Table 5.
Outcome | Model | ROC-AUC | p-value | Average Prec | p-value | Accuracy | Sensitivity | Specificity | PPV | NPV |
---|---|---|---|---|---|---|---|---|---|---|
mRS > 2 | QDA | 0.87 ± 0.03* | p < 0.0001 | 0.60 ± 0.13* | p < 0.0001 | 0.72 ± 0.06 | 0.83 ± 0.08 | 0.71 ± 0.07 | 0.24 ± 0.04 | 0.98 ± 0.01 |
Baseline LR | 0.77 ± 0.05 | 0.40 ± 0.08 | 0.79 ± 0.05 | 0.51 ± 0.14 | 0.82 ± 0.06 | 0.24 ± 0.07 | 0.94 ± 0.01 | |||
mRS-Diff. > 1 | MLP | 0.70 ± 0.02* | p < 0.0001 | 0.19 ± 0.05 | p = 0.2561 | 0.52 ± 0.03 | 0.74 ± 0.07 | 0.50 ± 0.04 | 0.13 ± 0.00 | 0.95 ± 0.01 |
Baseline LR | 0.65 ± 0.06 | 0.19 ± 0.06 | 0.66 ± 0.07 | 0.50 ± 0.16 | 0.67 ± 0.08 | 0.14 ± 0.03 | 0.93 ± 0.02 | |||
perm. nND | QDA | 0.71 ± 0.04* | p < 0.0001 | 0.26 ± 0.08* | p < 0.0001 | 0.60 ± 0.10 | 0.65 ± 0.24 | 0.60 ± 0.12 | 0.11 ± 0.02 | 0.96 ± 0.02 |
Baseline LR | 0.49 ± 0.09 | 0.08 ± 0.02 | 0.69 ± 0.07 | 0.19 ± 0.16 | 0.73 ± 0.08 | 0.05 ± 0.04 | 0.92 ± 0.01 | |||
trans. nND | SVM | 0.73 ± 0.07* | p < 0.0001 | 0.15 ± 0.05* | p = 0.0116 | 0.90 ± 0.03 | 0.00 ± 0.02 | 0.97 ± 0.03 | 0.22 ± 0.41 | 0.93 ± 0.00 |
Baseline LR | 0.63 ± 0.11 | 0.19 ± 0.10 | 0.74 ± 0.05 | 0.41 ± 0.19 | 0.77 ± 0.08 | 0.12 ± 0.06 | 0.95 ± 0.02 | |||
GOS < 5 | GAM | 0.79 ± 0.08* | p < 0.0001 | 0.45 ± 0.09 | p = 0.0879 | 0.73 ± 0.05 | 0.69 ± 0.12 | 0.73 ± 0.06 | 0.30 ± 0.05 | 0.93 ± 0.02 |
Baseline LR | 0.75 ± 0.04 | 0.43 ± 0.09 | 0.74 ± 0.05 | 0.57 ± 0.13 | 0.77 ± 0.06 | 0.30 ± 0.06 | 0.92 ± 0.02 |
The QDA and GAM models for mRS > 2, permanent nND and GOS < 5 perform best in terms of Average Precision, too. mRS = modified Rankin Scale, GOS = Glasgow outcome scale, nND = new neurological deficit, LR = logistic regression, QDA = quadratic discriminant analysis, MLP = multilayer perceptron, SVM = support vector machine, GAM = generalized additive model, ROC-AUC = area under receiver operating characteristic curve, PPV = positive predictive value, NPV = negative predictive value.