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CHEN et al.

POSTN+ CAFs were enriched in advanced NSCLC tumours and presented
gene expression signatures related to extracellular matrix remodeling, tumour
invasion and immune suppression.
POSTN+ CAFs were in close localization with SPP1+ macrophages and associ-
ated with the exhausted phenotype and lower infiltration of T cells.
POSTN expression and POSTN+ CAFs were prognostic factors for NSCLC.
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Abstract
Background: Cancer-associated fibroblasts (CAFs) are potential targets for
cancer therapy. Due to the heterogeneity of CAFs, the influence of CAF sub-
populations on the progression of lung cancer is still unclear, which impedes the
translational advances in targeting CAFs.
Methods: We performed single-cell RNA sequencing (scRNA-seq) on tumour,
paired tumour-adjacent, and normal samples from 16 non-small cell lung can-
cer (NSCLC) patients. CAF subpopulations were analyzed after integration
with published NSCLC scRNA-seq data. SpaTial enhanced resolution omics-
sequencing (Stereo-seq) was applied in tumour and tumour-adjacent samples
from seven NSCLC patients to map the architecture of major cell populations
in tumour microenvironment (TME). Immunohistochemistry (IHC) and mul-
tiplexed IHC (mIHC) were used to validate marker gene expression and the
association of CAFs with immune infiltration in TME.
Results: A subcluster of myofibroblastic CAFs, POSTN+ CAFs, were signifi-
cantly enriched in advanced tumours and presented gene expression signatures
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BGI-Shenzhen, Shenzhen 518000, China,
Grant/Award Number: BGIRSZ20200003 related to extracellular matrix remodeling, tumour invasion pathways and

immune suppression. Stereo-seq and mIHC demonstrated that POSTN+ CAFs
were in close localization with SPP1+macrophages and were associated with the
exhausted phenotype and lower infiltration of T cells. POSTN expression or the
abundance of POSTN+ CAFs were associated with poor prognosis of NSCLC.
Conclusions: Our study identified a myofibroblastic CAF subpopulation,
POSTN+ CAFs, which might associate with SPP1+ macrophages to promote the
formation of desmoplastic architecture and participate in immune suppression.
Furthermore, we showed that POSTN+ CAFs associated with cancer progres-
sion and poor clinical outcomes and may provide new insights on the treatment
of NSCLC.
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1 INTRODUCTION

Lung cancer is one of the leading causes of cancer-related
death, and non-small cell lung cancer (NSCLC) is the
most common subtype of lung cancer.1 Immunothera-
pies, such as immune checkpoint inhibitors (ICIs), have
improved the overall survival ofNSCLCpatients. However,
the response rate to ICI therapy is only ∼20%, and there
are still a large proportion of patients who are not sensi-
tive to ICI.2 Tumour microenvironment (TME), which is
composed of tumour cells, stromal cells, and extracellu-
lar matrix (ECM), is closely involved in tumour initiation,
progression, and resistance to therapies.3 Recent studies
suggested predictive biomarkers for ICI response based on
tumour intrinsic genomic variants and TME phenotypes,
for example, positive correlations of tumourmutation bur-
dens, PD-1/PD-L1 expression and T cell infiltration with
ICI efficacy in NSCLC patients.4–7 To further extend the
benefit of ICI treatment, in-depth analysis of the compo-
nents and interactive networks in TME is needed to reveal
specific cell types that play important roles in immune
modulation and tumour progression, whichmight provide
potential targets for combinatorial immunotherapies.8
Cancer-associated fibroblasts (CAFs) represent one of

themajor stromal cell components in TME,which are acti-
vated mesenchymal cells negative for epithelial, endothe-
lial and leukocyte markers, excluding other mesenchymal
linages such as pericytes.9 They can be derived from dif-
ferent cell origins, such as resident fibroblasts,10 bone
marrow-derivedmesenchymal stem cells,11 macrophages12
and pericytes.13 Due to phenotypic diversity, classical
markers such as α-smooth muscle actin (αSMA), and
fibroblast activation protein alpha (FAP) could identify
a proportion of CAFs, while more relevant biomarkers

are under research.14 Periostin (encoded by POSTN) is a
matricellular protein overexpressed in cancers including
NSCLC compared to normal tissues.15,16 CAFs produc-
ing periostin promoted the maintenance of cancer stem
cell niche, angiogenesis, tumour growth, invasion and
metastasis.17–20 Recent studies underscored the essential
roles of crosstalk between CAFs and tumour-infiltrating
immune cells on shaping the immune-suppressive TME.21
Tumour-associated macrophages (TAMs) are the most
abundant immune cells in TME and are associated with
immunosuppression,22 tumour progression23 and poor
prognosis in various cancer types.24,25 Secreted phospho-
protein 1 (SPP1) + macrophages were regarded as a group
of universally presented immune-suppressive TAMs with
high activities in angiogenesis and matrix modeling in
NSCLC, and the abundance of SPP1+ TAMs was asso-
ciated with a worse clinical outcome.26,27 Although the
multifaceted roles of periostin on cancer cells were eluci-
dated, the association of POSTN+ CAFs with other stroma
cells including macrophages, and the influence on T cell
infiltration remains to be explored.
With the rapid development of single-cell RNA

sequencing (scRNA-seq) technology, the complexity and
heterogeneity of CAFs have been brought to the spotlight
alongwith essential questions regarding to their functional
implications.28 Two main CAF subpopulations, myofi-
broblastic CAFs (myCAFs) with high levels of αSMA and
inflammatory CAFs (iCAFs) characterized by high expres-
sion of IL-6 were broadly reported in a variety of solid
cancers.29,30 It has been described thatmyCAFs and iCAFs
actively contributed to the immune-suppressive milieu,
through ECM remodeling and secreting different growth
factors, cytokines, or chemokines, playing pleotropic
roles in affecting the response to immunotherapy.
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They can be further divided into subpopulations in differ-
ent types and stages of tumours.28 Previous studies using
scRNA-seq have identified diverse CAF subpopulations
in NSCLC31,32; however, detailed phenotypic character-
ization is still needed to fully reveal the complexity and
plasticity of CAFs, especially in the context of spatial
structure of TME. The recent advance of spatial RNA-seq
technologies represented a significant inflection point
for a deeper analysis of TME architecture from a new
dimension.33 By combining the scRNA-seq and spatial
RNA-seq technologies, several studies unraveled the spa-
tial organizations and unique characteristics of CAFs and
TAMs in human tissue samples from colorectal cancer,
breast cancer, and cervical squamous cell carcinoma,34–36
while such information is still lacking in lung cancer.
In this study, we classified CAF subpopulations

at single-cell transcriptomic level by integrating our
in-house generated scRNA-seq data with two pub-
lished datasets.31,32 We identified a myCAF subtype,
POSTN+ CAFs, associated with the pro-invasive and
immune-suppressive TME. Using a newly developed,
high-resolution spatial RNA-seq technology, SpaTial
enhanced resolution omics-sequencing (Stereo-seq),37 we
found that POSTN+ CAFs clustered around or adjacent
to the tumour nests, and were in proximity with SPP1+
macrophages, contributing to ECM remodeling and
immune suppression. T cells infiltrated less at the tumour
regions rich in POSTN+ CAFs and showed exhausted
phenotypes. The expression of POSTN and the abundance
of POSTN+ CAFs were significantly associated with the
clinical stages and poor prognosis of NSCLC. Collectively,
our data provided new insights on the characteristics and
functions of CAF subtypes in NSCLC and suggested the
critical roles of POSTN+ CAFs in immune suppression
and tumour progression, indicating that they may be
promising targets for the treatment of NSCLC.

2 RESULTS

2.1 Single-cell transcriptomic profiling
of main cell types in the samples of Peking
cohort

We collected samples of tumours (tLung), tumour adjacent
tissues (ntLung, tissue within 2 cm adjacent to tumour),
and distal normal tissues (nLung, tissue more than 5 cm to
tumour) from 20 patients with stage I–IV lung squamous
cell carcinoma (LUSC) or lung adenocarcinoma (LUAD)
(Table S1). Samples were digested into single-cell suspen-
sions or OCT-embedded, followed by scRNA-seq using
BGI-DNBelab C4 platform38 or spatial RNA-seq through
Stereo-seq technology37 (Figure 1A). For most samples

used for scRNA-seq, patient-matched tLung, ntLung and
nLung samples were collected (Table S1). After filtering
out the low-quality cells and putative cell doublets, a
total of 162 036 cells were retained for downstream anal-
ysis. We then performed principal component analysis
(PCA) based on highly variably expressed genes and unsu-
pervised clustering to identify cell types based on their
expression patterns. Twenty-five clusters were classified
into distinct cell lineages annotated according to expres-
sion patterns of canonical marker genes (Figure 1B,C,
Figure S1).30–32 Thus, eight major cell types were identi-
fied, including myeloid cells, T/NK cells, B cells, fibrob-
lasts, mast cells, endothelial cells, epithelial cells, and
alveolar cells (Figure 1B,C, Table S2). Cell clustering
among sample origins showed no obvious batch effect, and
consistent with previous scRNA-seq studies,30,32 differen-
tial distribution of cell types was observed across patients
(Figure S1B,C).

2.2 Identification of diverse fibroblast
subpopulations in NSCLC from integrated
scRNA-seq data

Due to difficulties with dissociation of fibroblasts from
tissues, a limited number of cells generated in a single
study could impose limitations on the thorough analysis
of fibroblast subpopulations. To characterize the pheno-
typic and functional diversity of fibroblasts in NSCLC,
we combined the fibroblasts in this study (N = 1986)
with fibroblasts in another two studies, the Samsung
cohort31 (N = 3499, including nLung, tLung, and brain
metastases (mBrain) samples), and the Tongji cohort32
(N = 4497, including tLung samples), resulting in a total
of 9982 fibroblasts (Figure 1A). We then performed recip-
rocal PCA (RPCA) followed by graph-based clustering
to identify fibroblast subpopulations in NSCLC. After
excluding potential low-quality cells and removing a clus-
ter with high expression of epithelial markers (such as
EPCAM, KRT8, KRT19) to distinguish fibroblasts from
tumour cells undergoing epithelial-mesenchymal transi-
tion (EMT), 13 subclusters of fibroblasts were retained
(Figure 1D, Table S3). Cells from four tissue types (tLung,
mBrain, ntLung, nLung) were enriched differently among
the fibroblast subclusters (Figure 1E, Figure S2). Distinct
from other three tissue types, mBrain samples mainly
composed of pericytes, C02_POSTN and C08_CYP1B1.
Distribution of fibroblast subpopulations in patients also
showed substantial heterogeneity (Figure S2A), while
some subclusters, such as C01_CCL11, C02_POSTN and
Pericytes were detected in over 50% of patients (Figure
S2B). These observations were in accordance with the
diverse phenotypes and functions of fibroblasts.28,39



4 of 20 CHEN et al.

