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Abstract
Background  Artificial intelligence (AI) systems are proposed as a replacement of the first reader in double reading 
within mammography screening. We aimed to assess cancer detection accuracy of an AI system in a Danish screening 
population.

Methods  We retrieved a consecutive screening cohort from the Region of Southern Denmark including all 
participating women between Aug 4, 2014, and August 15, 2018. Screening mammograms were processed by a 
commercial AI system and detection accuracy was evaluated in two scenarios, Standalone AI and AI-integrated 
screening replacing first reader, with first reader and double reading with arbitration (combined reading) as 
comparators, respectively. Two AI-score cut-off points were applied by matching at mean first reader sensitivity (AIsens) 
and specificity (AIspec). Reference standard was histopathology-proven breast cancer or cancer-free follow-up within 
24 months. Coprimary endpoints were sensitivity and specificity, and secondary endpoints were positive predictive 
value (PPV), negative predictive value (NPV), recall rate, and arbitration rate. Accuracy estimates were calculated using 
McNemar’s test or exact binomial test.

Results  Out of 272,008 screening mammograms from 158,732 women, 257,671 (94.7%) with adequate image data 
were included in the final analyses. Sensitivity and specificity were 63.7% (95% CI 61.6%-65.8%) and 97.8% (97.7-
97.8%) for first reader, and 73.9% (72.0-75.8%) and 97.9% (97.9-98.0%) for combined reading, respectively. Standalone 
AIsens showed a lower specificity (-1.3%) and PPV (-6.1%), and a higher recall rate (+ 1.3%) compared to first reader 
(p < 0.0001 for all), while Standalone AIspec had a lower sensitivity (-5.1%; p < 0.0001), PPV (-1.3%; p = 0.01) and NPV 
(-0.04%; p = 0.0002). Compared to combined reading, Integrated AIsens achieved higher sensitivity (+ 2.3%; p = 0.0004), 
but lower specificity (-0.6%) and PPV (-3.9%) as well as higher recall rate (+ 0.6%) and arbitration rate (+ 2.2%; p < 
0.0001 for all). Integrated AIspec showed no significant difference in any outcome measures apart from a slightly higher 
arbitration rate (p < 0.0001). Subgroup analyses showed higher detection of interval cancers by Standalone AI and 
Integrated AI at both thresholds (p < 0.0001 for all) with a varying composition of detected cancers across multiple 
subgroups of tumour characteristics.
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Background
Early detection with mammography screening along 
with best practice treatment are recognized as crucial 
elements in reducing breast cancer-specific mortality 
and morbidity [1], and most European and high-income 
countries have implemented organised mammography 
screening programmes [2, 3]. The rollout of the Danish 
screening programme for women aged 50–69 years was 
completed in 2010, and the programme has shown high 
compliance with international standards [4, 5], based on 
quality assurance indicators in conformity with Euro-
pean guidelines [6]. However, widespread capacity issues 
and shortage of breast radiologists propose a threat to 
the continued feasibility and efficiency of the screening 
programme. Addressing these challenges, The Danish 
Health Authority has recommended replacing first read-
ing breast radiologists in the double reading setting with 
an artificial intelligence (AI) system, if shown efficient [7].

Deep learning-based AI decision support systems have 
in recent years gained popular interest as a potential solu-
tion to resource scarcity within mammography screening 
as well as improving cancer detection. Strong claims have 
been made that an AI system could replace trained radi-
ologists [8, 9]. Multiple validation studies have reported a 
standalone AI cancer detection accuracy at a level com-
parable to or even exceeding current standard for breast 
cancer screening [10–12]. While the results might seem 
promising, these are yet to be replicated in large real-life 
screening populations. Moreover, the quantity and qual-
ity of the existing evidence has been deemed insufficient 
[13], and recent guidelines by the European Commission 
Initiative on Breast Cancer have recommended against 
single reading supported with AI [14].

In this external validation study, we aimed to investi-
gate the accuracy of a commercially available AI system 
for cancer detection in a Danish mammography screen-
ing population with at least two years of follow-up. The 
AI system was evaluated both in a simulated Standalone 
AI scenario and a simulated AI-integrated screening 
scenario replacing first reader, compared with the first 
reader and double reading with arbitration.

Methods
Study design and population
This study was designed as a retrospective, multicentre 
study on the accuracy of an AI system for breast can-
cer detection in mammography screening. The study is 
reported in accordance with Standards for Reporting of 
Diagnostic Accuracy Studies (STARD) statement of 2015 

(Supplementary eMethod 1) [15]. Ethical approval was 
obtained from the Danish National Committee on Health 
Research Ethics (identifier D1576029) which waived the 
need for individual informed consent.

The study population was a consecutive cohort from all 
breast cancer screening centres in the Region of Southern 
Denmark (RSD) in the cities Aabenraa, Esbjerg, Odense, 
and Vejle. The study sites cover all the RSD, one of five 
Danish regions, with approximately 1.2  million inhabit-
ants, comprising 20% of the entire population of Den-
mark and constituting an entire screening population.

