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Transcription factors (TFs) play an essential role in many
biological processes, such as cell cycle regulation
(Amati & Land, 1994; Theilgaard-Monch et al., 2022;
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Abstract

The breast cancer susceptibility 1 (BRCA1) protein plays a pivotal role in modu-
lating the transcriptional activity of the vital intrinsically disordered transcrip-
tion factor MYC. In this regard, mutations of BRCA1 and interruption of its
regulatory activity are related to hereditary breast and ovarian cancer (HBOC).
Interestingly, so far, MYC's main dimerization partner MAX (MY C-associated
factor X) has not been found to bind BRCA1 despite a high sequence similarity
between both oncoproteins. Herein, we show that a potential reason for this dis-
crepancy is the heterogeneous conformational space of MAX, which encloses a
well-documented folded coiled-coil homodimer as well as a less common intrin-
sically disordered monomer state—contrary to MYC, which exists mostly as
intrinsically disordered protein in the absence of any binding partner. We show
that when the intrinsically disordered state of MAX is artificially overpopulated,
the binding of MAX to BRCA1 can readily be observed. We characterize this
interaction by nuclear magnetic resonance (NMR) spectroscopy chemical shift
and relaxation measurements, complemented with ITC and SAXS data. Our
results suggest that BRCA1 directly binds the MAX monomer to form a disor-
dered complex. Though probed herein under biomimetic in-vitro conditions,
this finding can potentially stimulate new perspectives on the regulatory net-
work around BRCAL1 and its involvement in MYC:MAX regulation.
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Yang et al., 2007) and cell replication (Helin, 1998), for
which high structural plasticity is often required
(Brodsky et al., 2020; Lambert et al., 2018). Particularly,
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cancer-associated TFs often feature intrinsically disor-
dered regions (IDRs) (Bushweller, 2019; Liu et al., 2006).
An ubiquitous example of an intrinsically disordered TF
is the basic helix-loop-helix leucine zipper (bHLH-LZ)
MAX, which adopts a characteristic homodimer struc-
ture. Each dimer unit consists of two helices separated by
a loop (HLH domain), flanked by the intrinsically disor-
dered basic N-terminus and a C-terminal leucine zipper
(LZ) domain (Sammak et al., 2019; Sauvé et al., 2004).
The MAX conformational space is quite heterogeneous:
The homodimer exists in a conformational equilibrium
with a set of dissociated intrinsically disordered mono-
mer states (Fieber et al., 2001; Turner, 2003). In order to
form a transcriptionally active complex, MAX can hetero-
dimerize with several interaction partners, such as MYC
(Kretzner et al., 1992; Lavigne et al., 1998), Mad (Ayer
et al, 1993; Nair & Burley, 2003), Mxil (Zervos
et al., 1993). In particular, the MYC:MAX heterodimer
has been intensively studied (Amati et al., 1993; Ecevit
et al., 2010; Epasto et al., 2022; Hu et al., 2005; Kizilsavas
et al.,, 2017; Kretzner et al., 1992; Macek et al., 2018;
Panova et al., 2019; Sammak et al., 2019; Turner, 2003;
Wechsler et al., 1994).

BRCA1 (breast cancer susceptibility protein 1)
(Petrucelli et al., 2010; Venkitaraman, 2002), a large par-
tially disordered protein containing 1863 amino acids, is
an established key player in regulating MYC:MAX
(Grushko et al., 2004; Ren et al., 2013; Wang et al., 1998).
BRCA1 mainly expresses its modulatory effect through
its IDR, spanning amino acids ~200 to ~500. A dysregu-
lation of BRCAL1 expression is linked to breast and ovar-
ian cancer syndrome outbreak (HBOC) (Grushko
et al., 2004; Petrucelli et al., 2010).

The interaction between MYC and BRCAI is well
established (Wang et al., 1998), in contrast to the binding
of BRCA1 to MAX. The latter has surprisingly not been
observed so far, despite a high primary sequence similar-
ity between both proto-oncoproteins (Amati &
Land, 1994; Fieber et al., 2001; Kretzner et al.,, 1992;
Turner, 2003). Herein, we complement the current con-
ception of the BRCA1 interaction network by showing
that BRCAL1 indeed does bind MAX, yet only when in its
less common intrinsically disordered monomeric state
(Kizilsavas et al., 2017). In such a conformation, the
MAX monomer indeed features structural characteristics
similar to the MYC monomer, enabling its BRCALI inter-
action. The by residue-resolved NMR (nuclear magnetic
resonance), SAXS (small-angle x-ray scattering), and ITC
(isothermal titration calorimetry) that MAX monomers
form dynamic, fuzzy complexes (Fuxreiter &
Tompa, 2012) with BRCA1.

To probe the MAX-BRCALI interaction, we selected a
BRCA1 fragment housing the amino acids 219-504

(denoted henceforth as BRCA1**°7%%) involved in the
binding of c-MYC's C-terminus (Wang et al., 1998). We
first recorded residue-resolved NMR signal amplitude
changes and "H-">’N chemical shift perturbations (CSP,
Figure 1). We recorded our experiments in an environ-
ment (Kizilsavas et al., 2017) that mimics that found
close to the DNA in a cell nucleus to approach near-
physiological conditions, that is, pH 5.5, high organic salt
concentrations (see the SI for details).

First, we exposed BRCA1*'"°** to the well-known
MAX:MAX homodimer. No significant changes in the
spectra could be observed, which is also in line with litera-
ture reports (Wang et al., 1998). The picture drastically
changed when elevating the sample temperature to 35°C.
At the experimental pH of 5.5, the intrinsically disordered
form of MAX dominates its conformational space at this
temperature (Fieber et al., 2001; Kizilsavas et al., 2017).

