Skip to main content
. 2023 Dec 19;13:22641. doi: 10.1038/s41598-023-50012-8

Table 5.

Test-set performance of the best model and baseline logistic regression model for each outcome, displayed as mean ± std.dev. Statistically significant differences between best- and baseline models in terms of ROC-AUC and Average Precision are marked as * (Mann–Whitney U test, alpha = 0.05).

Outcome Model ROC-AUC p-value Average Prec p-value Accuracy Sensitivity Specificity PPV NPV
mRS > 2 QDA 0.87 ± 0.03* p < 0.0001 0.60 ± 0.13* p < 0.0001 0.72 ± 0.06 0.83 ± 0.08 0.71 ± 0.07 0.24 ± 0.04 0.98 ± 0.01
Baseline LR 0.77 ± 0.05 0.40 ± 0.08 0.79 ± 0.05 0.51 ± 0.14 0.82 ± 0.06 0.24 ± 0.07 0.94 ± 0.01
mRS-Diff. > 1 MLP 0.70 ± 0.02* p < 0.0001 0.19 ± 0.05 p = 0.2561 0.52 ± 0.03 0.74 ± 0.07 0.50 ± 0.04 0.13 ± 0.00 0.95 ± 0.01
Baseline LR 0.65 ± 0.06 0.19 ± 0.06 0.66 ± 0.07 0.50 ± 0.16 0.67 ± 0.08 0.14 ± 0.03 0.93 ± 0.02
perm. nND QDA 0.71 ± 0.04* p < 0.0001 0.26 ± 0.08* p < 0.0001 0.60 ± 0.10 0.65 ± 0.24 0.60 ± 0.12 0.11 ± 0.02 0.96 ± 0.02
Baseline LR 0.49 ± 0.09 0.08 ± 0.02 0.69 ± 0.07 0.19 ± 0.16 0.73 ± 0.08 0.05 ± 0.04 0.92 ± 0.01
trans. nND SVM 0.73 ± 0.07* p < 0.0001 0.15 ± 0.05* p = 0.0116 0.90 ± 0.03 0.00 ± 0.02 0.97 ± 0.03 0.22 ± 0.41 0.93 ± 0.00
Baseline LR 0.63 ± 0.11 0.19 ± 0.10 0.74 ± 0.05 0.41 ± 0.19 0.77 ± 0.08 0.12 ± 0.06 0.95 ± 0.02
GOS < 5 GAM 0.79 ± 0.08* p < 0.0001 0.45 ± 0.09 p = 0.0879 0.73 ± 0.05 0.69 ± 0.12 0.73 ± 0.06 0.30 ± 0.05 0.93 ± 0.02
Baseline LR 0.75 ± 0.04 0.43 ± 0.09 0.74 ± 0.05 0.57 ± 0.13 0.77 ± 0.06 0.30 ± 0.06 0.92 ± 0.02

The QDA and GAM models for mRS > 2, permanent nND and GOS < 5 perform best in terms of Average Precision, too. mRS = modified Rankin Scale, GOS =  Glasgow outcome scale, nND = new neurological deficit, LR = logistic regression, QDA = quadratic discriminant analysis, MLP = multilayer perceptron, SVM = support vector machine, GAM = generalized additive model, ROC-AUC = area under receiver operating characteristic curve, PPV = positive predictive value, NPV = negative predictive value.