All women who participated in screening between 
Aug 4, 2014, and Aug 15, 2018, in RSD were eligible for 
inclusion. The majority were women between 50 and 69 
years participating in the standardised two-year inter-
val screening programme. A small group with previous 
breast cancer or genetic predisposition to breast cancer 
were biennially screened from the age of 70–79 years or 
from 70 years of age until death, respectively.

Exclusion criteria were insufficient follow-up until can-
cer diagnosis, next consecutive screening, or at least two 
years after the last performed screening in the inclusion 
period, insufficient image quality or lacking images, and 
unsupported data type by the AI system.

Data sources and extraction
A complete list of the study population including reader 
decisions and site of screening was locally extracted 
from the local Radiological Information System using the 
study participants’ unique Danish Civil Personal Regis-
ter numbers. Image data was extracted in raw DICOM 
format from the joint regional radiology Vendor Neutral 
Archive. All screening examinations had been acquired 
with a single mammography vendor, Siemens Mam-
momat Inspiration (Siemens Healthcare A/S, Erlangen, 
Germany). The standard screening examination was two 
views per breast, but could be less, e.g. in case of prior 
mastectomy, or more if additional images were taken, e.g. 
due to poor image quality.

Information on cancer diagnosis and histological sub-
type, with tumour characteristics for invasive cancers 
including tumour size, malignancy grade, TNM stage, 
lymph node involvement, estrogen receptor (ER) sta-
tus, and HER2 status, was acquired through matching 
with the Danish Clinical Quality Program – National 
Clinical Registries (RKKP), specifically the Danish Breast 
Cancer Cooperative Group database and the Danish 
Quality Database on Mammography Screening [4, 16]. 

Conclusions  Replacing first reader in double reading with an AI could be feasible but choosing an appropriate AI 
threshold is crucial to maintaining cancer detection accuracy and workload.
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Inconsistencies in the data were, if possible, resolved by 
manually searching the electronic health records.

Screen reading
The screen reading consisted of independent, blinded 
double reading by 22 board-certified breast radiologists 
with experience in screen reading ranging from newly 
trained to over 20 years of experience. There was no fixed 
designation of the readers, however, the second reader 
is usually a senior breast radiologist. The reading assess-
ments were ultimately classified into a binary outcome: 
either normal (continued screening) or abnormal (recall). 
Cases of disagreement were sent to a decisive third read-
ing, i.e. arbitration, by the most experienced screening 
radiologist who had access to the first two readers’ deci-
sions, although the arbitrator could also have been sec-
ond reader of the same examination. Diagnostic work-up 
of recalled women was performed at dedicated breast 
imaging units at the study sites.

AI system
As index test for this study, we used the commer-
cially available CE marked and FDA cleared AI system 
Transpara version 1.7.0 (ScreenPoint Medical BV, Nijme-
gen, Netherlands), a software-only device based on deep 
convolutional neural networks intended for use as con-
current reading aid for breast cancer detection on mam-
mography. The model was trained and tested using large 
databases acquired through multivendor devices from 
institutions across the world [10, 17]. The data used in 

this study has never been used for training, validation or 
testing of any AI models.

Transpara was installed on an on-premises dedicated 
server system to which only the local investigators had 
access. All screening mammograms meeting Transpara’s 
DICOM conformance statement were sent for process-
ing. Transpara assigned a per-view regional prediction 
score from 1 to 98 denoting the likelihood of cancer, with 
98 indicating the highest likelihood of the finding being 
malignant. The maximum of the view-level raw scores 
gave a total examination score, Transpara exam score, on 
a scale from 0 to 10 with five decimal points.

Evaluation scenarios
The detection accuracy of the AI system was assessed in 
two scenarios: (1) “Standalone AI” where AI accuracy 
was evaluated against that of the first reader, and (2) “AI-
integrated screening”, a simulated screening setup, in 
which the AI replaced the first reader, compared against 
the combined reading outcome, i.e. the observed screen 
reading decision of double reading with arbitration in 
the standard screening workflow without AI (Fig.  1). In 
the AI-integrated screening scenario, the original deci-
sions of the second reader and arbitrator were applied. 
In cases of disagreement between the AI and second 
reader, where an arbitration was not originally performed 
at screening, a simulated arbitrator was defined with 
arbitration decisions at an accuracy level which approxi-
mated the original arbitrator’s sensitivity and specific-
ity from the study sample. These simulated arbitration 

Fig. 1  Comparison between the standard screening workflow and the study scenarios
(A) The standard screening workflow in which the combined reading outcome of each mammogram is the result of independent, blinded double read-
ing with arbitration for discordant readings. (B) The Standalone AI scenario in which the AI system replaces all readers, and the AI detection accuracy 
is compared to that of the first reader in the study sample. (C) The AI-integrated screening scenario in which AI replaces the first reader in the standard 
screening workflow, and the detection accuracy of the simulated screening setup is compared to that of the combined reading outcome from the study 
sample.
In both study scenarios (A) and (B), a binary AI score was defined by applying two different thresholds for the AI decision outcome. The cut-off points 
were chosen by matching at the mean sensitivity and specificity of the first reader outcome, AIsens and AIspec, respectively. If the AI and second reader 
decisions were discordant in the AI-integrated screening scenario and an arbitration decision was lacking in the original dataset, the arbitration decision 
outcome was simulated to match the same accuracy level of the original arbitrator from the study sample
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decisions were applied as the arbitration outcome in 
cases lacking an original arbitration decision.