F IGURE 1 Single-cell transcriptomic profiling of fibroblasts in non-small cell lung cancer (NSCLC) samples from three cohorts. (A)
Schematic workflow outlining the samples, experimental strategies and bioinformatic analysis for this study. Peking cohort includes samples
collected in this study, which were subjected to scRNA-seq or Stereo-seq. The scRNA-seq data from Peking cohort were integrated with the
published data of Samsung cohort (N = 44) and Tongji cohort (N = 42). Bioinformatic analysis of scRNA-seq and Stereo-seq data was
performed and validated using The Cancer Genome Atlas (TCGA) bulk RNA-seq data and multiplexed immunohistochemistry (mIHC). N
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We identified differentially expressed genes (DEGs)
for each fibroblast subcluster (Figure 1F, Table S4).
The pericyte cluster expressed several well-known
pericyte-associated marker genes, such as RGS5, CSPG4,
ABCC9, and KCNJ8. Clusters C01_CCL11, C05_IGF1,
and C06_CCL2 were characterized by high expression
of inflammation-related genes, such as CCL11, CXCL14,
CXCL1, PLA2G2A, APOE, C3, CCL19, CCL5 and CXCL12,
which were markers for iCAFs as described in other
studies.40,41 C03_PI16 and C04_COL13A1 were regarded
as adventitial and alveolar fibroblasts respectively accord-
ing to gene expression patterns.42 For example, C03_PI16
expressed several marker genes, such as COL14A1, CFD,
GSN and PI16, similar to the major fibroblast subpopula-
tions in normal tissue and early-stage tumour in a previous
study.31 The high expression level of PI16 was associated
with a class of universal stem-like fibroblasts, which
can develop into other subpopulations.42 C04_COL13A1
expressed several extracellular matrix genes found in the
alveolar tissues of mice,42 such as COL13A1, TCF21 and
NPNT, indicating an early differentiated state of this cell
cluster. C02_POSTN and C07_MKI67 were distinguished
by high expression of POSTN, matrix metalloproteinases
(MMPs), and other marker genes for myCAFs.34,43,44
The matricellular protein periostin encoded by POSTN
played a key role in forming a fibrotic environment, and
promoting cancer proliferation or invasion,45 which might
partly function via modulating the expression ofMMP2.46
C08-C12 contained a small number of cells (N < 200)

and covered less than 15% of patients from three cohorts
(Figure 1E, Figure S2), which might represent cells at
an intermediate state of differentiation or relatively rare
subpopulations. C08_CYP1B1 were mainly composed of
cells from the brain metastatic tissue and regarded as
the fibroblast-like cells within the perivascular space of
the central nervous system in the Samsung cohort.31
C09_MYH11 were found in both nLung and tLung, and
represented another subtype of myofibroblasts with high
expression of MYH11, ACTA2, ACTG2 and TAGLN, but
low expression of POSTN. C10-C12 were enriched in
tLung samples. C10_TGFBI displayed high expression
of TGFBI, a structural homolog of POSTN, which was
found to promote metastasis of colon cancer by enhancing
cell extravasation.47 C11_VWF were characterized by co-
expressingmarker genes of fibroblasts (COL1A1, FAP, VIM,

ACTA2) and endothelial cells (VWF, PECAM1, CLDN5,
FLT1, RAMP2), which resembled a subgroup of cells under-
going an EMT transition in gastric cancer.44 C12_UPK3B
represented a small group of mesothelial cells with high
expression of UPK3B, MSLN, CALB2 andWT1.31

2.3 Phenotypic and gene expression
features of fibroblast subpopulations at
single-cell transcriptomic level

For the top seven clusters with substantial number of cells
(C01-C07, except for pericytes), we performed statistical
analysis using the scRNA-seq data and the bulk RNA-seq
data of NSCLC from The Cancer Genome Atlas (TCGA).
The proportions of C03_PI16 and C04_COL13A1 in ntLung
and nLung were higher than that in tLung, represent-
ing the normal matrix fibroblasts in lung tissues, while
C01_CCL11, C02_POSTN, C06_CCL2 and C07_MKI67
were significantly enriched in tumours (Wilcoxon rank-
sum test, p< .05, Figure 2A).We extracted the gene expres-
sionmatrices of these clusters and calculated their percent-
ages in the tumour and normal samples of TCGA-NSCLC
cohort with the CIBERSORTx algorithm.48 Consistently,
we found that the proportions of C01_CCL11, C02_POSTN,
C06_CCL2 and C07_MKI67 were significantly higher
in tumour than normal tissues, both in LUAD and
LUSC (Figure S3). Furthermore, pseudo-time trajectory
analysis using Monocle249 showed that C03_PI16 and
C04_COL13A1 clustered at the beginning of the differ-
entiation trajectory, and expression of marker genes for
normal fibroblasts, such as ADH1B, CFD, COL14A1 and
GSN decreased along the pseudo-time axis (Figure 2B,C,
Figure S4). By contrast, C02_POSTN, C06_CCL2, and
C07_MKI67 distributed towards the later phase along the
differentiation path, and expression of CAF-relatedmarker
genes, for example, FAP, ACTA2, CCL11, COL8A1, CXCL14,
POSTN, INHBA, COL10A1 and COL11A1, also increased
along the differentiation trajectory (Figure 2B,C, Figure
S4), which was in line with the more differentiated status
of CAFs compared to normal fibroblasts.42
Gene set variation analysis (GSVA) using cancer hall-

mark gene sets50 was applied to compare the sig-
naling pathway activities among CAF subpopulations
(Figure 2D). C01_CCL11 and C02_POSTN shared several

denotes the number of patients. (B) UMAP plot of 162 036 cells from sixteen NSCLC patients in the Peking cohort. Each dot corresponds to
one single cell. (C) Dot plot of the average expression of marker genes for eight main cell types. The dot size represents the percentage of cells
expressing the genes in each cell type. (D) UMAP plot of fibroblasts from three cohorts coloured by subclusters. (E) Tissue origins of thirteen
fibroblast subpopulations represented by the proportion of cells (left) and number of cells (right). (F) The dot plot showing the average
expression of signature genes of thirteen fibroblast subpopulations. The dot size indicates the percentage of cells expressing the genes in each
cluster. UMAP, Uniform Manifold Approximation and Projection.
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F IGURE 2 Phenotypic and functional features of fibroblast subpopulations at single-cell transcriptomic level. (A) Boxplot showing the
enrichment of seven fibroblast subpopulations among different tissue types. Each point represents one sample. The p value was calculated
with the Wilcoxon test. (B) Differentiation trajectories of seven fibroblast subpopulations in a two-dimensional state-space defined by
Monocle2. Each point corresponds to a single cell. According to the pseudotime, the differentiation paths start from State1. CAF subtypes are
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similar pathway activities, such as ‘angiogenesis’, ‘EMT’
and ‘IL2-Stat5 signaling’, suggesting their pro-invasive
roles in TME.51 C02_POSTN demonstrated the highest
activity in ‘protein secretion’, in accordance with DEGs
encoding for various matrix proteins, which implied the
essential role of C02 in ECM remodeling. In addition,
C02_POSTN, C05_IGF1 and C07_MKI67 had high path-
way activities in ‘glycolysis’, ‘unfolded protein response’,
and ‘PI3K-AKT-mTOR signaling’. C06_CCL2 presented
the strongest signal in the ‘inflammatory response’ path-
way, consistent with the molecular features for iCAFs.
C07_MKI67 up-regulated multiple cell proliferation path-
ways, such as ‘DNA repair’, ‘G2M checkpoint’, ‘Mitotic
spindle’, therefore regarded as a group of cycling CAFs.
Next, we took a closer look at the ligand expression lev-

els of CAF subpopulations, to infer their roles in regulating
anti-tumour immune responses (Figure 2E). C01_CCL11
and C06_CCL2 were similar in ligand expression patterns,
and they might attract eosinophils, basophils, or CCR5+ T
cells through producing high levels of CCL2, CCL3, CCL11
and CCL21.52 The ligands enriched in C02_POSTN and
C07_MKI67 included the Transforming Growth Factor-β
(TGF-β) superfamily and WNT/β-catenin pathway genes,
such as TGFB1, TGFB2, TGFB3, INHBA and WNT5A sug-
gesting that they might be closely related to the exclusion
of T cells and immune evasion.53,54 In addition, CTHRC1
andADAM12, whichwere highly expressed inC02_POSTN
and C07_MKI67 could promote tumour progression, and
affect the infiltration of immune cells and polarization of
M2 macrophages.55–57 Since POSTN+ CAFs (C02_POSTN
and C07_MKI67) might be closely related to the pro-
invasive and immunosuppressive TME, we confirmed
the co-expression of key markers, including periostin
(POSTN), COL11A1 and αSMA (ACTA2) by immunohisto-
chemistry (IHC) staining (Figure S5) on two formalin-fixed
paraffin-embedded (FFPE) NSCLC samples.

