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In Escherichia coli, certain mutations in the cpxA gene (encoding a sensor kinase of a two-component signal
transduction system) randomize the location of FtsZ ring assembly and dramatically affect cell division.
However, deletion of the cpxRA operon, encoding the sensor kinase and its cognate regulator CpxR, has no
effect on division site biogenesis. It appears that certain mutant sensor kinases (CpxA*) either exhibit
hyperactivity on CpxR or extend their signalling activity to one or more noncognate response regulators
involved in cell division.

In dividing Escherichia coli, a complex of different Fts pro-
teins directs septum formation in the middle of the cell. Early
in the division cycle, the FtsZ protein assembles into a ring
structure at the future division site (1, 4, 16, 24–26, 35, 40). The
Min proteins are involved in directing assembly of FtsZ to the
medial division sites (2, 11, 12, 41). MinC and MinD, together,
block FtsZ assembly at potential polar division sites, while
MinE stimulates its assembly at the medial position (5, 12).
Thus, when FtsZ is excessive or MinC or MinD is insufficient,
FtsZ may assemble at the polar positions, resulting in minicell
formation (3, 12, 46).

The cpxA gene encodes the sensor kinase (27, 28) of a
two-component system, with CpxR as the response regulator
(15, 31, 44). Numerous phenotypic changes (7, 27, 28, 32, 33,
38), many of which are associated with membrane function,
have been attributed to cpxA* mutants (8, 10, 34). Recently, a
CpxA* protein was found defective in CpxR-P phosphatase
activity (39), which would explain the elevated expression of
CpxR-P target operons, such as degP, dsbA, ppiA, and cpxP
(8–10, 34). Here we describe the randomized location of FtsZ
ring assembly and septation in cpxA* mutants (Table 1), a cell
division phenotype heretofore not reported.

Irregular septation and nucleoid inheritance in cpxA* pop-
ulations. Since cpxA* mutations seem to impair membrane
functions, we wondered whether cell morphology was also af-
fected. Therefore, strains JP406 (cpxA1) and JP408 (cpxA9*)
were grown exponentially (glucose medium, 37°C) and exam-
ined by electron microscopy. Unexpectedly, the mutant cells
did not show uniform morphology: a minority exhibited irreg-
ular shapes and sizes which seemed to result from aberrant cell
septation (Fig. 1A to D). When 250 dividing cells of each strain
were surveyed, JP406 (cpxA1) almost invariably cleaved at the
cell midpoint (97% of the population). By contrast, 38% of the
JP408 (cpxA9*) cells cleaved at random positions along the cell

axis and sometimes showed multiple septum formation. Phase-
contrast microscopy of cells (Luria-Bertani [LB] medium,
37°C) stained for DNA by 49-6-diamidino-2-phenylindole
showed that, in contrast to wild-type JP406 (cpxA1), mutant
strains JP408 (cpxA9*) and JP467 (cpxA2.1*) often formed
subsized cell bodies devoid of DNA (nucleoids) during division
(Fig. 1E and F).

Whereas the division anomaly of JP408 (cpxA9*) occurred at
42 and 37°C but not at 30°C (LB or minimal-glucose medium),
this growth defect occurred at all three temperatures with
JP467 (cpxA2.1*). The cpxA* mutation alone seems to account
for the growth defect, since this phenotype was P1 transduced
to wild-type strains. It is noteworthy that a cpx deletion mutant,
ECL1212, divided normally.
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TABLE 1. Strains and plasmids used in this studya

Strain Relevant genotype Reference

ECL525 MC4100 D(argF-lac)U169 araD139 Dfrd-101
rpsL150 relA1 deoC1 flb-5301 ptsF25

22

JP406 ECL525 F9pOXgen This study
ECL1212 JP406 DcpxRA-2 This study
ECL1215 JP406 ara1 34
JP408 JP406 zii-510::Tn10 cpxA9* This study
JP466 JP406 argE::Tn10 34
JP467 JP406 argE::Tn10 cpxA2.1* 34

a All of the strains used in this study are isogenic derivatives of ECL525.
F9pOXgen (14) was used to introduce conjugative ability to ECL525. The de-
fined deletion DcpxRA-2 was constructed as described by Blum et al. (6). The
1.2-kb deletion between the XhoI and EcoRI sites in the cpxRA operon removed
most of the coding sequence of the two genes. The deletion was confirmed by
PCR. Mutant cpxA alleles were introduced into strain JP406 by phage P1 co-
transduction of linked zii-510::Tn10 or argE::Tn10. Strain JP408 received the
cpxA9* allele from strain AE2293, which was provided by P. M. Silverman (38).
The cpxA9* mutant was originally selected for amikacin resistance (38) and
shown to have a Leu383Phe (TTT) substitution in the periplasmic domain of
CpxA (42). This mutation was confirmed in strain JP408 by DNA sequencing.
The cpxA2.1* mutant was isolated in a selection for increased expression of a
lacZ transcriptional fusion to the yajC-secDF operon. This cpxA allele was se-
quenced and shown to have a Val203Ala (GCG) substitution plus an insertion
of Leu and Val (CTGGTG) between Ala20 and Leu21 in the first membrane-
spanning segment. For other characteristics of this mutation, see reference 34.
Strains with cpxA* alleles were routinely grown at 30°C, except where indicated,
to minimize reversion or suppression.
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Relationship between FtsZ ring formation and cell length in
cpxA* mutants. Because of the role of FtsZ in septation, the
assembly of FtsZ and the positioning of the FtsZ ring during
mutant cell division were compared with that in wild-type cells
(Fig. 2). Consistent with the results of cell division analysis, the
FtsZ ring (stained green by immunofluorescence) formed al-
most invariably at the cell midpoint in dividing wild-type cells,
whereas the location of the FtsZ ring was random in almost
half of the JP467 (cpxA2.1*) population. The patterns of nu-
cleoid inheritance, as revealed by DNA staining (red), con-
firmed the results of phase-contrast microscopy.