As the AI system is not intended for independent read-
ing and does not have an internally prespecified thresh-
old to classify images, the Transpara exam score was in 
both scenarios dichotomized into an AI score that would 
enable comparability with the radiologists. In this study, 
two different thresholds were explored as test abnor-
mality cut-off points, AIsens and AIspec, which were set 
to match the mean sensitivity and specificity, respec-
tively, of the first reader outcome from the study sam-
ple. Outcomes above the threshold were considered as 
recalls. There is a lack of consensus in the literature on 
how to determine an appropriate test threshold [13], but 
by matching the cut-off point at the first reader’s sensi-
tivity or specificity, this would hypothetically ensure 
that the proposed AI-integrated screening would not 
entail an increase in false positive recalls or missed can-
cers, respectively, which could be clinically justifiable in 
screening practice.

Performance metrics and reference standard
In both scenarios, the measures of detection accuracy 
were sensitivity and specificity as coprimary endpoints, 
and positive predictive value (PPV), negative predictive 
value (NPV), recall rate, and arbitration rate as second-
ary endpoints. The reference standard for positive can-
cer outcome was determined through histopathological 
verification of breast malignancy including non-invasive 
cancer, i.e. ductal carcinoma in situ, at screening (screen-
detected cancer) or up until the next consecutive screen-
ing within 24 months (interval cancer). The reference 
standard for negative cancer outcome was defined as 
cancer-free follow-up until the next consecutive screen-
ing or within 24 months. The choice of a two-years’ fol-
low-up period for the reference standard concords with 
that commonly used in cancer registries and quality 
assessment of biennial screening programmes. However, 
breast cancer can be present long before it is diagnosed 
[18], and diagnostic work-up of AI-recalled cases is not 
performed to confirm the presence of such potential can-
cers. To take this potential bias into account and to inves-
tigate for early detection patterns, an exploratory analysis 
of detection accuracy was performed with inclusion of 
next-round screen-detected cancers (diagnosed in the 
subsequent screening) and long-term cancers (diagnosed 
> 2–7 years after screening).

Statistical analysis
Binomial proportions for the accuracy of AI and radiolo-
gists were calculated and supplemented by 95% Clopper-
Pearson (‘exact’) confidence intervals (CI). AI accuracy 
was compared to that of radiologists using McNemar’s 
test or exact binomial test when discordant cells were too 

small. Accuracy analysis of all outcomes across radiolo-
gist position is presented in the supplementary material 
(eTable 1). To examine consistency of the AI accuracy 
among subgroup variables, detection rates were calcu-
lated by cancer subgroups. Furthermore, detection agree-
ments and discrepancies between the radiologists and AI 
were investigated across cancer subgroups (Supplemen-
tary eTables 2–3). A p value of less than 0.05 was consid-
ered statistically significant. Stata/SE 17 (College Station, 
Texas 77,845 USA) was used for data management and 
analyses.

Results
Study sample and characteristics
We retrieved a total of 272,008 unique screening mam-
mograms from 158,732 women in the study population, 
among which 14,337 (5.3%) were excluded from the anal-
yses (Fig. 2).

The characteristics of the 257,671 mammograms 
included in the analyses are summarised in Table 1. The 
cancer prevalence in the sample was 2014 (0.8%) of which 
1517 (74.3%) were screen-detected, yielding a detection 
rate of 5.9 per 1000 screening mammograms and a recall 
rate of 2.7%.

The accuracy of the first reader in terms of sensitiv-
ity and specificity was 63.7% (95% CI 61.6%-65.8%) 
and 97.8% (97.7-97.8%), respectively (Table  2), which 
was used to choose the thresholds for the AI score. 
Hence, AIsens and AIspec used a Transpara exam score of 
9.56858 and 9.71059, respectively. The distribution of the 
Transpara exam scores across the study sample has been 
visualised in the supplementary material (eFigure 1). The 
accuracy of the combined reading in terms of sensitiv-
ity and specificity was 73.9% (95% CI 72.0%-75.8%) and 
97.9% (97.9-98.0%), respectively. The accuracy analysis 
across coprimary and secondary outcomes in both study 
scenarios is described in Table  2. Moreover, a compari-
son between the screening outcome and the reference 
standard (true and false positives and negatives) in both 
study scenarios, along with a descriptive workload analy-
sis, is presented in the supplementary material (eTable 4).