2.4 POSTN+ CAFs and SPP1+
macrophages were in proximity and might
interact to promote ECM remodeling and
immunosuppression

To investigate the spatial localization and potential regu-
latory roles of CAFs in TME, we performed Stereo-seq on
OCT-embedded frozen slides of 5 NSCLC specimens and

three tumour adjacent tissues (Table S1), and the next con-
secutive sectionswere preserved for hematoxylin and eosin
(H&E) staining (Figure 3A,E). Stereo-seq utilized mRNA
capture in situ by DNA nanoballs (DNBs) with approxi-
mately 220 nm diameter and a center-to-center distance of
500 nm.37 To decipher the interior architecture of NSCLC
samples, we used Seurat to cluster the spatial gene expres-
sion of each specimen separately at bin100.36 On average,
about 1600 genes and about 3500 transcripts were captured
by Stereo-seq at each bin100-defined unit (100× 100DNBs,
i.e., ∼50 x 50 μm area, Figure S6). At the resolution of
bin100, spatial clustering not only represented cell types,
but also reflected the spatial proximity. The spatial clusters
were depicted on the tissue section and UniformManifold
Approximation and Projection (UMAP) (Figure 3B,C,F,G),
and annotated using the marker genes consistent with
those in scRNA-seq analysis (Figure 3D,H and Figure S7).
The spatial distribution ofmajor cell types corresponded to
the pathological annotation based on H&E staining. CAF
marker genes, such as COL1A1, COL1A2 and POSTN, were
expressed at high levels in bin clusters containing fibrob-
lasts (C05: Fibroblasts, C06: Macrophage/Fibroblasts and
C08: Plasma/Fibroblasts; Figure 3D,H), suggesting that
these clusters were enriched with POSTN+ CAFs. Notably,
CD68 and SPP1, which were markers for pro-angiogenic
TAMs with immunosuppressive properties,26 were highly
expressed in the bin cluster of ‘Macrophage/Fibroblasts’
in two tumours (P39 and P52) (Figure 3D,H), suggesting
that POSTN+ CAFs and SPP1+ macrophages might be
close in spatial positioning in the TME of NSCLC. Using
the Robust Cell Type Decomposition (RCTD) algorithm,58
we projected cell types based on gene expression matrices
from scRNA-seq data to the spatial transcriptomicmap and
found that POSTN+ CAFs and SPP1+ macrophages were
enriched in another two tumours (P19 and P47, both stage
III) (Figure S8).
To perform correlation analysis of POSTN+ CAFs with

different immune cell subtypes, we sub-clustered T/NK
cells, B cells, and myeloid cells in the scRNA-seq data
according to canonical markers (Materials and Methods,
‘Cell clustering and annotation using scRNA-seq data’).
T/NK cells were subclustered into cytotoxic CD8+ T cells,
naive/memory CD8+ T cells, exhausted CD8+ T cells, reg-
ulatory T cells (Tregs), T follicular helper cells (TFH),
naive/memory CD4+ T cells, gamma delta T cells and
NK cells. Myeloid cells were subclustered into dendritic

enriched at the later stage (state 3). (C) Expression of signature genes of seven fibroblast subpopulations along the pseudo-time axis using the
states in (B) and including all the cells in C01 to C07 clusters. An individual point represents a single cell, and each colour corresponds to a
fibroblast subpopulation. The solid black line indicates the pseudo-time kinetics curves of marker genes, respectively. (D) Heatmap plot
showing the activities of seven fibroblast subpopulations in cancer hallmark pathways. (E) Heatmap plot showing ligand expression in seven
fibroblast subpopulations.
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F IGURE 3 Stereo-seq reveals spatial proximity of POSTN+ cancer-associated fibroblasts (CAFs) and SPP1+ macrophages in non-small
cell lung cancer (NSCLC). (A–H) Hematoxylin and eosin (H&E) staining of the consecutive slides for Stereo-seq in P39 (A) and P52 (E).
Unbiased clustering of Stereo-seq bins and UMAP plot for the bin clusters for P39 (B and C) and P52 (F and G). Each colour corresponds to an
annotated bin cluster. The expression of signature genes across annotated bin clusters for P39 (D) and P52 (H). The dot size represents the
percentage of bins expressing the genes in each bin cluster. (I) Heat map depicting the spearman correlation between CAF sub-populations
and other major cell types using scRNA-seq data of three cohorts. The correlations with p values greater than .1 were marked as gray. (J)
Spearman correlations of the gene signature scores of the POSTN+ CAFs (y-axis) with those of SPP1+ macrophages (x-axis) using The Cancer
Genome Atlas (TCGA)-NSCLC data. (K) Representative multiplexed immunohistochemistry (mIHC) staining images of tumour cells,
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cells (DC), monocytes and macrophages, which were fur-
ther divided to SPP1+macrophages,VCAN+macrophages,
F13A1+ macrophages, and C1QC+ macrophages (Figures
S9–S11). Using signature genes of M1/M2 macrophages,26
we found the co-expression of both M1 and M2 gene sig-
natures in macrophage subsets (Figure S12), consistent
with previous studies.26,59 SPP1+ macrophages showed
a higher M2 signature, suggesting that they may func-
tion as M2-like macrophages. The abundance of POSTN+
CAFs was positively correlated with SPP1+ macrophages
(R = .36, p = .00068), exhausted CD8+ T cells (R = .20,
p = .070), and negatively correlated with cytotoxic CD8+
T cells (R = −.39, p = .00027) (Figure 3I). We selected
the top10 up-regulated markers from POSTN+ CAFs
(top10 marker genes: POSTN, COL11A1, COL10A1, INHBA,
CTHRC1, THBS2, SULF1, COL12A1, PRSS23, FAP) and
SPP1+ macrophages (top10 marker genes: SPP1, RNASE1,
A2M, FOLR2, PLA2G7, MARCKS, NPL, ACP2, LILRB4,
FAM20C) respectively and demonstrated that gene signa-
tures for these two cell types were significantly correlated
(p < .0001, R = .43, Figure 3J) in the TCGA-NSCLC
cohort.
To validate the spatial localization of POSTN+ CAFs

and SPP1+ macrophages in the TME of NSCLC, we per-
formedmultiplexed IHC (mIHC) using FFPE tumour sam-
ples from fifteen NSCLC patients. Representative staining
images showed that signals for periostin (POSTN) and
osteopontin (SPP1) had similar spatial distribution sur-
rounding tumour nests (Figure 3K). We randomly selected
30 regions on each sample, including POSTN-high and
POSTN-low tumour regions. Spearman correlation anal-
ysis of the percentages of SPP1+ cells in PanCK− stromal
cells with those of POSTN+ cells suggested that they were
positively correlated (Figure 3L). We then counted the
proportions of SPP1+ cells in POSTN-high and POSTN-
low regions in fifteen patients. The proportions of SPP1+
cells in POSTN-high regions were significantly higher
than those in POSTN-low regions (P = 3.5e-10, Wilcoxon
test, Figure 3M). The results of spatial transcriptomics
and mIHC demonstrated significant positive correlation
of POSTN+ CAFs and SPP1+ macrophages, which were
consistent with the analysis using scRNA-seq data and
bulk RNA-seq data (Figure 3I,J), and further suggested the
spatial proximity of these two cell types in the TME.

It has been suggested that the interactions between
FAP+ CAFs and SPP1+ macrophages could promote
the formation of a desmoplastic TME in colorectal
cancer.34 To investigate the potential interactions between
POSTN+ CAFs and SPP1+ macrophages in NSCLC,
we performed cell-cell communication analysis with
the R package ‘NicheNet’ based on the expression
of ligand-receptor pairs and published interaction
databases.60 We identified several ligand-receptor pairs
between POSTN+ CAFs and SPP1+ macrophages, such
as COL4A1-ITGB1, TNC-integrins (ITGAX, ITGAV, ITGB1
and ITGA5), TGFB1/INHBA-ACVRL1 and TGFB1/TGFB3-
TGFBR1/TGFBR2 (Figure S13), which might enhance the
attachment and immune-modulatory activities of SPP1+
macrophages. In turn, high ligand activity and expres-
sion of ITGAM, SPP1, IL1β, TNF and TGFB1 in SPP1+
macrophages might affect the phenotypes and functions
of POSTN+ CAFs through regulating various target genes
(Figure S14). Taken together, our findings suggested that
POSTN+ CAFs and SPP1+ macrophages presented close
localization and might have interactions to promote ECM
remodeling and the immunosuppressive TME in NSCLC.

2.5 POSTN+ CAFs were associated with
exhausted phenotypes and lower
infiltration of T cells in NSCLC

To further explore the infiltration and functional status
of T cells in the presence of POSTN+ CAFs, we exam-
ined the spatial gene expression in the ‘B cell/T cell’
cluster in P39 and P52 and found that several exhaustion-
associatedmarkers, such asCXCL13, TIGIT andKLRB161,62
were expressed at significant levels (Figure 4A). Cor-
respondingly, in scRNA-seq data, these markers were
mainly expressed in exhausted CD8+ T cells, and par-
tially expressed in Tregs or TFH cells (Figure 4B), but not
in other T cell clusters or B cells (Figure S9 and S10).
Our results suggested that the T cells in the ‘B cell/T
cell’ cluster which located adjacent to POSTN+ CAFs
mainly displayed exhausted phenotypes. We extracted
the gene signatures of exhausted CD8+ T cells (top10
marker genes: CXCL13, DUSP4, TNFRSF9, CTLA4, RBPJ,
LAG3, ITGAE, CD82, PHLDA1, TIGIT) and POSTN+ CAFs

POSTN+ CAFs, and SPP1+ macrophages in formalin-fixed paraffin-embedded (FFPE) tumour tissues of three NSCLC patients. PanCK
(white), DAPI (blue), SPP1 (green), POSTN (orange), in individual and merged channels are shown. Scale bar, 100 μm. (L) Correlation
analysis of SPP1+ cells and POSTN+ cells based on mIHC staining in FFPE tumour tissues of three NSCLC patients. (M) Proportions of SPP1+

cells in POSTN-high and POSTN-low regions in FFPE tumour tissues of fifteen NSCLC patients. About 30 regions (including POSTN-high
and POSTN-low regions, 931 × 698 μm per region) were randomly selected from each tumour sample for Spearman correlation analysis and
cell proportion calculation. Wilcoxon test was used to assess statistical significance in M. UMAP, Uniform Manifold Approximation and
Projection.
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F IGURE 4 POSTN+ cancer-associated fibroblasts (CAFs) were associated with the exhausted phenotype and lower infiltration of T
cells. (A) Violin plots showing expression levels of T cell marker genes across spatial bin clusters in P39 and P52. (B) Violin plots showing
marker gene expression in T/NK subclusters based on the scRNA-seq data of Peking cohort. (C–E) Spearman correlations of gene signatures
of exhausted CD8+ T cells and POSTN+ CAFs in The Cancer Genome Atlas (TCGA)-LUAD (C), TCGA-LUSC (D) and TCGA-non-small cell
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(top10 marker genes: POSTN, COL11A1, COL10A1, INHBA,
CTHRC1, THBS2, SULF1, COL12A1, PRSS23, FAP), and cal-
culated the correlation coefficients in the TCGA database.
They were significantly correlated in LUAD, LUSC as well
as combined NSCLC cohorts (all p < .0001, Figure 4C–E).
Furthermore,we usedmIHC to depict the localization of

POSTN+ CAFs and T cells in TME.We found that POSTN+
CAFs tended to encircle the tumour nests and infiltrated
CD4+ T cells and CD8+ T cells located mostly in the
stromal regions formed by multi-layers of POSTN+ CAFs
(Figure 4F). This phenomenon was frequently observed
in NSCLC samples we tested. For example, in 10 POSTN-
high tumour regions selected from a sample, seven of 10
(70%) regions had POSTN+ CAFs surrounding tumour
nests, whichmight impede the infiltration of T cells, while
tumour regions without POSTN+ CAFs had higher infil-
tration of T cells into the tumour bed (Figure S15). To
conduct quantitative analysis, we selected ∼30 tumour
regions (including POSTN-high and POSTN-low regions)
on each sample, respectively. The ratios of CD8+ T cells
and CD4+ T cells in PanCK− stromal cells were nega-
tively correlated with the existence of POSTN+ cells in
the tumour regions (R = −.63, P = 3.5e−15; R = −.58,
p < .0001; Figure 4G,H), suggesting that POSTN+ CAFs
were associatedwith lower infiltration of T cells inNSCLC.

