signaling mechanisms involving the cell wall play 
a significant role in development. For example, Rapid Alka-
linization Factor (RALF) peptides in plants function in a 
reminiscent manner to growth factors in animals (Blackburn 
et al. 2020). The recent insights into the LRX8-RALF4 com-
plex in plants offer a striking example (Moussu et al. 2023). 
This complex’s interaction with demethylesterified pectins 
in the cell wall, leading to a reticulated network essential 
for cell wall integrity and expansion, mirrors the TGF-β 
pathway’s role in ECM modulation. Just as the TGF-β path-
way influences the ECM and thus affects cell behavior in 
animals, the LRX8-RALF4-pectin interaction in plants is 
a critical determinant of cell wall structure, impacting cell 
growth and development, particularly in processes like pol-
len tube growth.

Matrix metalloproteinases (MMPs)

MMPs, a family of zinc-dependent endopeptidases, play a 
pivotal role in ECM remodeling, impacting a range of physi-
ological processes from embryonic development to wound 
healing (Cabral-Pacheco et  al. 2020; Chan et  al. 2020; 
Laghezza et al. 2020). In mammals, MMPs, expressed in 
various tissues and cell types, not only contribute to cell 
cycle regulation by processing growth factors and signal-
ing molecules (see section above), but also they remodel 
the ECM by degrading components such as collagens and 
fibronectin, influencing cell adhesion, migration, and growth 
factor availability, thereby impacting cell cycle progression 
(Lu et al. 2011; Kleiser and Nyström, 2020). Tissue inhibi-
tors of metalloproteinases (TIMPs), a family of proteins, 
serve to bind and inhibit MMP activity. Maintaining the 
balance between MMPs and TIMPs is essential for ECM 
homeostasis (Baker et al. 2002; Cabral-Pacheco et al. 2020). 
MMPs also influence intracellular signaling pathways regu-
lating the cell cycle by cleaving and modifying ECM-bound 
integrins (Fig. 2) (Kleiser and Nyström, 2020).

Some MMPs display cell cycle-associated expression 
patterns. For example, MMP-2 and MMP-9 participate in 
different cell cycle phases, with MMP-2 upregulated during 
the G1/S transition and MMP-9 during the G2/M transi-
tion, and disruptions in this equilibrium contribute to ECM 

degradation and alterations in cell cycle progression in 
different diseases (Vu and Werb 2000; Wang et al. 2017; 
Cabral-Pacheco et al. 2020).

In plants, enzymes like cellulases, pectinases, and 
expansins modulate the physical properties of the cell wall 
(Cosgrove 2022), akin to how MMPs modulate ECM com-
position in animals. This remodeling is crucial for facili-
tating cell growth and expansion, although it is yet to be 
explored how or if these control cell cycle transitions.

Current understanding of cell wall integrity 
and cell cycle regulation in plants

The exploration of the connection between plant CWI and 
cell cycle regulation is a rapidly evolving area of research. 
Drawing parallels from the established knowledge in other 
organisms, it is becoming increasingly evident that various 
signaling molecules and extracellular modifications are intri-
cately linked with complex molecular mechanisms in plants. 
Furthermore, the entwined hormonal networks, fundamental 
to both cell cycle progression and cell wall biosynthesis and 
remodeling, present potential avenues for understanding this 
interplay. By delving into these connections, we can gain 
profound insights into the significance of CWI in orchestrat-
ing cell cycle progression and influencing plant growth. In 
this section, we collate and examine the growing body of 
evidence that underscores this intricate relationship, high-
lighting the intricate dance of cellular processes that govern 
plant development and adaptation.

Cytokinins, CYCD3;1, and NIA1/NIA2

Cytokinins are key plant hormones that play a critical role 
in various aspects of plant growth and development. Their 
primary function is promoting cell division, particularly in 
plant roots and shoots, but their influence extends far beyond 
this process (Mok and Mok 2001). Cytokinins regulate leaf 
senescence, apical dominance, nutrient assimilation, and 
response to environmental stresses (Werner et al. 2001; 
Rivero et al. 2007).

