Table 6.
Outcome | Model | ROC-AUC | Average Prec | Accuracy | Sensitivity | Specificity | PPV | NPV |
---|---|---|---|---|---|---|---|---|
mRS > 2 | QDA | 0.61 ± 0.03 | 0.08 ± 0.01 | 0.57 ± 0.04 | 0.59 ± 0.06 | 0.57 ± 0.05 | 0.06 ± 0.01 | 0.97 ± 0.01 |
Baseline LR | 0.66 ± 0.04 | 0.16 ± 0.04 | 0.69 ± 0.07 | 0.55 ± 0.10 | 0.69 ± 0.07 | 0.08 ± 0.01 | 0.97 ± 0.01 | |
mRS-Diff. > 1 | MLP | 0.53 ± 0.01 | 0.05 ± 0.01 | 0.54 ± 0.05 | 0.44 ± 0.04 | 0.54 ± 0.05 | 0.03 ± 0.01 | 0.96 ± 0.00 |
Baseline LR | 0.53 ± 0.03 | 0.11 ± 0.05 | 0.64 ± 0.09 | 0.48 ± 0.12 | 0.65 ± 0.09 | 0.05 ± 0.01 | 0.97 ± 0.00 | |
GOS < 5 | GAM | 0.58 ± 0.03 | 0.12 ± 0.02 | 0.59 ± 0.07 | 0.49 ± 0.13 | 0.60 ± 0.09 | 0.09 ± 0.01 | 0.94 ± 0.01 |
Baseline LR | 0.62 ± 0.02 | 0.16 ± 0.03 | 0.67 ± 0.05 | 0.47 ± 0.09 | 0.68 ± 0.06 | 0.11 ± 0.01 | 0.94 ± 0.01 |
mRS = modified Rankin Scale, GOS = Glasgow outcome scale, nND = new neurological deficit, LR = logistic regression, QDA = quadratic discriminant analysis, MLP = multilayer perceptron, SVM = support vector machine, GAM = generalized additive model, ROC-AUC = area under receiver operating characteristic curve, PPV = positive predictive value, NPV = negative predictive value.