Skip to main content
. 2023 Dec 19;13:22641. doi: 10.1038/s41598-023-50012-8

Table 6.

External validation performance of the best model (on the internal test set) and baseline logistic model for each outcome, displayed as mean ± std.dev. Note that transient nND was not recorded in the external data, so no results are available for that outcome.

Outcome Model ROC-AUC Average Prec Accuracy Sensitivity Specificity PPV NPV
mRS > 2 QDA 0.61 ± 0.03 0.08 ± 0.01 0.57 ± 0.04 0.59 ± 0.06 0.57 ± 0.05 0.06 ± 0.01 0.97 ± 0.01
Baseline LR 0.66 ± 0.04 0.16 ± 0.04 0.69 ± 0.07 0.55 ± 0.10 0.69 ± 0.07 0.08 ± 0.01 0.97 ± 0.01
mRS-Diff. > 1 MLP 0.53 ± 0.01 0.05 ± 0.01 0.54 ± 0.05 0.44 ± 0.04 0.54 ± 0.05 0.03 ± 0.01 0.96 ± 0.00
Baseline LR 0.53 ± 0.03 0.11 ± 0.05 0.64 ± 0.09 0.48 ± 0.12 0.65 ± 0.09 0.05 ± 0.01 0.97 ± 0.00
GOS < 5 GAM 0.58 ± 0.03 0.12 ± 0.02 0.59 ± 0.07 0.49 ± 0.13 0.60 ± 0.09 0.09 ± 0.01 0.94 ± 0.01
Baseline LR 0.62 ± 0.02 0.16 ± 0.03 0.67 ± 0.05 0.47 ± 0.09 0.68 ± 0.06 0.11 ± 0.01 0.94 ± 0.01

mRS = modified Rankin Scale, GOS =  Glasgow outcome scale, nND = new neurological deficit, LR = logistic regression, QDA = quadratic discriminant analysis, MLP = multilayer perceptron, SVM = support vector machine, GAM = generalized additive model, ROC-AUC = area under receiver operating characteristic curve, PPV = positive predictive value, NPV = negative predictive value.