Cytokinins are fundamental in regulating the plant cell 
cycle, particularly in controlling key phase transitions in 
response to environmental stresses such as drought (Skirycz 
et al. 2011; Tenhaken 2015). During the G1 to S phase tran-
sition, cytokinins play a significant role by modulating the 
expression of D-type cyclins, such as CYCD3;1. CYCD3;1 
is essential for the initiation of DNA replication and is a 
key regulator of the G1/S checkpoint in the plant cell cycle 
(Fig. 2) (Riou-Khamlichi et al. 1999). In the G2 to M phase 
transition, cytokinins modulate the activity of CDKs and 
their associated cyclins, which are crucial for mitotic entry. 
Cytokinins can also influence the levels of specific B-type 
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cyclins, which are essential for the G2 to M transition (Boruc 
et al. 2010). Furthermore, cytokinins have been implicated 
in the regulation of the retinoblastoma-related (RBR). This 
pathway is a critical regulator of the G1/S transition, with 
RBR proteins interacting with D-type cyclins like CYCD3;1 
(Boruc et al. 2010).

In addition to their direct impact on cell cycle regulators, 
cytokinins also interact with other hormonal pathways, such 
as those mediated by auxins, to fine-tune cell cycle progres-
sion (Perilli et al. 2010). This interaction exemplifies the 
complex network of signaling pathways that converge to reg-
ulate the plant cell cycle, with cytokinins playing a central 
role. Another example of the interaction of cytokinins with 
other signaling molecules is nitric oxide (NO). Cytokinins 
and NO can have both synergistic and antagonistic effects 
on plant growth and development (Freschi 2013; Shen et al. 
2013). For instance, during cell division regulation, NO par-
ticipates in callus formation and shoot regeneration by acti-
vating CYCD3;1 at the G1-S cell-cycle phase transition. On 
the other hand, NO antagonistically affects root growth, as 
overproduction of NO inhibits root development (Shen et al. 
2013) A role for NO in cytokinin signaling has also been 
suggested for controlling plant cell death (PCD), possibly 
through the inhibition of mitochondrial respiration (Carimi 
et al. 2005). Furthermore, NO-overproducing Arabidopsis 
lines and mutant plants show reduced sensitivity to cyto-
kinins, leading to a negative regulation of cytokinin sign-
aling through S-nitrosylation of phosphotransferprotein1 
(AHP1), thereby repressing phosphorylation activity during 
cytokinin-mediated phosphorelay (Feng et al. 2013).

Nitrate reductase 1 (NIA1) and NIA2 genes, are key play-
ers in this regulatory network. These enzymes are respon-
sible for the reduction of nitrate (NO3-) to nitrite (NO2-), 
and subsequently to NO (Wilkinson and Crawford 1993). 
Cytokinin treatment in plants has been shown to increase 
NO levels, which is thought to be mediated by the activation 
of nitrate reductase enzymes encoded by NIA1 and NIA2 
(Yu et al. 1998; Tun et al. 2001). Furthermore, the interac-
tion is bidirectional. NO, possibly produced via NIA1 and 
NIA2 activity, can influence cytokinin signaling. In tobacco 
leaves, the application of NO donors affects the expression 
of cytokinin-responsive genes, indicating that NO signaling 
can modulate cytokinin response pathways (Tun et al. 2001). 
This modulation by NO is also evident in processes like root 
growth, where high levels of NO can antagonize cytokinin 
signaling, thereby affecting root development (Fernández-
Marcos et al. 2011).

Interestingly, recent studies have provided some initial 
evidence supporting the connection between CWI, cyto-
kinins, NO and cell cycle activity in plants. For instance, 
Arabidopsis NIA1/NIA2, CYCD3;1, and cytokinins have 
been implicated in this coordination (Gigli-Bisceglia et al. 
2018). In a study investigating the impact of cell wall 

damage on A. thaliana seedlings, researchers found that 
cell wall damage inhibited cell cycle gene expression and 
increased transition zone cell width in an osmosensitive 
manner (Gigli-Bisceglia et al. 2018). These results were cor-
related with cell wall damage-induced changes in cytokinin 
homeostasis, specifically the upregulation of CYTOKININ 
OXIDASE/DEHYDROGENASE 2 and 3 (CKX2, CKX3) 
transcript levels. Further investigations using nitrate reduc-
tase1 nitrate reductase2 (nia1 nia2) seedlings revealed that 
the upregulation of CKX2 and CKX3 and the repression of 
cell cycle gene expression by cell wall damage were absent 
in these mutants, highlighting the role of NIA1/2-mediated 
processes in regulating cell wall damage responses (Fig. 2) 
(Gigli-Bisceglia et al. 2018). This study suggests that cell 
wall damage enhances cytokinin degradation rates through a 
NIA1/2-mediated process, leading to the attenuation of cell 
cycle gene expression.