2.6 POSTN+ CAFs were associated with
poorer clinical outcomes of NSCLC

Finally, we investigated the presence of POSTN+ CAFs
in different tumour stages, and their potential association
with tumour progression and prognosis. We calculated
the relative proportions of POSTN+ CAFs in the scRNA-
seq data of this study and showed that POSTN+ CAFs
were more enriched in advanced tumours (stage II/III/IV)
than early-stage tumours (stage I) (p = .041, Figure 5A).
By CIBERSORTx analysis in TCGA-NSCLC samples, we
also found that POSTN+ CAFs significantly enriched in
tumour samples at either advanced TNM stages or T
stages (Figure 5A). Furthermore, we measured the lev-
els of POSTN in an independent sample set including 35
archived FFPE NSCLC samples (Figure 5B). We assigned
IHC scores to each sample according to the percentage of
POSTN+ cells as well as staining intensity. The analysis
demonstrated that at the protein level, POSTN was signif-

icantly related to higher pathological stages (P = 8.9e-6;
Figure 5C). STRING database analysis (https://string-db.
org/) showed that POSTN acted as a hub gene in the inter-
action networks connecting with several marker genes
of POSTN+ CAFs, such as TGFBI, COL1A2, MMP2 and
MMP11 (Figure 5D). Besides, POSTN upregulation was
detected in the tumour tissues of other cancers (Figure 5E),
consistent with previous reports on POSTN overexpres-
sion in a variety of human malignancies,15 suggesting that
POSTN might serve as a common marker for tumour
malignant potential.63
We plotted the survival curves of NSCLC patients from

the TCGA database using the gene signature for POSTN+
CAFs orPOSTN alone.Not only the abundance ofPOSTN+
CAFs predicted unfavorable overall survival in NSCLC
patients (p = .028 & hazard ratios [HR] = 1.3, Figure 5F),
high expression of POSTN was also significantly associ-
ated with worse survival in NSCLC (p = .003 & HR = 1.35,
Figure 5G), as well as LUAD and LUSC cohorts (p = .034
& HR = 1.37; p = .01 & HR = 1.42; Figure 5H,I). The Cox
multivariate analysis considering clinical confounding fac-
tors (age, sex, smoking, stage, disease type) and signatures
of POSTN+ CAFs suggested that POSTN+ CAFs was an
independent prognostic factor for NSCLC (Figure S16).
Together, our results depicted themulti-faceted tumour-

promoting features of POSTN+ CAFs in TME (Figure 5J).
POSTN+ CAFs presented various pro-invasive pathway
features, including EMT, angiogenesis, glycolysis and pro-
tein secretion. ECM factors such as periostin, INHBA,
MMPs and TGF-β produced by POSTN+ CAFs could
shape the stromal milieu in favour of immune exclusion
and tumour growth. Association of POSTN+ CAFs with
SPP1+ macrophages may further promote the formation
of desmoplastic and immune-suppressive TME, contribut-
ing to poor prognosis and immunotherapy resistance in
NSCLC.

3 DISCUSSION

CAFs exert substantial influence on tumour cells and
TME, through ECM remodeling, metabolic alterations
and secreting factors, which could impact the responses to
ICI therapies.64,65 Therefore, they are regarded as potential
targets for cancer therapy. For example, the clearance
of FAP+ CAFs by chimeric antigen engineered T cells

lung cancer (NSCLC) (E) samples. (F) Multiplexed immunohistochemistry (mIHC) staining of NSCLC formalin-fixed paraffin-embedded
(FFPE) samples showing the localization of POSTN+ CAFs, T cells and tumour cells. PanCK (white), CD4 (yellow), CD8 (red), DAPI (blue),
POSTN (orange), in individual and merged channels are shown. Scale bar, 100 μm. Experiments were performed in tumour samples from four
NSCLC patients. (G and H) Spearman correlation analysis of POSTN+ cells and CD8+ T (G) or CD4+ T cells (H) based on tumour regions
selected from each sample. LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma.

https://string-db.org/
https://string-db.org/
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F IGURE 5 POSTN+ cancer-associated fibroblasts (CAFs) were correlated with cancer progression and poor prognosis. (A) Box plots
showing the enrichment of POSTN+ CAFs at different clinical stages in three cohorts of this study and the The Cancer Genome Atlas
(TCGA)-non-small cell lung cancer (NSCLC) cohort, respectively. (B) Immunohistochemistry (IHC) staining of periostin (POSTN) in NSCLC
formalin-fixed paraffin-embedded (FFPE) samples across different clinical stages. (C) Box plot comparing IHC scores of POSTN between
early-stage NSCLC samples (stage I) and advanced NSCLC samples (stage II–IV). (D) Interaction networks of POSTN with other genes based
on STRING database analysis. (E) Expression of POSTN among pan-cancer tumour tissues and normal tissues, respectively. Wilcoxon test,
⋅p < .1, *p < .05, **p < .01, ***p < .001. (F-I) Kaplan–Meier analysis of overall survival rates in TCGA-NSCLC/LUAD/LUSC cohorts according
to expression levels of POSTN+ CAFs gene signature or POSTN. (J) Schematic illustration of pro-tumour and immunosuppressive roles of
POSTN+ CAFs in the tumour microenvironment (TME) of NSCLC. LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma.

reduced the desmoplastic stromal structure and tumour
vascular density, resulting in significant anti-tumour
effects in human lung cancer xenografts and syngeneic
murine pancreatic cancers.66 Inhibition of Reactive
Oxygen Species-producing enzyme NOX4 blocked the

differentiation of CAFs, thereby promoting the infil-
tration of CD8+ T cells and ICI response in syngeneic
murine lung tumour and colorectal tumour models.67
However, targeting CAFs in clinics remains challenging,
probably due to the plasticity of CAFs and insufficient
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characterization of specific CAF subtypes in human
cancers.68
To achieve more comprehensive profiling of fibrob-

lasts and distinguishing specific CAF subtypes as potential
targets in NSCLC, we integrated two publicly avail-
able scRNA-seq datasets with the data generated in-
house, resulting in 9982 fibroblast cells from the tumour,
tumour adjacent and normal tissues. In line with pre-
vious studies,41,43 we found that pathways related to
collagen production, ECM remodeling, or inflammatory
responses were activated in myCAFs or iCAFs. Two
myCAF subclusters with high expression of POSTN,
C02_POSTN and C07_MKI67, were mostly involved in
biological functions promoting tumour progression, such
as EMT and angiogenesis.19,20 They also expressed high
levels of ligands in TGFβ and WNT/β-catenin path-
ways, which were associated with T cell exclusion and
immune suppression.53,54 Meanwhile, high expression of
CTHRC1 and ADAM12 in these subclusters might also
contribute to immune exclusion and polarization of M2
macrophages.55–57 Additionally, correlation analysis based
on the scRNA-seq data demonstrated that C02_POSTN
negatively correlated with cytotoxic CD8+ T cells or
NK cells, and they presented positive correlation with
exhausted CD8+ T cells and SPP1+ macrophages, a cluster
of M2-like macrophages with high expression of M2 gene
signatures.26 Interestingly, POSTN+ CAFs (C02_POSTN)
were identified at substantial amount in multiple mBrain
samples, corresponding to the function of periostin in pro-
moting tumour metastasis.17,18,69 These results suggested
the central roles of POSTN+ CAFs in modulating TME to
promote tumour progression, immune escape and resis-
tance to immunotherapies, which were also described in
other solid tumours.36,44
Through spatial transcriptomic analysis, we found that

expression of POSTN,COL1A1,COL1A2 and SPP1was high
in the ‘Macrophage/Fibroblast’ cluster, indicating close
localization of POSTN+ CAFs and SPP1+ macrophages.
Recent studies have depicted SPP1 as a prominent marker
for TAMs with M2-like immune-suppressive functions
and poor prognosis in various cancers.26,59 The associa-
tion and interactions of SPP1+ macrophages with CAFs
promoted the formation of desmoplastic barrier that hin-
dered immune infiltration and limited the efficacies of ICI
immunotherapies in hepatocellular carcinoma and col-
orectal cancer.34,70 Previous studies reported that periostin
secreted by tumour cells acted as a chemoattractant to
enhance the recruitment and polarization of M2 TAMs
in glioblastoma and ovarian cancer through periostin-
integrinmediated signaling.69,71 We predicted the potential
interaction of SPP1+ macrophages and POSTN+ CAFs
through NicheNet.60 Similarly, periostin produced by
POSTN+ CAFs might recruit SPP1+ macrophages through

integrin receptors, which promoted their spatial proxim-
ity. Furthermore, TGF-β, encoded by TGFB1 in SPP1+
macrophages could bind to the corresponding receptors
encoded by TGFBR1, TGFBR2 and ACVRL1 on POSTN+
CAFs, and osteopontin encoded by SPP1 might function
by interacting with integrin receptors encoded by ITGB1,
ITGAV and ITGA8 on POSTN+ CAFs.59 These interac-
tions could result in the activation of a series of target
genes encoding collagen or MMPs in POSTN+ CAFs.
Importantly, these target genes played essential roles in
the formation of desmoplastic structure, including extra-
cellular matrix components such as collagens (COL10A1,
COL1A1, COL1A2, COL3A1, COL5A1, COL8A1), fibronectin
(FN1), integrins (ITGA5, ITGB1, ITGB5), remodeling pro-
teins (LOX, LOXL1, LOXL2) and MMPs (MMP14, TIMP2,
TIMP3).72 Additionally, our data of spatial transcriptomics
and mIHC showed that T cells were largely excluded
from the tumour nests surrounded by POSTN+ CAFs.
We observed such phenomenon in 13 of 20 (65%) NSCLC
samples by mIHC (data not shown). Together, our results
suggested that POSTN+ CAFs and SPP1+ macrophages
were closely associated at the tumour stroma, which may
be critical in inhibiting tumour immunity and promoting
tumour progression, and targeting these cellsmay enhance
the efficacies of ICI immunotherapies in NSCLC.
Furthermore, we demonstrated that POSTN expression