Standalone AI accuracy
Standalone AIsens achieved a lower specificity (-1.3%) and 
PPV (-6.1%) and a higher recall rate (+ 1.3%) compared to 
first reader (p < 0.0001 for all). For the latter, this corre-
sponded to 3369 (+ 48.3%) more recalls (Supplementary 
eTable  4). Standalone AIspec obtained a lower sensitivity 
(-5.1%; p < 0.0001) and PPV (-1.3%; p = 0.01) than first 
reader, while the recall rate at 2.7% was not significantly 
different (p = 0.24). In comparison to first reader, the can-
cer distribution, as detailed in Table 3, showed a higher 
proportion of detected interval cancers for Standalone 
AIsens by 100 (+ 17.8%) cancers and Standalone AIspec 
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Fig. 2  Study flow diagram
 The study cohort covers an entire mammography screening population across two successive biennial screening rounds, for which reason most women 
contribute with more than one screening mammogram to the cohort. AI = artificial intelligence
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by 70 (+ 12.5%) cancers, while the detection of screen-
detected cancers was lower by 100 (-6.8%) and 174 
(-11.8%) cancers, respectively (p < 0.0001 for all). Break-
downs by cancer subgroups showed the differences to be 
distributed across all subgroups for both screen-detected 
cancers and interval cancers without any evident pat-
tern for any of the variables (Table 4). However, subgroup 
analyses revealed underlying detection discrepancies 
between first reader and the AI system with a notable 
number of the AI-detected cancers being missed by first 
reader, and vice versa (Supplementary eTable 2).

AI-integrated screening accuracy
Integrated AIsens achieved a higher sensitivity by + 2.3% 
(p = 0.0004) compared to combined reading, at the 
cost of a lower specificity (-0.6%) and PPV (-3.9%), and 
higher recall rate (+ 0.6%) and arbitration rate (+ 2.2%) 
(p < 0.0001 for all). In absolute terms, this corresponded 
to 1708 recalls (+ 24.9%) and 5831 arbitrations (+ 78.4%) 
(Supplementary eTable  4). Integrated AIspec showed 
no significant difference in any of the outcome mea-
sures apart from a higher arbitration rate by + 1.1% (p < 
0.0001), amounting to 2841 (+ 38.2%) arbitrations (Sup-
plementary eTable 4). Compared to the combined read-
ing, detection rates in relation to screen-detected cancers 
were lower for Integrated AIsens by 54 (-3.7%) cancers 
and for Integrated AIspec by 66 (-4.5%) cancers but were 
higher in relation to interval cancers by 100 (+ 17.8%) 
cancers and 79 (+ 14.1%) cancers, respectively (p < 0.0001 
for all) (Table  3). Subgroup analyses showed a lower 
proportion of detection discrepancies compared to the 
Standalone AI scenario, with only few interval cancers 
being missed in the AI-integrated screening and detected 
by the combined reading, and no screen-detected cancers 

Table 1  Clinical characteristics of the study sample
Study sample
(n = 257,671)

Screening site

Aabenraa
Esbjerg
Odense
Vejle

49,641 (19.3)
49,860 (19.4)
104,984 (40.7)
53,186 (20.6)

Age at screening, years

< 50*

50–59
60–69
70–79
≥ 80

59.3 (6.0)
25 (< 0.1)
133,223 (51.7)
120,315 (46.7)
4024 (1.6)
84 (< 0.1)

Breast cancer prevalence
Screen-detected cancer
Interval cancer

2041 (0.8)
1479 (72.5)
562 (27.5)

Breast cancer type

Invasive cancer
DCIS

1830 (89.7)
211 (10.3)

Screening outcome†

Normal
Abnormal

250,810 (97.3)
6861 (2.7)

Arbitrations‡ 7434 (2.9)

Agreement between readers‡

First and second reader
First reader and arbitrator
Second reader and arbitrator

250,663 (97.3)
3299 (44.4)
4537 (61.0)

Data are n (%) or mean (SD). DCIS = ductal carcinoma in situ

*These women were all 49 years old and were invited to regular biennial 
screening a few months too early

†Combined reading outcome of the double reading with arbitration

‡There is a small overlap of n = 426 (0.2%) studies in the arbitrations and 
agreements between first and second readers due to disagreements on subset 
outcomes with additional initiatives, such as stereotactic breast biopsy, which 
were eventually classified into the available binary screening outcome

Table 2  Detection accuracy analysis in both study scenarios
Sensitivity
(95% CI); p value*

Specificity
(95% CI); p value*

PPV
(95% CI); p value†

NPV
(95% CI); p value†

Recall rate
(95% CI); p 
value†

Arbitration 
rate
(95% CI); p 
value*

Standalone AI scenario

First reader 63.7 (61.6–65.8); ref. 97.8 (97.7–97.8); ref. 18.7 (17.8–19.6); ref. 99.7 (99.7–99.7); ref. 2.7 (2.6–2.8); ref. NA

Standalone AIsens 63.7 (61.6–65.8); 
>0.99

96.5 (96.4–96.5); 
<0.0001

12.6 (11.9–13.2); 
<0.0001

99.7 (99.7–99.7); 0.71 4.0 (3.9–4.1); 
<0.0001

NA

Standalone AIspec 58.6 (56.5–60.8); 
<0.0001

97.8 (97.7–97.8); 0.95 17.4 (16.5–18.3); 0.01 99.7 (99.6–99.7); 
0.0002

2.7 (2.6–2.7); 0.24 NA

AI-integrated screening scenario

Combined reading 73.9 (72.0-75.8); ref. 97.9 (97.9–98.0); ref. 22.0 (21.0–23.0); ref. 99.8 (99.8–99.8); ref. 2.7 (2.6–2.7); ref. 2.9 (2.8-3.0); 
ref.