Auxin and restorative divisions after wounding 
in roots

Auxins play a pivotal role in regulating various aspects of 
plant growth and development. As one of the most important 
phytohormones, auxins are crucial in processes such as cell 
division, cell elongation, cell wall loosening and differen-
tiation, influencing the overall plant morphology and adap-
tive growth responses (Tanimoto 2005; Majda and Robert 
2018). In the context of cell cycle regulation, auxins exert 
a significant influence by controlling the transition of cells 
from the G1 phase to the S phase by regulating the expres-
sion of various cell cycle genes, including those encoding 
for D-type cyclins and CDKs (Fig. 2) (Perrot-Rechenmann 
2010). Auxins also interact with other signaling pathways 
and hormones, such as cytokinins and gibberellins, to finely 
tune the cell cycle and ensure coordinated growth and devel-
opment (Mazzoni-Putman et al. 2021). One of the most 
intriguing aspects of auxin biology is its role in spatial pat-
terning within plant tissues. Auxin gradients are established 
through its polar transport, leading to differential growth 
responses in different parts of the plant (Galvan-Ampudia 
et al. 2020). This directional movement of auxin is funda-
mental in shaping plant architecture, including the formation 
of leaves, flowers, and roots.

Plant cells, unable to migrate, rely on targeted cell divi-
sion and expansion for wound regeneration. Wound healing 
in plant tissues involves unique mechanisms distinct from 
those in animals that encompass the detection of the damage 
(a process related to CWI monitoring) and the coordination 
of the restorative divisions (Hoermayer et al. 2020). Auxin 
signaling has been implicated in restorative divisions fol-
lowing wounding in roots. Live imaging studies using laser-
based wounding in Arabidopsis’s root provided mechanistic 
insights into wound perception and coordination of wound 
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responses. The collapse of damaged cells contributes sig-
nificantly to wound perception, and a specific increase in 
auxin levels was detected in cells adjacent to the wound. 
This localized auxin increase plays a dose-dependent role 
in balancing wound-induced cell expansion and restora-
tive division rates, preventing tumorous overproliferation 
(Hoermayer et al. 2020). Disruption of the canonical TIR1 
auxin signaling pathway leads to dysregulation of these 
processes. Furthermore, auxin and wound-induced turgor 
pressure changes spatially define the activation of key com-
ponents of regeneration, such as the transcription regulator 
ERF115 (Fig. 2) (Hoermayer et al. 2020). Mechanical cues 
have been shown to influence ERF114 and ERF115 expres-
sion, which correlates with BZR1-mediated brassinosteroid 
signaling under both regenerative and developmental condi-
tions. Interestingly, CWI surveillance via the Catharanthus 
roseus receptor-like kinase 1-like (CrRLK1L) CWI sensor 
FERONIA (FER) antagonistically suppresses their expres-
sion in both scenarios, suggesting a molecular framework 
where cell wall signals and mechanical strains regulate 
organ development and regenerative responses through 
ERF114- and ERF115-mediated auxin signaling (Canher 
et al. 2022). These findings suggest that CWI and wound 
signaling involves the sensing of damaged cell collapse and 
the activation of local auxin signaling to coordinate down-
stream transcriptional responses in the immediate vicinity 
of the wound.

Endoreplication and cell wall composition

The relationship between endoreplication and cell wall com-
position has recently attracted attention (Bhosale et al. 2019). 
It has been observed that ploidy levels often scale with the 
final size of cells and organs, suggesting the involvement of 
endoreplication in these processes (Orr-Weaver 2015). How-
ever, exceptions to this correlation exist, and the exact nexus 
between endoreplication and size regulation remains elusive.