or the abundance of POSTN+ CAFs were significantly
associated with advanced tumour stages and poor progno-
sis in NSCLC. In line with the accumulation of POSTN+
CAFs in later-stage NSCLC, early LUAD featured with
ground grass nodules or subsolid nodules were depleted
with such CAF subpopulations.73,74 In addition, POSTN
expression could serve as a predictive factor for prognosis,
or a biomarker for NSCLC tumour progression.75
There are a few limitations in our study that need

to be taken into consideration. Firstly, this work pro-
vided detailed in silico analysis on CAF subpopulations
in NSCLC, while it is also important to assess their func-
tions and interactionswith other cell types in experimental
settings in future studies. We validated the expression of
a few representative markers (POSTN, ACTA2, COL11A1)
for POSTN+ CAFs by IHC, and the gene markers for other
CAF subtypes remain to be checked. Secondly, due to
the limited samples used for Stereo-seq, it was difficult
to capture all the CAF subtypes in spatial transcriptomic
analysis. Last, bulk RNA-seq data from TCGA database
was used in correlation analysis to validate the associa-
tion of cell types. However, as bulk RNA-seq data do not
contain spatial information, using TCGA cohort can only
evaluate the correlation between gene signatures of cell
types, which is a limitation for leveraging TCGA data.
In conclusion, we characterized fibroblast subpopula-

tionswith diverse phenotypic and gene expression features
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at the single-cell transcriptomic level. POSTN+ myCAFs
were significantly enriched in advanced tumours and pre-
sented gene signatures related to pro-invasion and ECM
remodeling. Furthermore, spatial transcriptomic profiling
of NSCLC samples combined with mIHC analysis illus-
trated the close localization of POSTN+ CAFs with SPP1+
macrophages, and the correlation of POSTN+ CAFs with
exhausted phenotypes and lower infiltration of T cells.
Taken together, our work shed light on the pro-tumour
and immune-suppression roles of POSTN+ CAFs, whose
targeting may be beneficial to improve ICI response in
NSCLC.

4 MATERIALS ANDMETHODS

4.1 Human patient samples

All the NSCLC tumour tissues, tumour adjacent tis-
sues and normal tissues were collected under a protocol
approved by Peking University Shenzhen Hospital and
BGI Research. Thirty-five archived FFPE samples were
collected retrospectively from the Department of Thoracic
Surgery, PekingUniversity ShenzhenHospital to verify the
expression of CAF marker genes.

4.2 Tissue processing

The surgical tissues were obtained within 1 h after surgery
and divided into two parts. A part of the tissues was stored
in MACS Tissue Storage Solution (Miltenyi Biotec, Ger-
many) for up to 24 h at 2−8◦C before digestion. The rest
were snap-frozen in OCT compound (ZSGB-BIO, Beijing)
and stored at −80◦C for Stereo-seq and H&E staining.

4.3 Preparation of single-cell
suspension from tissues

The fresh tissues were rinsed with pre-chilled PBS
(Thermo Fisher Scientific, USA) twice, mechanically
minced, and digested utilizing MACS Human Tumor Dis-
sociation Kit (Miltenyi Biotec, Germany) according to
the manufacturer’s protocols at 37◦C for 15 min. Then
the digested tissues were passed through a 70 μm cell
strainer (Sartorius, Germany) and centrifuged. The cell
pellet was resuspended in PBS containing .04% bovine
serum albumin (Merck, Germany) at 1000 cells/μl for
scRNA-seq.

4.4 scRNA-seq using DNBelab C4
system

The DNBelab C4 Single-Cell Library Prep Set (MGI, Shen-
zhen) was applied for preparing the scRNA-seq library.
Briefly, single-cell suspensionwas firstly encapsulated into
single-cell liquid droplets with barcoded beads followed
by cell lysis and mRNA capture. Then emulsion break-
age, beads recovery and reverse transcription were per-
formed, followed by the library preparation as previously
described.76 The constructed libraries were quantified by
Qubit ssDNA Assay Kit (Thermo Fisher Scientific, USA)
and sequenced by the BGI-T10 sequencer in the China
National Gene Bank (CNGB).

4.5 Preparation of stereo-seq library
and sequencing

The STOmics Gene Expression kit S1 (BGI, 1000028493)
was utilized according to the standard protocol.37 The
OCT-embedded frozen tissue was sectioned into a 10-μm
thick slice, adhered to the Stereo-seq chip, and incubated
at 37◦C for 3−4 min. The attached chip was then fixed
with methanol at−20◦C for 30 min followed by tissue per-
meabilization, which permit DNBs on the chip surface to
capture released mRNA. Afterward, in situ reverse tran-
scription was performed, followed by tissue removal and
cDNA releasing. After obtaining the cDNA sequences with
spatial barcodes from the chip, they were converted to
the cDNA library according to themanufacturer’s protocol
and quantified by Qubit ssDNA Assay Kit. The sequenc-
ing library was sequenced by the BGI-T10 sequencer in
CNGB.

4.6 Pre-processing of scRNA-seq data

The raw FASTQ files were preprocessed using
DNBelab_C_Series_HT_scRNA-analysis-software
(https://github.com/MGI-tech-bioinformatics/
DNBelab_C_Series_HT_scRNA-analysis-software).
Briefly, the FASTQ raw data were converted to Cell

Ranger specific FASTQ files, which were then processed
separately using a modified version of Cell Ranger count
pipeline. cDNA reads were aligned to GRCH38 human ref-
erence using STAR software (v2.5.3).77 The mapped reads
were then filtered out for valid cell barcodes and unique
molecular identifiers to generate gene-cell matrices for
downstream analysis.

https://github.com/MGI-tech-bioinformatics/DNBelab_C_Series_HT_scRNA-analysis-software
https://github.com/MGI-tech-bioinformatics/DNBelab_C_Series_HT_scRNA-analysis-software
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4.7 Cell clustering and annotation
using scRNA-seq data

Cell clustering was conducted by Seurat (v4.0.6)78 package
in RStudio. Genes expressed in less than three cells were
filtered out, and low-quality cells were filteredwith param-
eter ‘nFeature_RNA > 300 & nFeature_RNA < 10 000 &
nCount_RNA < 25 000 & nCount_RNA > 1000 & per-
cent.mt < 15’. The libraries from the same sample were
merged. To deal with the batch effect, the ‘NormalizeData’
and ‘FindVariableGene’ functions were performed respec-
tively for each sample. The potential doublets were further
filtered with the ‘DoubletFinder’ package with default
parameters. After that, these samples were integrated
using the ‘FindIntergrationAnchors’ and ‘IntegrateData’
functions with dims parameter set to 30. The batch effect
was checked if the cells were separately distributed with
the ‘DimPlot’ function. Then, the integrated data were
scaled to calculate the PCA. The first 30 principal com-
ponents (PCs) were used to construct the SNN network,
and the graph-based clusteringmethod Louvain algorithm
was used to identify the cell clusters with a resolution of .6.
Finally, UMAP was used to visualize the clustering results
in two-dimensional space.
To annotate each cluster as a specific cell type, we

used well-known canonical markers, dot plots, and vio-
lin plots to annotate cell types.31The following genes
were used for cell type annotation: CD3D, CD3E, NKG7
(T/NK cells); CD79A, CD79B, MS4A1 (B cells); CD14, LYZ
(Myeloid cells); GATA2, MS4A2, KIT (Mast cells); VWF,
PECAM1, CLDN5 (Endothelial cells); COL1A1, COL1A2,
DCN (Fibroblasts); EPCAM, KRT18, KER19 (Epithelial
cells); EPCAM, CLDN18, AQP4 (Alveolar cells).
We further sub-clustered T/NK cells, myeloid cells

and fibroblasts individually. Within the T/NK lineage,
we used the following markers for subtype identifi-
cation: CD8+ T (CD8A, CD8B), CD4+ T (CD4, IL7R),
naive/memory cells (CD44, CCR7), cytotoxic T cells
(GZMB, PRF1, GZMH, GNLY), exhausted T cells (LAYN,
HAVCR2, PDCD1, CTLA4, CXCL13), Tregs (FOXP3,
IL2RA), gamma delta T cells (TRDC, TRGC2, TRGC1) and
NK cells (NKG7, KLRD1, KLRF1). For the myeloid clus-
ters, four macrophages were identified, including SPP1+
macrophages,VCAN+macrophages, F13A1+macrophages
and C1QC+ macrophages. SPP1+ macrophages were pos-
itive for markers SPP1 and CD163. Other myeloid cell
types were confirmed by specific marker genes including
classical monocytes (CD14, LYZ, FCN1), and DCs (CD1C,
CLEC10A, LAMP3).
For fibroblasts sub-clustering, fibroblasts from this study

and other two cohorts, the Samsung cohort (N = 3499,
including nLung, tLung, and brain metastases samples),
and the Tongji cohort (N = 4497, including tLung sam-

ples), were integrated using ‘FindIntergrationAnchors’
and ‘IntegrateData’ functions. Within fibroblasts (DCN,
COL1A1 and COL1A2), RGS5, ABCC9, KCNJ8, and CSPG4
were used to mark the pericytes. The subpopulations of
fibroblasts are listed in Table S3.

4.8 Cell developmental trajectory

We applied the Monocle249 to determine the pseudo-time
differentiation of diverse fibroblasts populations. We first
used the RNA counts of fibroblasts clusters to create a Cell-
DataSet object with parameter ‘expressionFamily = negbi-
nomial.size’ following the Monocle2 tutorial. Cells within
the selected fibroblast subpopulations and genes expressed
in more than 10 cells were included from subsequent anal-
yses. We used the ‘differentialGeneTest’ function to derive
DEGs from each cluster and genes with a q-value < 1e-10
were used to order the cells in pseudo-time analysis. Then
the cell differentiation trajectory was inferred with the
default parameters of Monocle2 after dimension reduction
and cell ordering.