Integrated AIsens 76.2 (74.3–78.0); 
0.0004

97.3 (97.2–97.3); 
<0.0001

18.1 (17.3–19.0); 
<0.0001

99.8 (99.8–99.8); 0.07 3.3 (3.3–3.4); 
<0.0001

5.1 (5.1–5.2); 
<0.0001

Integrated AIspec 74.6 (72.6–76.4); 0.32 97.9 (97.8–97.9); 0.54 22.0 (21.0–23.0); 0.99 99.8 (99.8–99.8); 0.60 2.7 (2.6–2.7); 0.49 4.0 (3.9–4.1); 
<0.0001

Data are % (95% CI); p value. PPV = positive predictive value. NPV = negative predictive value. AIsens=artificial intelligence score cut-off point matched at mean first 
reader sensitivity. AIspec=artificial intelligence score cut-off point matched at mean first reader specificity. *p values were calculated using McNemar’s test. †p values 
were calculated using exact binomial test



Page 7 of 13Elhakim et al. Cancer Imaging          (2023) 23:127 

Ta
bl

e 
3 

Ca
nc

er
 d

et
ec

tio
n 

ra
te

s 
in

 b
ot

h 
st

ud
y 

sc
en

ar
io

s
St

an
da

lo
ne

 A
I

A
I-i

nt
eg

ra
te

d 
sc

re
en

in
g

Fi
rs

t r
ea

de
r

A
I se

ns
A

I sp
ec

Co
m

bi
ne

d 
re

ad
in

g
In

te
gr

at
ed

 A
I se

ns
In

te
gr

at
ed

 A
I sp

ec

A
ll 

ca
nc

er
s 

(n
 =

 2
04

1)
13

01
 (6

3.
7)

; r
ef

.
13

01
 (6

3.
7)

; >
0.

99
11

97
 (5

8.
7)

; <
0.

00
01

15
09

 (7
3.

9)
; r

ef
.

15
55

 (7
6.

2)
; 0

.0
00

4
15

22
 (7

4.
6)

; 0
.3

3

Sc
re

en
-d

et
ec

te
d 

ca
nc

er
s 

(n
 =

 1
47

9)
12

62
 (8

5.
3)

; r
ef

.
11

62
 (7

8.
6)

; <
0.

00
01

10
88

 (7
3.

6)
; <

0.
00

01
14

79
 (1

00
.0

); 
re

f.
14

25
 (9

6.
4)

; <
0.

00
01

14
13

 (9
5.

5)
; 

<
0.

00
01

In
te

rv
al

 c
an

ce
rs

 (n
 =

 5
62

)
<

 1
2 

m
on

th
s 

af
te

r s
cr

ee
ni

ng
 (n

 =
 1

70
)

≥
 1

2 
m

on
th

s 
af

te
r s

cr
ee

ni
ng

 (n
 =

 3
92

)

39
 (6

.9
); 

re
f.

13
 (7

.7
); 

re
f.

26
 (6

.6
); 

re
f.

13
9 

(2
4.

7)
; <

0.
00

01
43

 (2
5.

3)
; <

0.
00

01
96

 (2
4.

5)
; <

0.
00

01

10
9 

(1
9.

4)
; <

0.
00

01
36

 (2
1.

2)
; <

0.
00

01
73

 (1
8.

6)
; 0

.0
00

2

30
 (5

.3
); 

re
f.

14
 (8

.2
); 

re
f.

16
 (4

.1
); 

re
f.

13
0 

(2
3.

1)
; <

0.
00

01
47

 (2
7.

7)
; <

0.
00

01
83

 (2
1.

2)
; 0

.0
00

1

10
9 

(1
9.

4)
; <

0.
00

01
41

 (2
4.

1)
; <

0.
00

01
68

 (1
7.

4)
; <

0.
00

01

H
is

to
lo

gi
ca

l s
ub

ty
pe

In
va

si
ve

 d
uc

ta
l (

n 
=

 1
39

3)
In

va
si

ve
 lo

bu
la

r (
n 

=
 2

22
)

O
th

er
 in

va
si

ve
 (n

 =
 2

15
)

D
uc

ta
l c

ar
ci

no
m

a 
in

 s
itu

 (n
 =

 2
11

)

90
5 

(6
5.

0)
; r

ef
.

11
7 

(5
2.

7)
; r

ef
.

10
3 

(4
7.

9)
; r

ef
.

17
6 

(8
3.

4)
; r

ef
.

90
7 

(6
5.

1)
; 0

.9
6

12
8 

(5
7.

7)
; 0

.1
9

87
 (4

0.
5)

; 0
.0

52
17

9 
(8

4.
8)

; 0
.7

8

83
3 

(5
9.

8)
; 0

.0
00

2
11

4 
(5

1.
4)

; 0
.7

9
79

 (3
6.

7)
; 0

.0
03

17
1 

(8
1.

0)
; 0

.6
0

10
34

 (7
4.

2)
; r

ef
.

14
3 

(6
4.

4)
; r

ef
.

12
1 

(5
6.

3)
; r

ef
.

21
1 

(1
00

.0
); 

re
f.

10
72

 (7
7.

0)
; 0

.0
01

15
4 

(6
9.

4)
; 0

.0
3

12
2 

(5
6.

7)
; >

0.
99

20
7 

(9
8.

1)
; 0

.1
3

10
53

 (7
5.