Previous studies have revealed that endoreplication 
plays a significant role in apical hook folding in Arabi-
dopsis. This process is influenced by variations in growth, 
primarily caused by differences in the distribution of the 
phytohormone auxin and the mechanical properties of the 
cell wall. Specifically, the inner cells, which contain high 
auxin concentrations and stiffer walls, experience suppressed 
elongation. On the other hand, the rapidly growing outer 
cells exhibit lower auxin levels and softer walls, allowing 
for their continued expansion (Baral et al. 2021; Jonsson 
et al. 2021). Furthermore, a molecular pathway has been 
identified, linking endoreplication levels to cell size through 
cell wall remodeling and stiffness modulation. Remarkably, 
endoreplication is not solely permissive for growth; reducing 
endoreplication levels enhances wall stiffening and actively 
reduces cell size. The feedback loop involved in this process 

is mediated by the CrRLK1L CWI receptor THESEUS1 
(THE1) (Ma et al. 2022). These findings provide insights 
into the nonlinear relationship between ploidy levels and size 
and offer a molecular mechanism that connects mechano-
chemical signaling with endoreplication-mediated dynamic 
control of cell growth.

Although the contribution of ploidy levels to cell growth 
has been debated, accumulating evidence suggests that the 
onset of the endocycle, the initiation of endoreplication, may 
influence cell growth through the transcriptional control of 
cell wall-modifying genes (Bhosale et al. 2019). This tran-
scriptional regulation is believed to drive changes in the cell 
wall structure, allowing for the expansion required to accom-
modate turgor-driven rapid cell expansion. It supports the 
notion that vacuolar expansion, rather than a ploidy-depend-
ent increase in cellular volume, represents the primary force 
driving cell growth (Bhosale et al. 2019). Understanding 
the interplay between endoreplication, transcriptional con-
trol of cell wall-modifying genes, and vacuolar expansion 
provides valuable insights into the mechanisms underlying 
cell growth in plants. It highlights the importance of cell 
wall composition and dynamics in maintaining CWI and 
facilitating cell expansion.

Recent findings on molecular mechanisms linking 
CWI perception, cell wall biosynthesis, and gene 
expression regulation

Plant cell walls play a vital role in maintaining plant struc-
ture, safeguarding against various stresses, and facilitating 
cell-to-cell communication. The CWI monitoring system is 
essential for sensing mechanochemical changes in the cell 
wall. It triggers signaling pathways in response, establishing 
a feedback loop between the living cell’s protoplast and the 
extracellular matrix of the cell wall, known as the apoplast 
(Fig. 3). The current body of evidence suggests that CWI 
perturbations can be detected by the CWI monitoring sys-
tem through the perception of cell wall fragments by recep-
tor like kinases (RLKs) and receptor like proteins (RLPs), 
distortion of the cell wall-plasma membrane continuum, or 
displacement of the plasma membrane versus the cell wall 
(Bacete and Hamann 2020).

To date, only the RLK THE1 has been directly associated 
with both CWI monitoring and a cell-cycle-related process 
as endoreplication (Ma et al. 2022). Interestingly, THE1 has 
emerged as a potential CWI mechanoreceptor, playing a cru-
cial role in coordinating cell wall mechanics and processes, 
such as the regulation of abscisic acid production, a hormone 
vital for plant stress response and developmental cues (Bac-
ete et al. 2022). The intriguing aspect of THE1’s function 
is its potential to integrate both chemical and physical sig-
nals, mirroring how integrins in animals serve as connec-
tors between the internal cellular environment and external 
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matrix. However, this does not exclude a potential role of 
other CWI RLKs/RLPs in the coordination of CWI and cell 
cycle progression. In particular, FER seems a promising 
candidate for this, giving its role in mechanosensitive auxin 
signaling (Canher et al. 2022).

In the intricate interplay between plant development and 
environmental adaptation, the plant cell wall stands out not 
just as a structural barrier but as a dynamic mediator in 
cellular processes, including hormonal pathways (Jonsson 
et al. 2022). This offers a potential link to how cell wall 
perturbations can influence the cell cycle through hormonal 
pathways.

The response of the cell wall to environmental stimuli, 
such as pathogen attacks, exemplifies this dynamic relation-
ship. For instance, when faced with pathogen stress, plants 
reinforce their cell walls by depositing callose. This adap-
tive mechanism not only strengthens the cell wall but also 
intricately triggers ethylene (ET) pathways, essential for 
plant immunity (Voigt 2014). This phenomenon is part of a 
broader context where modifications in the cell wall com-
ponents, like cellulose and hemicelluloses have profound 
effects on the balance and signaling of hormones such as 

ET, jasmonic acid (JA), salicylic acid (SA), and abscisic acid 
(ABA) (Fig. 3) (Bacete et al. 2018). Pectin modifications 
in the cell wall also trigger hormonal responses involving 
JA and SA, which are crucial for the plant’s adaptation to 
environmental changes. The role of wall-associated kinases 
(WAKs) in sensing these modifications, leading to the pro-
duction of SA and/or JA, links the mechanical state of the 
cell wall to biochemical signaling pathways (Kohorn 2016).