Note that at lower pH, the interaction network consti-
tuted of hydrogen bonds and electrostatic interactions
between the two MAX monomer units, in particular, the
helical and leucine zipper domains, is altered and, hence,
interrupted (see, e.g., Fieber et al., 2001). Thus, the
monomeric state is favored. At neutral pH the anchor
points between the two subunits yet remain intact favor-
ing the dimer (Fieber et al., 2001).

Under our experimental conditions that, thus, favor
population of the MAX monomer, the presence of
BRCA1?"°% significantly reduced MAX's NMR signal
amplitudes S relative to those of free MAX S, along the
entire primary sequence (Figure 1a). The reduced ampli-
tudes point towards reduced tumbling of the entire IDP
upon MAX-BRCA1*'?* complex formation. The high
molecular weight of the BRCA1-MAX assembly (34.5
-+ 10 KDa) can readily account for the observed ampli-
tude losses. Furthermore, chemical shift perturbations
(CSP) with varying intensity were recorded along the
entire primary sequence (Figure 1b), corroborating
the interaction. The heterogeneous nature of the ampli-
tude changes and CSP indicates a complex binding mech-
anism between the two IDPs that involves a large part of
MAX. Most importantly, though, the data show that
BRCA1*'°°%* interacted with the MAX monomer—
contrary to MAX:MAX—which is not unexpected given
its sequence homology with c-MYC (Fieber et al., 2001).

Note that the CSP were significant yet relatively
weak, <0.02 ppm, which indicates that neither IDPs
underwent strong structural adaptions upon exposure to
BRCA1*'°°% Instead, the formation of a fuzzy complex,
without a specific 3D structure appears more likely.

The most prominent CSP were observed for residues
25-30 and around residue 100. Less intense yet still sig-
nificant CSP were observed for residues 40-50 and
around position 60. These regions are particularly rich in
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FIGURE 1 Signal intensity ratios S/S (left) (a) BRCA1219-504 4 MAX (b) BRCA1219-504 + MAX
and CSP (right) for MAX monomers upon binding %1073
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basic amino acids, such as R*°, H*” and H*® or K® and
R*. Hence, potentially, the driving force behind the
interaction between MAX and BRCA1***°** is based on
hydrogen bonds and/or electrostatic attraction consti-
tuted by protonated basic side chains. ITC data (vide
infra) confirmed that the nature of the interaction is
enthalpically driven and, hence, supports a hydrogen
bond or electrostatically driven binding mode.

From the perspective of BRCA1*'°%, residues 400-
430 showed strong CSP (see Figure S1). This stretch
houses 11 acidic amino acids (D or E), which aligns well
with the above assumption of basic MAX residues as
underlying interaction hot spots.

To probe the source of the amplitude reduction
observed in Figure 1, we recorded 15N transverse relaxa-
tion times T, and heteronuclear 'H-'>N Overhauser
enhancements n. We observed heterogeneous changes in
both T, and n upon complex formation along the entire
primary sequence (Figure 2a,b). This again corroborates
the “fuzzy” (Fuxreiter & Tompa, 2012) binding mode.
The 1/T, and n values both grew significantly, showing
that the formed complex experiences much-reduced
dynamics compared to the free IDP in solution. We
observed a tendency towards particularly large AT, and
An values within the HLH domain (residues 30-50) and
the N-terminal part of the IDP (residues 90-104).
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Overall, the resulting amplitude loss (Figure 1)
observed for MAX aligns well with reduced dynamics,
resulting in faster transverse relaxation and line broaden-
ing (see the Figure S1-S6 for supplementary relaxation
data and NMR spectra). It should furthermore be noted
that a contribution to the observed line broadening based
on a chemical exchange between the BRCA1*'****-bound
and -free forms cannot be excluded based on the recorded
relaxation parameters.

To corroborate the formerly undocumented interac-
tion between the MAX monomer and BRCA1, we con-
ducted ITC and SAXS experiments (Figure 2c,d). ITC
showed a titration profile that could be fitted to a Kp, of
2.5 + 0.6 pM and a stoichiometry of ca. 1:1.3 + 0.06 using
a one-site model (see the Figure S7 and S8 for all fit
parameters and negative control experiments).

In agreement, SAXS led to a clear increase in atom-
to-atom distances upon addition of BRCA1 to MAX again
corroborating the interaction of the MAX monomer with
BRCAL. The pair distance distribution functions (PDDF),
extracted from SAXS intensity curves, show an asymmet-
ric profile, typical for intrinsically disordered proteins,
with only one maximum for BRCA1***°** but two max-
ima for mixtures with MAX indicating the formation of a
joint complex.

Overall, the combined NMR, ITC and SAXS data indi-
cate that BRCAL1 interacts with MAX monomers in a
complex manner under the conditions probed herein. On
the one hand, this finding is unexpected as the
MAX:MAX dimer does not bind to BRCA1l (Wang
et al., 1998)—a fact that can be considered as a paradigm
of TF activity. On the other hand, the high sequence sim-
ilarity between the two fully disordered proteins MYC
and MAX in their monomeric states readily rationalizes
the observed interaction.

Even though our in-vitro NMR conditions are not
identical to intracellular environments, our results may
provide new perspectives to approach BRCA1 and the
MYC:MAX interaction network—one intensively researched
anti-cancer drug target (Dauch et al, 2016; Dubiella
et al., 2021; Venkitaraman, 2002). For example, the seques-
trating of the MAX monomer by BRCALI to inhibit MYC
arises as a possible interaction mechanism within the
BRCALI interaction network.
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