6)
; 0

.0
8

14
5 

(6
5.

3)
; 0

.8
2

12
2 

(5
6.

7)
; >

0.
99

20
2 

(9
5.

7)
; 0

.0
04

Tu
m

ou
r s

iz
e*

0–
10

 m
m

 (n
 =

 5
77

)
11

–2
0 

m
m

 (n
 =

 7
90

)
21

–5
0 

m
m

 (n
 =

 3
80

)
51

 +
 m

m
 (n

 =
 4

9)
U

nk
no

w
n 

(n
 =

 3
4)

39
9 

(6
9.

2)
; r

ef
.

52
1 

(6
6.

0)
; r

ef
.

17
4 

(4
5.

8)
; r

ef
.

17
 (3

4.
7)

; r
ef

.
14

 (4
1.

2)
; r

ef
.

37
9 

(6
5.

7)
; 0

.1
5

51
3 

(6
4.

9)
; 0

.5
9

19
4 

(5
1.

1)
; 0

.0
5

26
 (5

3.
1)

; 0
.0

2
10

 (2
9.

4)
; 0

.3
4

34
2 

(5
9.

3)
; <

0.
00

01
47

5 
(6

0.
1)

; 0
.0

01
17

7 
(4

6.
6)

; 0
.8

4
23

 (4
9.

9)
; 0

.1
1

9 
(2

6.
5)

; 0
.2

3

49
6 

(8
6.

0)
; r

ef
.

58
1 

(7
3.

5)
; r

ef
.

18
9 

(4
9.

7)
; r

ef
.

18
 (3

6.
7)

; r
ef

.
14

 (4
1.

2)
; r

ef
.

48
4 

(8
3.

9)
; 0

.1
0

59
8 

(7
5.

7)
; 0

.0
4

22
6 

(5
9.

5)
; <

0.
00

01
24

 (4
9.

0)
; 0

.0
7

16
 (4

7.
1)

; 0
.6

3

48
2 

(8
3.

5)
; 0

.0
4

58
3 

(7
3.

8)
; 0

.8
9

21
6 

(5
6.

8)
; <

0.
00

01
22

 (4
4.

9)
; 0

.2
2

17
 (5

0.
0)

; 0
.3

0†

M
al

ig
na

nc
y 

gr
ad

e*

G
ra

de
 1

 (n
 =

 5
07

)
G

ra
de

 2
 (n

 =
 8

15
)

G
ra

de
 3

 (n
 =

 3
58

)
U

nk
no

w
n 

(n
 =

 1
50

)

33
1 

(6
5.

3)
; r

ef
.

52
0 

(6
3.

8)
; r

ef
.

19
3 

(5
3.

9)
; r

ef
.

81
 (5

4.
0)

; r
ef

.

35
9 

(7
0.

8)
; 0

.0
2

52
6 

(6
4.

5)
; 0

.7
3

17
4 

(4
8.

6)
; 0

.0
5

63
 (4

2.
0)

; 0
.0

1

32
4 

(6
3.

9)
; 0

.6
0

48
7 

(5
9.

8)
; 0

.0
3

15
7 

(4
3.

9)
; 0

.0
00

2
58

 (3
8.

7)
; 0

.0
01

41
0 

(8
0.

9)
; r

ef
.

58
7 

(7
2.

0)
; r

ef
.

20
2 

(5
6.

4)
; r

ef
.

99
 (6

6.
0)

; r
ef

.

41
8 

(8
2.

5)
; 0

.2
3

61
7 

(7
5.

7)
; 0

.0
01

21
7 

(6
0.

6)
; 0

.0
1

96
 (6

4.
0)

; 0
.5

8

41
0 

(8
0.

9)
; 1

.0
0

60
5 

(7
4.

2)
; 0

.0
4

20
8 

(5
8.

1)
; 0

.3
3

97
 (6

4.
7)

; 0
.7

3

TN
M

 s
ta

ge
*

Lo
ca

l (
I +

 II
) (

n 
=

 1
76

1)
Lo

ca
lly

 a
dv

an
ce

d 
(II

I) 
(n

 =
 4

4)
D

is
ta

nt
 m

et
as

ta
si

s 
(IV

) (
n 

=
 2

0)
U

nk
no

w
n 

(n
 =

 5
)

11
05

 (6
2.

8)
; r

ef
.

15
 (3

4.
1)

; r
ef

.
4 

(2
0.

0)
; r

ef
.

1 
(2

0.
0)

; r
ef

.

11
00

 (6
2.

5)
; 0

.8
5

14
 (3

1.
8)

; 1
.0

0
7 

(3
5.

0)
; 0

.1
0†

1 
(2

0.
0)

; 1
.0

0†

10
06

 (5
7.

1)
; <

0.
00

01
13

 (2
9.

6)
; 0

.7
3

6 
(3

0.
0)

; 0
.6

3
1 

(2
0.

0)
; 1

.0
0†

12
80

 (7
2.

7)
; r

ef
.

13
 (3

0.
0)

; r
ef

.
4 

(2
0.

0)
; r

ef
.

1 
(2

0.
0)

; r
ef

.

13
24

 (7
5.

2)
; 0

.0
00

4
16

 (3
6.