4.9 DEG analysis and pathway
enrichment

To find the marker genes of each fibroblast sub-
population, we performed DEG analysis using the
‘FindAllMarkers’ function in Seurat package with
the parameter ‘min.pct = .25, logfc.threshold = .25’.
To find the function of marker genes, we used
the function compareCluster (fun = ‘enrichGO’,
pvalueCutoff = .05, OrgDb = ‘org.Hs.eg.db’) and
compareCluster (fun = ‘enricher’, pvalueCutoff = .05,
pAdjustMethod = ‘BH’) of R package clusterProfiler
(v.4.4.4).
We applied GSVA (version 1.44.5) to assign pathway

activity estimates to each fibroblast subpopulation. Cancer
hallmark gene sets from Molecular Signatures Database
(MSigDB v7.5.1) were used as the input gene sets.

4.10 Processing of stereo-seq data and
annotation of bin clusters

The Stereo-seq data were processed in the same proce-
dure as previous work.79 The Stereo-chip was covered
with DNBs to capture spatial transcriptome information
of the tissue. We defined 1 × 1 DNB as bin 1, and treated
bin100 (100 × 100 DNB) as the basic analysis unit. The raw
FASTQ files were mapped to the human genome (hg38),
and regions were lassoed out based on H&E staining to
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remove backgroundnoise signals for downstreamanalysis.
After quality control, the lassoed fileswere processed using
the R package Seurat (v4.0.6, https://github.com/satijalab/
seurat) to carry out data normalization, scaling, and bin
clustering.
The marker genes used in annotation of spatial clus-

ters were consistent with those in scRNA-seq for cell type
annotation. At resolution of bin100, which equals ∼50 x
50 μm area, each bin contained about 20–30 cells. In some
bins, markers of two ormore cell types were grouped in the
same bin, so some bin clusters were annotated as mixed
cell types, such as ‘Macrophage/Fibroblast’.

4.11 Spatial deconvolution of cell types

Spatial deconvolution of cell types at bin100 was calcu-
lated from scRNA-seq data using RCTD algorithm via R
package spacexr-2.0.0.80 For each slice with Stereo-seq
data, matrices of raw counts and spatial coordinates were
used to construct the SpatialRNA object in RCTD. Raw
counts and annotation of integrated fibroblast cells were
used in default parameters as scRNA-seq reference. Then
the reference and SpatialRNA objects were fed into RCTD
main function in full mode. Matrices of normalized bin-
cell type probabilities were visualized on each spatial slice
and exported for further analysis.

4.12 Assessment of the abundances of
cell types in TCGA-NSCLC dataset

The online tool CIBERSORTx (https://cibersortx.stanford.
edu/) was used to estimate the abundances of different
cell types in TCGA-NSCLC dataset. The abundance was
defined as the number of cells of a particular type divided
by the total number of cells in a sample. Briefly, gene
expression data from scRNA-seq in this study, which rep-
resented a bulk admixture of different cell types was used
to build the signature matrix files for cell types of interest.
Subsequently, the obtained gene-countmatrices were used
as the input for CIBERSORTx and the proportions of cell
types of interest in the bulk TCGA transcriptome data can
be evaluated by deconvolving the bulk data.

4.13 Cell–cell communication analysis

NicheNet was used to infer the interactions between
POSTN+ CAFs and SPP1+ macrophages.60 For ligand
and receptor interactions, genes expressed in more than
10% cells of each cluster were considered. Top 15−20 lig-
ands and top 200 receptor targets from DEGs of ‘sender

cells’ and ‘receiver cells’, were extracted for paired ligand-
receptor activity analysis. Receiver cells in normal tissues
were used as reference cells, and ‘FindMarkers’ method
was used to detect DEGs.

4.14 IHC staining

Briefly, 3.5-μm thick FFPE slides were firstly dewaxed,
hydrated and washed with flowing water. The antigen
retrieval process was then performed with citric acid at
95−100◦C for 20 min, cooled down at room temperature
for 10 min, and rinsed with water. After that, the tis-
sue area was circled by a PAP pen (MXB biotechnologies,
Fuzhou) to ensure even and adequate antibody incuba-
tion. The slides were then rinsed with PBS and diluted
hydrogen peroxide was applied to quench the endogenous
peroxidase activity. Afterwards, the slides were incubated
with the primary antibody at 4◦C overnight. For each sam-
ple, consecutive slides were incubated with anti-periostin
(PA5-34641, Thermo Fisher Scientific, 1:200 dilution), anti-
COL11A1 (PA5-115040, Thermo Fisher Scientific, 1:250),
and anti-αSMA (14-9760-82, Thermo Fisher Scientific,
1:500), respectively. On the next day, horseradish peroxi-
dase (HRP)-multimer cocktail (Dartmon, Inc., Shenzhen)
and DAB staining was applied. The DAB staining was ter-
minatedwithwater rinsing and hematoxylin counterstain-
ing was performed. Finally, the slides were mounted and
processed for imaging. The IHC staining process for frozen
slides was similar to FFPE samples, omitting the antigen
retrieval step. The IHC scores of POSTN in Figure 5B,C
were calculated by multiplying POSTN+ % score (0%–
5%=0, 6%−25%= 1, 26%−50%= 2, 51%−75%= 3,> 75%= 4)
and staining intensity score (negative = 0, weak = 1,
moderate = 2, strong = 3) estimated by a pathologist.

4.15 mIHC staining

To detect the spatial locations of POSTN+ CAFs (POSTN),
SPP1+macrophages (SPP1), T cells (CD4, CD8) and epithe-
lial cells (PanCK), mIHC was performed using BOND
RX Fully Automated Research Stainer (Leica, Germany).
Briefly, 3.5-μm thick FFPE tissue sections were deparaf-
finized and washed in TBST buffer, and then transferred
to preheated citrate solution (95◦C) for heat-induced epi-
tope retrieval using a microwave set at 20% of maximum
power for 20 min. Slides were stained with the following
antibodies/fluorescent dyes, in order: Alexa Fluor 647-
conjugated anti-CD8 antibody (ab305048, Abcam, 1:100),
anti-osteopontin antibody (ab63856, Abcam, 1:200)/TSA
520, anti-periostin (hpa012306, Merck)/TSA 620, anti-
CD4 antibody (ab133616, Abcam,1:500) /TSA 570 and

https://github.com/satijalab/seurat
https://github.com/satijalab/seurat
https://cibersortx.stanford.edu/
https://cibersortx.stanford.edu/
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anti-panCytokeratin antibody (4545S, Cell Signaling Tech-
nology, 1:400) /TSA 780. Except for fluorescently labeled
anti-CD8 antibody, slides were stained at each cycle using
anti-rabbit/mouse HRP-conjugated secondary antibody
(ARH1001EA, Akoyabio, USA) for 10 min, then reacted
with corresponding Tyramide substrates (AXT37100041,
Alphaxbio, Beijing). Each slide was then treated with two
drops of DAPI (FP1490, Akoyabio), washed in distilled
water and manually coverslipped. Slides were air dried
and scanned with Vectra Polaris tissue imaging system
(Akoya Biosciences, USA). Images were analyzed using
Indica Halo software (Indica Labs, USA).

4.16 Survival analysis

Survival analysis of POSTN+ CAFs for Figure 5F was
performed using the online web tool GEPIA281 (http://
gepia2.cancer-pku.cn/#survival). In brief, the top10 sig-
nature genes of POSTN+ CAFs was tested, and median
value was set as cut-off. Then HRs were calculated using
Cox proportional hazards models with 95% confidence
intervals reported, and Kaplan–Meier survival curves were
modeled using ‘survfit’ functions. The survival analysis of
POSTN expression for Figure 5G–I was performed using
CAMOIP software (http://camoip.net), and median value
was set as cut-off to divide the samples as POSTN-high
and POSTN-low subgroups. Kaplan–Meier survival curves
were compared by a two-sided rank sum test.

4.17 TCGA database analysis

TCGA NSCLC cohort (including LUAD and LUSC) was
used to verify the correlation of POSTN+ CAFs and
SPP1+ macrophages signatures (Figure 3J), correlation
of POSTN+ CAFs and exhausted CD8+ T cells signa-
tures (Figure 4C–E), and to conduct survival analy-
sis (Figure 5F–I). Besides, as previously mentioned, we
used the CIBERSORTx (https://cibersortx.stanford.edu/)
to evaluate the abundance of POSTN+ CAFs in different
stages of lung cancer using TCGA-NSCLC cohort.

AUTH OR CONTRIBUT IONS
QumiaoXu and Jixian Liu designed and provided financial
support for the study. Qiang Guo, Qinghua Hou, Yany-
ing Guo, Huanyu Liu, Zhuojue Guan, Yanling Li, Yanling
Liang, and Mengying Liao collected samples and per-
formed experiments. Chao Chen, Yang Liu, Yupeng Zang,
Haozhen Liu, and Xinyu Luan performed data analysis.
Xuan Dong and Xiuqing Zhang provided experimental
materials and platforms. ChaoChen andQumiaoXuwrote

the manuscript. Chao Chen, Qumiao Xu, and Fei Wang
edited the manuscript.

ACKNOWLEDGEMENTS
The authors sincerely thank the support provided by
China National GeneBank. They thank Dr. Yu Feng,
Hongchang Zhang, Sihong Li, and Mei Luo for supports
in sample processing, Dr. Guanchao Jiang for admin-
istrative support and Dr. Xiaoqiang Li for reading the
manuscript. This research was supported by the Guang-
dong Basic and Applied Basic Research Foundation under
grant number: 2022A1515111138, the Guangdong Provincial
Key Laboratory of Human Disease Genomics (grant num-
ber: 2020B1212070028), the UMHS-PUHSC Joint Institute
Project (grant number: 2019020(PUSH)-r1) andOpenFund
Project of BGI-Shenzhen, Shenzhen518000, China (grant
number: BGIRSZ20200003).

CONFL ICT OF INTEREST STATEMENT
The authors declare that they have no competing interests.

FUNDING INFORMATION
Guangdong Basic and Applied Basic Research Foun-
dation, Grant Number: 2022A1515111138; Guangdong
Provincial Key Laboratory of Human Disease Genomics,
Grant Number: 2020B1212070028; UMHS-PUHSC Joint
Institute Project, Grant Number: 2019020(PUSH)-r1);
Open Fund Project of BGI-Shenzhen, Grant Number:
BGIRSZ20200003.