During steady-state growth of wild-type cells, length is an
approximate indicator of age. Hence, most long cells have an
FtsZ ring, whereas most short ones do not (1, 35), giving a
bimodal distribution when the numbers of cells with an FtsZ
ring and those without one are plotted against cell length. In
the JP467 (cpxA2.1*) population, a significant fraction of dwarf
cells is present, some of which nonetheless possess the FtsZ
ring. Also, a large fraction of the cells is oversized, and yet
some of these lack an FtsZ ring. Consequently, the presence or
absence of an FtsZ ring, and thus cell age, can no longer be
statistically predicted by cell length. The results of FtsZ anal-
ysis are summarized in Fig. 3.

FtsZ levels in cpxA* mutants. Unlike the minB mutants,
which simultaneously produce minicells and filaments (12),
cpxA* mutants only occasionally produce cells that are mod-

erately longer than cpxA1 cells. The difference in length dis-
tribution between wild-type and mutant cells does not appear
to be attributable to a difference in growth rate, since the
doubling times of strains JP467 (cpxA2.1*) and JP408 (cpxA9*)
are only slightly longer than that of the wild-type parent (LB
medium, 37°C). The aberrant cell division phenotype of cpxA*
mutants, therefore, more closely resembles that of FtsZ over-
production. However, when rates of FtsZ synthesis and stabil-
ity were measured by pulse-chase immunoprecipitation, no
significant difference was found between strains JP406 (cpxA1)
and JP467 (cpxA2.1*) (data not shown).

Normal septation in wild-type cells with NlpE-activated Cpx
signal transduction. Oversynthesis of the outer membrane
protein NlpE activates the Cpx pathway in wild-type cells (8,
10, 34). To determine whether this activation affects septation
during cell division, strain ECL1215 was transformed with plas-
mid pND18, expressing nlpE from an L-arabinose-inducible
promoter (10, 34). Cells were grown in LB medium (37°C),
induced with L-arabinose, stained for DNA, and examined by
phase-contrast microscopy. No cell division defects similar to
those seen in cpxA* mutants were observed.

No epistatic effect of a degP null mutation on cpxA* pheno-
types. Induction of degP in cpxA* mutants is implicated in
suppressing toxic phenotypes associated with accumulation of
the LamB-LacZ-PhoA hybrid protein (8). To see whether
some of the pleiotropic defects are attributable to elevated

FIG. 1. (A to D) Electron micrographs. Cells were fixed on an electron microscopy grid with 1% phosphotungstic acid and observed at a magnification of 35,000.
Strains: JP406 (cpxA1), A; JP408 (cpxA9*), B to D. (E and F) Phase-contrast micrographs. Division products without DNA appear as dark bodies. Strains: JP406
(cpxA1), E; JP467 (cpxA2.1*), F.
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levels of the DegP protease, causing nonspecific damage to cell
envelope proteins, strain JP467 (cpxA2.1*) was compared with
a cpxA2.1* degP::Tn5 double mutant. In particular, the growth
phenotypes on succinate and serine as the sole carbon source,
resistance to low levels of amikacin, and aberrant cell division
were analyzed. Abolition of degP function had no effect on the
cpxA* phenotypes tested.

How CpxA* may affect cell division. Since CpxA* probably
enhances CpxR-P levels (39), we attempted to identify CpxR-P
target operons associated with cell division. By using the pro-
posed CpxR-P-binding consensus 59-GTAAAN5–7GTAAA-39
(34), we found no obvious candidates among the known cell
division genes, including ftsQAZ (17, 43), ftsYEX (18),
minCDE (12), and zipA (19). However, the fic gene, implicated
in cell division (23), is preceded by ppiA, a CpxR-P-controlled
gene. Whether fic expression is altered in cpxA* mutants re-
mains to be determined.

It is also possible that CpxA* cross-phosphorylates one or
more noncognate two-component regulators that have a role in
cell division. In Bacillus subtilis, a two-component signal trans-
duction system directly regulates the localization of the divi-
sion site during sporulation (21, 25). Two-component signal
transduction systems also play essential roles in cell cycle con-
trol in Caulobacter crescentus (13, 20, 29, 30, 37, 45, 47, 48).
Further characterization of the cpxA* cell division phenotype
may therefore cast new light on control of cell division in E.
coli.
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