4)
; 0

.3
8

7 
(3

5.
0)

; 0
.1

0†

1 
(2

0.
0)

; 1
.0

0†

12
96

 (7
3.

6)
; 0

.2
0

16
 (3

6.
4)

; 0
.3

2†

7 
(3

5.
0)

; 0
.1

0†

1 
(2

0.
0)

; 1
.0

0†

Ly
m

ph
 n

od
e 

po
si

tiv
ity

*

N
o 

(n
 =

 1
34

0)
Ye

s 
(n

 =
 4

90
)

84
0 

(6
2.

7)
; r

ef
.

28
5 

(5
8.

2)
; r

ef
.

82
6 

(6
1.

6)
; 0

.4
8

29
6 

(6
0.

4)
; 0

.3
8

75
9 

(5
6.

6)
; <

0.
00

01
26

7 
(5

4.
5)

; 0
.1

3
98

4 
(7

3.
4)

; r
ef

.
31

4 
(6

4.
1)

; r
ef

.
10

05
 (7

5.
0)

; 0
.0

5
34

3 
(7

0.
0)

; 0
.0

00
1

99
2 

(7
4.

0)
; 0

.4
7

32
8 

(6
6.

9)
; 0

.0
6

ER
 p

os
iti

vi
ty

*

0%
 (n

 =
 2

07
)

1–
9%

 (n
 =

 9
8)

10
–1

00
%

 (n
 =

 1
51

4)
U

nk
no

w
n 

(n
 =

 1
1)

96
 (4

6.
4)

; r
ef

.
46

 (4
6.

9)
; r

ef
.

97
7 

(6
4.

5)
; r

ef
.

6 
(5

4.
6)

; r
ef

.

75
 (3

6.
2)

; 0
.0

03
38

 (3
8.

8)
; 0

.2
2

10
03

 (6
6.

3)
; 0

.2
0

6 
(5

4.
6)

; 1
.0

0

67
 (3

2.
4)

; <
0.

00
01

33
 (3

3.
7)

; 0
.0

4
92

0 
(6

0.
8)

; 0
.0

05
6 

(5
4.

6)
; 1

.0
0

10
2 

(4
9.

3)
; r

ef
.

49
 (5

0.
0)

; r
ef

.
11

40
 (7

5.
3)

; r
ef

.
7 

(6
3.

6)
; r

ef
.

10
0 

(4
8.

3)
; 0

.8
2

57
 (5

8.
2)

; 0
.0

2
11

83
 (7

8.
1)

; 0
.0

00
2

8 
(7

2.
7)

; 0
.7

6†

10
1 

(4
8.

8)
; 1

.0
0

51
 (5

2.
0)

; 0
.7

5
11

60
 (7

6.
6)

; 0
.0

8
8 

(7
2.

7)
; 0

.7
6†

H
ER

2 
st

at
us

*

N
eg

at
iv

e 
(n

 =
 1

58
1)

Po
si

tiv
e 

(n
 =

 2
25

)
U

nk
no

w
n 

(n
 =

 2
4)

99
2 

(6
2.

8)
; r

ef
.

12
3 

(5
4.

7)
; r

ef
.

10
 (4

1.
7)

; r
ef

.

98
6 

(6
2.

4)
; 0

.8
1

12
8 

(5
6.

9)
; 0

.5
5

8 
(3

3.
3)

; 0
.6

9

90
2 

(5
7.

1)
; <

0.
00

01
11

6 
(5

1.
6)

; 0
.3

7
8 

(3
3.

3)
; 0

.6
9

11
51

 (7
2.

8)
; r

ef
.

13
5 

(6
0.

0)
; r

ef
.

12
 (5

0.
0)

; r
ef

.

11
94

 (7
5.

5)
; 0

.0
00

3
14

2 
(6

3.
1)

; 0
.2

1
12

 (5
0.

0)
; 1

.0
0

11
68

 (7
3.

9)
; 0

.1
5

14
0 

(6
2.

2)
; 0

.3
3

12
 (5

0.
0)

; 1
.0

0
D

at
a 

ar
e 

n 
(%

); 
p 

va
lu

e.
 T

he
 c

an
ce

r d
et

ec
tio

n 
ra

te
 is

 re
po

rt
ed

 a
s t

he
 n

um
be

r o
f d

et
ec

te
d 

ca
nc

er
s o

ut
 o

f t
he

 n
um

be
r o

f t
ru

e 
ca

nc
er

s f
or

 th
e 

su
bg

ro
up

 in
 th

e 
sa

m
e 

ro
w

. A
I se

ns
=a

rt
ifi

ci
al

 in
te

lli
ge

nc
e 

sc
or

e 
cu

t-
off

 p
oi

nt
 m

at
ch

ed
 a

t 
m

ea
n 

fir
st

 re
ad

er
 se

ns
iti

vi
ty

. A
I sp

ec
=a

rt
ifi

ci
al

 in
te

lli
ge

nc
e 

sc
or

e 
cu

t-
off

 p
oi

nt
 m

at
ch

ed
 a

t m
ea

n 
fir

st
 re

ad
er

 sp
ec

ifi
ci

ty
. T

N
M

 =
 tu

m
ou

r, 
no

de
, m

et
as

ta
si

s.
 E

R 
= 

es
tr

og
en

 re
ce

pt
or

. H
ER

2 
= 

hu
m

an
 e

pi
de

rm
al

 g
ro

w
th

 fa
ct

or
 re

ce
pt

or
 

2.
 *

Re
po

rt
ed

 fo
r i

nv
as

iv
e 

ca
nc

er
s 

on
ly

 (n
 =

 1
.8

30
). 