DATA AVAILAB IL ITY STATEMENT
The raw scRNA-seq data and spatial RNA-seq data in
this study have been deposited at China National Cen-
ter for Bioinformation (CNCB) database (https://www.
cncb.ac.cn/?lang= en) under accession code OMIX002370
(scRNA-seq) and OMIX002367 (spatial RNA-seq) and
deposited into CNGB Sequence Archive (CNSA) of China
National GeneBank database (CNGBdb) with accession
number CNP0003361. Other data reported in this study are
available in the supplementary materials or by contacting
the corresponding author.

ETH ICS STATEMENT
The donors of fresh surgical tissues included in this study
have all provided informed consent before enrolling in this
project. This study was approved by the Research Ethics
Committee of Peking University Shenzhen Hospital and
was conducted according to the guidelines of the local law.

ORCID
ChaoChen https://orcid.org/0000-0003-0990-5239
YupengZang https://orcid.org/0000-0002-5098-1172
FeiWang https://orcid.org/0000-0002-1751-7108

http://gepia2.cancer-pku.cn/#survival
http://gepia2.cancer-pku.cn/#survival
http://camoip.net
https://cibersortx.stanford.edu/
https://www.cncb.ac.cn/?lang
https://www.cncb.ac.cn/?lang
https://orcid.org/0000-0003-0990-5239
https://orcid.org/0000-0003-0990-5239
https://orcid.org/0000-0002-5098-1172
https://orcid.org/0000-0002-5098-1172
https://orcid.org/0000-0002-1751-7108
https://orcid.org/0000-0002-1751-7108


18 of 20 CHEN et al.

REFERENCES
1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020:

GLOBOCANestimates of incidence andmortalityworldwide for
36 cancers in 185 countries.CACancer J Clin. 2021;71(3):209-249.

2. Horvath L, Thienpont B, Zhao L, Wolf D, Pircher A. Overcom-
ing immunotherapy resistance in non-small cell lung cancer
(NSCLC)—novel approaches and future outlook. Mol Cancer.
2020;19(1):141.

3. Baghban R, Roshangar L, Jahanban-Esfahlan R, et al. Tumor
microenvironment complexity and therapeutic implications at
a glance. Cell Commun Signal. 2020;18(1):59.

4. Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers
for checkpoint inhibitor-based immunotherapy. Lancet Oncol.
2016;17(12):e542-e551.

5. Hellmann MD, Ciuleanu TE, Pluzanski A, et al. Nivolumab
plus ipilimumab in lung cancer with a high tumor mutational
burden. N Engl J Med. 2018;378(22):2093-2104.

6. Hellmann MD, Nathanson T, Rizvi H, et al. Genomic fea-
tures of response to combination immunotherapy in patients
with advanced non-small-cell lung cancer. Cancer Cell.
2018;33(5):843-852.

7. Bai R, Lv Z, Xu D, Cui J. Predictive biomarkers for cancer
immunotherapy with immune checkpoint inhibitors. Biomark
Res. 2020;8:34.

8. Murciano-Goroff YR, Warner AB, Wolchok JD. The future of
cancer immunotherapy: microenvironment-targeting combina-
tions. Cell Res. 2020;30(6):507-519.

9. Sahai E, Astsaturov I, Cukierman E, et al. A framework for
advancing our understanding of cancer-associated fibroblasts.
Nat Rev Cancer. 2020;20(3):174-186.

10. Sharon Y, Raz Y, Cohen N, et al. Tumor-derived osteo-
pontin reprograms normal mammary fibroblasts to promote
inflammation and tumor growth in breast cancer. Cancer Res.
2015;75(6):963-973.

11. Raz Y, Cohen N, Shani O, et al. Bone marrow-derived fibrob-
lasts are a functionally distinct stromal cell population in breast
cancer. J Exp Med. 2018;215(12):3075-3093.

12. Tang PC, Chung JY, Xue VW, et al. Smad3 promotes cancer-
associated fibroblasts generation via macrophage-myofibroblast
transition. Adv Sci (Weinh). 2022;9(1):e2101235.

13. HosakaK, YangY, Seki T, et al. Pericyte-fibroblast transition pro-
motes tumor growth and metastasis. Proc Natl Acad Sci U S A.
2016;113(38):E5618-E5627.

14. Han C, Liu T, Yin R. Biomarkers for cancer-associated fibrob-
lasts. Biomark Res. 2020;8(1):64.

15. Dorafshan S, Razmi M, Safaei S, et al. Periostin: biology and
function in cancer. Cancer Cell Int. 2022;22(1):315.

16. Cui D, Huang Z, Liu Y, Ouyang G. The multifaceted role of
periostin in priming the tumor microenvironments for tumor
progression. Cell Mol Life Sci. 2017;74(23):4287-4291.

17. WeiWF, Chen XJ, Liang LJ, et al. Periostin(+) cancer-associated
fibroblasts promote lymph node metastasis by impairing the
lymphatic endothelial barriers in cervical squamous cell carci-
noma.Mol Oncol. 2021;15(1):210-227.

18. Malanchi I, Santamaria-Martínez A, Susanto E, et al. Inter-
actions between cancer stem cells and their niche govern
metastatic colonization. Nature. 2011;481(7379):85-89.

19. Yu B, Wu K, Wang X, et al. Periostin secreted by cancer-
associated fibroblasts promotes cancer stemness in head and

neck cancer by activating protein tyrosine kinase 7. Cell Death
Dis. 2018;9(11):1082.

20. Takatsu F, Suzawa K, Tomida S, et al. Periostin secreted by
cancer-associated fibroblasts promotes cancer progression and
drug resistance in non-small cell lung cancer. J Mol Med (Berl).
2023;101:1603-1614.

21. MaoX, Xu J,WangW, et al. Crosstalk between cancer-associated
fibroblasts and immune cells in the tumor microenvironment:
new findings and future perspectives.MolCancer. 2021;20(1):131.

22. Gordon SR, Maute RL, Dulken BW, et al. PD-1 expression
by tumour-associated macrophages inhibits phagocytosis and
tumour immunity. Nature. 2017;545(7655):495-499.

23. Bingle L, Brown NJ, Lewis CE. The role of tumour-associated
macrophages in tumour progression: implications for new anti-
cancer therapies. J Pathol. 2002;196(3):254-265.

24. Dave SS, Wright G, Tan B, et al. Prediction of survival in follicu-
lar lymphoma based on molecular features of tumor-infiltrating
immune cells. N Engl J Med. 2004;351(21):2159-2169.

25. Gentles AJ, Bratman SV, Lee LJ, et al. Integrating tumor and
stromal gene expression signatures with clinical indices for sur-
vival stratification of early-stage non-small cell lung cancer. J
Natl Cancer Inst. 2015;107(10):djv211.

26. Cheng S, Li Z, Gao R, et al. A pan-cancer single-cell tran-
scriptional atlas of tumor infiltrating myeloid cells. Cell.
2021;184(3):792-809.

27. Yang Q, Zhang H, Wei T, et al. Single-cell RNA sequencing
reveals the heterogeneity of tumor-associated macrophage in
non-small cell lung cancer and differences between sexes. Front
Immunol. 2021;12:756722.

28. Lavie D, Ben-Shmuel A, Erez N, Scherz-Shouval R. Cancer-
associated fibroblasts in the single-cell era. Nat Cancer.
2022;3(7):793-807.

29. Sebastian A, Hum NR, Martin KA, et al. Single-cell tran-
scriptomic analysis of tumor-derived fibroblasts and normal
tissue-resident fibroblasts reveals fibroblast heterogeneity in
breast cancer. Cancers (Basel). 2020;12(5):1307.

30. Lambrechts D, Wauters E, Boeckx B, et al. Phenotype molding
of stromal cells in the lung tumor microenvironment. Nat Med.
2018;24(8):1277-1289.

31. Kim N, Kim HK, Lee K, et al. Single-cell RNA sequenc-
ing demonstrates the molecular and cellular reprogramming
of metastatic lung adenocarcinoma. Nat Commun. 2020;11(1):
2285.

32. Wu F, Fan J, He Y, et al. Single-cell profiling of tumor hetero-
geneity and the microenvironment in advanced non-small cell
lung cancer. Nat Commun. 2021;12(1):2540.

33. Zhang L, Chen D, Song D, et al. Clinical and translational val-
ues of spatial transcriptomics. Signal Transduct Target Ther.
2022;7(1):111.

34. Qi J, SunH, Zhang Y, et al. Single-cell and spatial analysis reveal
interaction of FAP(+) fibroblasts and SPP1(+) macrophages in
colorectal cancer. Nat Commun. 2022;13(1):1742.

35. Kumar T, Nee K, Wei R, et al. A spatially resolved single-
cell genomic atlas of the adult human breast. Nature.
2023;620(7972):181-191.

36. Ou Z, Lin S, Qiu J, et al. Single-nucleus RNA sequencing and
spatial transcriptomics reveal the immunological microenviron-
ment of cervical squamous cell carcinoma. Adv Sci (Weinh).
2022;9(29):e2203040.



CHEN et al. 19 of 20

37. Chen A, Liao S, Cheng M, et al. Spatiotemporal transcriptomic
atlas of mouse organogenesis using DNA nanoball-patterned
arrays. Cell. 2022;185(10):1777-1792.

38. Zhu L, Yang P, Zhao Y, et al. Single-cell sequencing of peripheral
mononuclear cells reveals distinct immune response landscapes
of COVID-19 and influenza patients. Immunity. 2020;53(3):685-
696.

39. Plikus MV, Wang X, Sinha S, et al. Fibroblasts: origins,
definitions, and functions in health and disease. Cell.
2021;184(15):3852-3872.

40. Liu T, Liu C, Yan M, et al. Single cell profiling of primary and
paired metastatic lymph node tumors in breast cancer patients.
Nat Commun. 2022;13(1):6823.

41. Galbo PM Jr, Zang X, Zheng D. Molecular features of cancer-
associated fibroblast subtypes and their implication on cancer
pathogenesis, prognosis, and immunotherapy resistance. Clin
Cancer Res. 2021;27(9):2636-2647.

42. Buechler MB, Pradhan RN, Krishnamurty AT, et al.
Cross-tissue organization of the fibroblast lineage. Nature.
2021;593(7860):575-579.

43. Bartoschek M, Oskolkov N, Bocci M, et al. Spatially and func-
tionally distinct subclasses of breast cancer-associated fibrob-
lasts revealed by single cell RNA sequencing. Nat Commun.
2018;9(1):5150.