The influence of these hormonal changes extends to criti-
cal phases of the cell cycle. Hormones like JA, cytokinins, 
auxins, gibberellins (GAs), and ET are particularly influen-
tial at the G2/M checkpoint (Fig. 3), a key phase in regulat-
ing the transition from growth to cell division (Shimotohno 
et al. 2021). The intricate hormonal interplay, such as the 
cross-effects effect of SA on ET and JA pathways and the 
impact of JA on the switch between mitotic cycle and endo-
cycle (Patil et al. 2014), highlights the complex regulatory 
mechanisms plants employ. Moreover, JA, along with ET 
and ABA, influences the entry in G0 phase (Velappan et al. 
2017). Conversely, auxins, cytokinins, and GAs are key 
regulators of CDKs and play a vital role in the G1/S check-
point (Fig. 3) (Shimotohno et al. 2021). ABA’s role extends 
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to promoting the expression of CKI-coding genes such as 
ICK1/KPR1, pivotal in cell cycle control (Wang et al. 1998). 
The cell-wall-dependent production of ABA in response to 
hyperosmotic stress exemplifies the cell wall’s role in per-
ceiving environmental changes and triggering appropriate 
hormonal responses that could influence cell cycle progres-
sion (Bacete et al. 2022). Conversely, the role of these hor-
mones in modifying the cell wall, impacting properties like 
extensibility and strength, is integral for plant growth and 
development. This dynamic nature of the cell wall, in con-
junction with hormonal signaling, underscores its critical 
role in not just supporting plant structure but actively par-
ticipating in the regulation of the cell cycle and adaptation 
to environmental challenges.

Transcriptional regulation of cell wall metabolism is 
closely linked to CWI signaling and involves several key 
components. It has been primarily observed in the context of 
immune responses. For instance, FER, upon interaction with 
its ligands (RALF peptides) phosphorylate the transcription 
factor MYC2, influencing JA signaling (Guo et al. 2018). 
Looking at transcription factors as an end point of CWI-
related pathways could be an interesting perspective to look 
for candidates for CWI-cell cycle coordination. Notably, the 
transcription factor MYB46 in A. thaliana has emerged as 
a key player, orchestrating cell growth and cell cycle pro-
gression. MYB46 expression is induced upon wounding, 
leading to the upregulation of genes associated with cell 
wall biosynthesis and the cell cycle (Shi et al. 2021). This 
coordinated response promotes the biosynthesis of the cell 
wall by enhancing the expression of cell wall-associated 
genes. Also, it upregulates a battery of genes involved in 
cell cycle progression (Shi et al. 2021). The involvement 
of MYB46 in this regulatory network has been observed in 
seven plant species harboring R2R3-MYB domains, includ-
ing A. thaliana, Fragaria vesca (strawberry), Malus domes-
tica (apple), Prunus mume (plum blossom), Prunus persica 
(peach), Pyrus bretschneideri (pear), and Rosa chinensis 
(China rose), highlighting its evolutionary conservation (Shi 
et al. 2021).

Future perspectives and unanswered 
questions

As we have discussed above, CWI is a complex process that 
involves the perception of physical and chemical stimuli. 
Disturbances in cell wall homeostasis are CWI receptors, 
initiating various signal transduction pathways that allow 
plants to identify the origin of such disturbances—either 
environmental or developmental—and respond appropri-
ately (Bacete and Hamann 2020). However, our under-
standing of CWI and its monitoring system remains par-
tial, derived from diverse studies across various tissues, 

organs, and species (Vaahtera et al. 2019), hindering our 
comprehensive knowledge of the mechanisms involved. In 
the context of their influence on cell cycle progression, an 
interesting approach could look at homologs of the yeast 
and animal signaling cascades described above and sum-
marized in Fig. 2. After all, this approach has been success-
fully exploited in the past to characterize CWI mechanisms 
in plants (Hamann and Denness 2011).