44. Li X, Sun Z, Peng G, et al. Single-cell RNA sequencing reveals
a pro-invasive cancer-associated fibroblast subgroup associated
with poor clinical outcomes in patients with gastric cancer.
Theranostics. 2022;12(2):620-638.

45. Semba T, Sugihara E, Kamoshita N, et al. Periostin anti-
sense oligonucleotide suppresses bleomycin-induced formation
of a lung premetastatic niche for melanoma. Cancer Sci.
2018;109(5):1447-1454.

46. Ratajczak-WielgomasK, KmiecikA, Dziegiel P. Role of periostin
expression in non-small cell lung cancer: periostin silencing
inhibits the migration and invasion of lung cancer cells via
regulation of MMP-2 expression. Int J Mol Sci. 2022;23(3):1240.

47. Ma C, Rong Y, Radiloff DR, et al. Extracellular matrix pro-
tein betaig-h3/TGFBI promotes metastasis of colon cancer by
enhancing cell extravasation. Genes Dev. 2008;22(3):308-321.

48. Newman AM, Steen CB, Liu CL, et al. Determining cell type
abundance and expression from bulk tissues with digital cytom-
etry. Nat Biotechnol. 2019;37(7):773-782.

49. Qiu X, Mao Q, Tang Y, et al. Reversed graph embedding resolves
complex single-cell trajectories. Nat Methods. 2017;14(10):979-
982.

50. Subramanian A, Tamayo P, Mootha VK, et al. Gene set
enrichment analysis: a knowledge-based approach for inter-
preting genome-wide expression profiles. Proc Natl Acad Sci.
2005;102(43):15545-15550.

51. Ou Z, Lin S, Qiu J, et al. Single-nucleus RNA sequencing and
spatial transcriptomics reveal the immunological microenviron-
ment of cervical squamous cell carcinoma. Adv Sci (Weinh).
2022;9:e2203040.

52. Arpinati L, Scherz-Shouval R. From gatekeepers to providers:
regulation of immune functions by cancer-associated fibrob-
lasts. Trends Cancer. 2023;9(5):421-443.

53. Mariathasan S, Turley SJ, Nickles D, et al. TGFβ attenuates
tumour response to PD-L1 blockade by contributing to exclusion
of T cells. Nature. 2018;554(7693):544-548.

54. Holtzhausen A, Zhao F, Evans KS, et al. Melanoma-derived
Wnt5a promotes local dendritic-cell expression of IDO and
immunotolerance: opportunities for pharmacologic enhance-
ment of immunotherapy. Cancer Immunol Res. 2015;3(9):1082-
1095.

55. Li H, Liu W, Zhang X, Wang Y. Cancer-associated fibroblast-
secreted collagen triple helix repeat containing-1 promotes
breast cancer cell migration, invasiveness and epithelial-
mesenchymal transition by activating the Wnt/β-catenin path-
way. Oncol Lett. 2021;22(6):814.

56. Wang G, Romero Y, Thevarajan I, Zolkiewska A. ADAM12 abro-
gation alters immune cell infiltration and improves response
to checkpoint blockade therapy in the T11 murine model
of triple-negative breast cancer. Oncoimmunology. 2023;12(1):
2158006.

57. Zhu H, Jiang W, Zhu H, et al. Elevation of ADAM12 facili-
tates tumor progression by enhancing metastasis and immune
infiltration in gastric cancer. Int J Oncol. 2022;60(5):51.

58. Cable DM, Murray E, Zou LS, et al. Robust decomposition of
cell type mixtures in spatial transcriptomics. Nat Biotechnol.
2022;40(4):517-526.

59. Bill R, Wirapati P, Messemaker M, et al. CXCL9:SPP1
macrophage polarity identifies a network of cellular pro-
grams that control human cancers. Science. 2023;381(6657):515-
524.

60. Browaeys R, Saelens W, Saeys Y. NicheNet: modeling intercel-
lular communication by linking ligands to target genes. Nat
Methods. 2020;17(2):159-162.

61. Zhang L, Yu X, Zheng L, et al. Lineage tracking reveals
dynamic relationships of T cells in colorectal cancer. Nature.
2018;564(7735):268-272.

62. Tirosh I, Izar B, Prakadan SM. Dissecting the multicellular
ecosystem of metastatic melanoma by single-cell RNA-seq.
Science. 2016;352(6282):189-196.

63. Tian B, Zhang Y, Zhang J. Periostin is a new potential
prognostic biomarker for glioma. Tumor Biology. 2014;35:5877-
5883.

64. Saw PE, Chen J, Song E. Targeting CAFs to overcome anticancer
therapeutic resistance. Trends Cancer. 2022;8(7):527-555.

65. Hanley CJ, Thomas GJ. Targeting cancer associated fibroblasts
to enhance immunotherapy: emerging strategies and future
perspectives. Oncotarget. 2021;12(14):1427-1433.

66. Lo A, Wang LS, Scholler J, et al. Tumor-promoting desmoplasia
is disrupted by depleting FAP-expressing stromal cells. Cancer
Res. 2015;75(14):2800-2810.

67. Ford K, Hanley CJ, Mellone M, et al. NOX4 inhibition
potentiates immunotherapy by overcoming cancer-associated
fibroblast-mediated CD8 T-cell exclusion from tumors. Cancer
Res. 2020;80(9):1846-1860.

68. Chen Y, McAndrews KM, Kalluri R. Clinical and therapeutic
relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol.
2021;18(12):792-804.

69. Lin SC, Liao YC, Chen PM, et al. Periostin promotes ovarian
cancer metastasis by enhancing M2 macrophages and cancer-
associated fibroblasts via integrin-mediated NF-κB and TGF-β2
signaling. J Biomed Sci. 2022;29(1):109.

70. LiuY, XunZ,MaK, et al. Identification of a tumour immune bar-
rier in the HCC microenvironment that determines the efficacy
of immunotherapy. J Hepatol. 2023;78(4):770-782.



20 of 20 CHEN et al.

71. Zhou W, Ke SQ, Huang Z, et al. Periostin secreted by glioblas-
toma stem cells recruits M2 tumour-associated macrophages
andpromotesmalignant growth.NatCell Biol. 2015;17(2):170-182.

72. Anderson NM, Simon MC. The tumor microenvironment. Curr
Biol. 2020;30(16):R921-R925.

73. Xing X, Yang F, Huang Q, et al. Decoding the multicellular
ecosystem of lung adenocarcinoma manifested as pulmonary
subsolid nodules by single-cell RNA sequencing. Sci Adv.
2021;7(5):eabd9738.

74. Lu T, Yang X, Shi Y, et al. Single-cell transcriptome atlas of
lung adenocarcinoma featured with ground glass nodules. Cell
Discov. 2020;6:69.

75. Ratajczak-Wielgomas K, Kmiecik A, Grzegrzołka J, et al. Prog-
nostic significance of stromal periostin expression in non-small
cell lung cancer. Int J Mol Sci. 2020;21(19):7025.

76. Liu C,WuT, Fan F, et al. A Portable andCost-EffectiveMicroflu-
idic System for Massively Parallel Single-Cell Transcriptome
Profiling. biorxiv; 2019.

77. DobinA,DavisCA, Schlesinger F, et al. STAR: ultrafast universal
RNA-seq aligner. Bioinformatics. 2013;29(1):15-21.

78. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrat-
ing single-cell transcriptomic data across different conditions,
technologies, and species. Nat Biotechnol. 2018;36(5):411-420.

79. Chen A, Liao S, Cheng M, et al. Spatiotemporal Transcriptomic
Atlas of Mouse Organogenesis Using DNA Nanoball Patterned
Arrays. bioRxiv; 2021.

80. Cable DM, Murray E, Zou LS, et al. Robust decomposition of
cell type mixtures in spatial transcriptomics. Nat Biotechnol.
2021.

81. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an
enhanced web server for large-scale expression profiling
and interactive analysis. Nucleic Acids Res. 2019;47(W1):W556-
W560.

SUPPORT ING INFORMATION
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

How to cite this article: Chen C, Guo Q, Liu Y,
et al. Single-cell and spatial transcriptomics reveal
POSTN+ cancer-associated fibroblasts correlated
with immune suppression and tumour progression
in non-small cell lung cancer. Clin Transl Med.
2023;13:e1515. https://doi.org/10.1002/ctm2.1515

https://doi.org/10.1002/ctm2.1515

	Single-cell and spatial transcriptomics reveal POSTN+ cancer-associated fibroblasts correlated with immune suppression and tumour progression in non-small cell lung cancer
	Abstract
	1 | INTRODUCTION
	2 | RESULTS
	2.1 | Single-cell transcriptomic profiling of main cell types in the samples of Peking cohort
	2.2 | Identification of diverse fibroblast subpopulations in NSCLC from integrated scRNA-seq data
	2.3 | Phenotypic and gene expression features of fibroblast subpopulations at single-cell transcriptomic level
	2.4 | POSTN+ CAFs and SPP1+ macrophages were in proximity and might interact to promote ECM remodeling and immunosuppression
	2.5 | POSTN+ CAFs were associated with exhausted phenotypes and lower infiltration of T cells in NSCLC
	2.6 | POSTN+ CAFs were associated with poorer clinical outcomes of NSCLC

	3 | DISCUSSION
	4 | MATERIALS AND METHODS
	4.1 | Human patient samples
	4.2 | Tissue processing
	4.3 | Preparation of single-cell suspension from tissues
	4.4 | scRNA-seq using DNBelab C4 system
	4.5 | Preparation of stereo-seq library and sequencing
	4.6 | Pre-processing of scRNA-seq data
	4.7 | Cell clustering and annotation using scRNA-seq data
	4.8 | Cell developmental trajectory
	4.9 | DEG analysis and pathway enrichment
	4.10 | Processing of stereo-seq data and annotation of bin clusters
	4.11 | Spatial deconvolution of cell types
	4.12 | Assessment of the abundances of cell types in TCGA-NSCLC dataset
	4.13 | Cell-cell communication analysis
	4.14 | IHC staining
	4.15 | mIHC staining
	4.16 | Survival analysis
	4.17 | TCGA database analysis

	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	FUNDING INFORMATION
	DATA AVAILABILITY STATEMENT

	ETHICS STATEMENT
	ORCID
	REFERENCES
	SUPPORTING INFORMATION