Furthermore, compensatory modifications to the cell 
walls often serve as a common response to CWI distur-
bances, as the plant tries to restore cell wall functionality 
(Denness et al. 2011). These modifications can act as both 
the trigger for the CWI monitoring system (input) or the 
result of this system’s activation (output). The distinction 
lies solely in the temporal dimension, emphasizing the 
importance of considering this aspect for a comprehensive 
understanding of CWI. Yet, the technical challenges associ-
ated with studying dynamic processes remain substantial, 
due to the lack of spatial and temporal resolution of the 
employed methods (Alonso Baez and Bacete 2023). A nice 
example of how high-resolution techniques can shed light 
into how cell wall properties relate to cell division and mor-
phogenesis is the recent study by (Bonfanti et al. 2023). By 
employing time-lapse imaging and atomic force microscopy, 
the authors systematically mapped the stiffness of cell walls 
in relation to their age and growth in Marchantia polymor-
pha and A. thaliana. Intriguingly, it was found that new 
walls in M. polymorpha gemmae become transiently stiffer 
and slower-growing compared to older walls, a phenom-
enon not observed in Arabidopsis leaves. This differential 
behaviour impacts local cell geometry and junction angles, 
underlining the significance of cell wall mechanics in plant 
morphogenesis. Further studies in this direction and with 
this level of resolution can provide interesting insights into 
how CWI and cell cycle progression impact each other.

The “growth-defense trade-off” in plant biology under-
scores the strategic allocation of resources, intricately gov-
erned by a network of phytohormones and cell division 
control. Essentially, plants must decide whether to allocate 
resources towards growth or defense against various stresses. 
This trade-off is particularly evident in the context of CWI 
maintenance. For instance, certain changes in cell wall com-
position not only enhance stress resistance but can also boost 
biomass and seed production. The Arabidopsis mutant arr6 
serves as a compelling example, displaying modified CWI 
responses alongside an optimized growth-defense balance 
(Bacete et al. 2020). However, the exact mechanisms driving 
this trade-off are not fully understood, and manipulating the 
cell wall doesn’t always enhance plant growth. There is no 
commonly accepted underlying mechanism for these growth 
defects, and new approaches are needed to better understand 
how changes in cell wall composition may quantitatively 
affect growth. The perspective of cell cycle and cell division 
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playing a significant role in this interaction is a compelling 
idea and might or might not involve hormonal balance. This 
knowledge could revolutionize our approach to agriculture, 
improving crop performance in the face of an increasingly 
changing environment, and thereby contributing to sustain-
able food security.

Conclusion

In this review, we provide an extensive overview of the 
current understanding of the critical relationship between 
CWI and cell cycle progression in plants. The mechanisms 
underlying this relationship are multifaceted and complex, 
involving a wide array of genes, transcription factors, and 
signaling pathways, underpinning everything from cell wall 
biosynthesis to CWI perception and adaptive responses.

The plant cell wall, far from being an inert, passive bar-
rier, has emerged as a dynamic and responsive structure that 
intimately links the physical state of the cell with a myriad of 
developmental and stress response processes. The complex 
interplay between CWI maintenance, the cell cycle, and gene 
expression regulation is central to plant growth and devel-
opment, with the potential to influence plant resistance to 
environmental stressors. However, much remains to be eluci-
dated. Key questions persist around the specific CWI sensing 
mechanisms in plants and the role of CWI maintenance in 
the growth-defense trade-off. Likewise, our understanding of 
how these processes might be conserved or divergent across 
species is still in its infancy. Continued research into these 
areas will not only shed light on fundamental biological 
processes but also have the potential to generate practical 
applications for crop improvement and sustainable agricul-
ture. Ultimately, the potential implications of this research 
are profound. By connecting our growing understanding of 
CWI to cell cycle coordination, we could enhance plant pro-
ductivity and resilience, providing more robust responses to 
a rapidly changing environment. This would have significant 
implications for global food security and could contribute to 
more sustainable agricultural practices.

In conclusion, although we have made significant strides 
in understanding the intricate dance between CWI and cell 
cycle progression in plants, this field remains ripe for explo-
ration. As we venture forward, each new discovery not only 
reveals more about the complex biology of plants but also 
brings us a step closer to harnessing these insights for the 
betterment of agriculture and, ultimately, society.
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