†p
 v

al
ue

s 
w

er
e 

ca
lc

ul
at

ed
 u

si
ng

 e
xa

ct
 b

in
om

ia
l t

es
t i

ns
te

ad
 o

f M
cN

em
ar

’s 
te

st
 d

ue
 to

 s
m

al
l d

is
co

rd
an

t c
el

ls



Page 8 of 13Elhakim et al. Cancer Imaging          (2023) 23:127 

being missed by the combined reading (Supplementary 
eTable 3).

Next-round screen-detected and long-term cancers
When including next-round screen-detected cancers and 
long-term cancers in the accuracy analysis, the sensitivity 
of Standalone AI and Integrated AI with both thresholds 
were statistically significantly higher than first reader and 
combined reading, respectively (p < 0.0001 for all), with 
varying statistically significantly lower, higher, or no dif-
ferent specificity (Supplementary eTable 5). However, the 
sensitivity of the index test and comparator were notably 
lower compared to those presented in Table 2.

Discussion
Summary of findings
We achieved a large representative study sample with a 
cancer detection rate and recall rate in line with previ-
ous reports on screening outcome from Danish screen-
ing rounds [4, 19]. In the Standalone AI scenario, the 
accuracy at both AI abnormality thresholds was found 
statistically significantly lower than that of the first 
reader across most outcome measures, mainly due to 
lower detection of scree-detected cancers. However, the 
AI system had a statistically significantly higher interval 
cancer detection rate and a higher accuracy across most 
outcome measures when next-round screen-detected 
cancers and long-term cancers were included in the can-
cer outcome. In the AI-integrated screening scenario, 
detection accuracy was at the level of or statistically sig-
nificantly higher than the combined reading, depending 
on the chosen threshold, only with a slightly higher arbi-
tration rate. A statistically significantly higher recall rate 
was observed for Integrated AIsens but not for Integrated 
AIspec. A notable proportion of cancers were missed by 
the AI system and detected by first reader, and vice versa, 
although detection discrepancies were to a lesser extent 
evident in the AI-integrated screening scenario.

Comparison with literature
Our results on Standalone AI accuracy corroborate find-
ings observed by Leibig and colleagues who reported sig-
nificantly lower sensitivity and specificity of an in-house 
and commercial AI system in a standalone AI path-
way compared to a single unaided radiologist, when the 
threshold was set to maintain the radiologist’s sensitivity 
[20]. Schaffter and colleagues showed significantly lower 
specificity by both an in-house top-performing AI sys-
tem and an aggregated ensemble of top-performing AI 
algorithms compared to first reader and consensus read-
ing, when sensitivity was set to match that of first reader 
[21]. Conversely, multiple other studies reported equal 
or higher standalone AI accuracy compared to human 
readers [10–12, 22], however, most had overall high risk 

of bias or applicability concerns according to several 
systematic reviews [13, 23, 24]. Numerous studies have 
explored different simulated screening scenarios with 
an AI system, for instance as reader aid or triage, and 
although many report higher AI accuracy, these also suf-
fer from similar methodological limitations [13, 23, 24].

Among the possible implementation strategies within 
double reading, partial replacement with AI replacing one 
reader seems to be the preferred AI-integrated screening 
scenario by breast screening readers [25], although only 
few recent studies, other than the current, have investi-
gated this scenario. Larsen and colleagues evaluated the 
same AI system tested in this study as one of two read-
ers in a setting in which abnormal readings were sent 
to consensus [26]. Using different consensus selection 
thresholds in two scenarios yielded a lower recall rate, 
higher consensus rate, and overall higher sensitivity when 
including interval cancer. However, AI-selected cases for 
consensus, missing an original consensus decision in the 
dataset, were not included in the decision outcome of the 
scenarios, creating uncertainty around the reliability of 
the recall and accuracy estimates. Sharma and colleagues 
tested an in-house commercial AI system in a simulated 
double reading with AI as one reader, which showed non-
inferiority or superiority across all accuracy metrics com-
pared to non-blinded double reading with arbitration, 
although the arbitration rate was not reported [27]. The 
study used historical second reader decisions as arbitra-
tion outcomes in cases where the original arbitration was 
absent, meaning that the AI decision was not included 
in the comparison, which could have caused an under-
estimation of the differences in accuracy between the AI 
and the radiologists. An unpublished study by Frazer and 
colleagues evaluated an in-house AI system in a reader-
replacement scenario in which the arbitration out-
come for a missing historic arbitration was simulated by 
matching the retrospective third-reading performance, 
as in the current study [28]. Compared to double read-
ing with arbitration, the AI-integrated screening scenario 
with the improved system threshold achieved higher sen-
sitivity and specificity and a lower recall rate at the cost of 
a highly increased arbitration rate. Unfortunately, > 25% 
of the study population was excluded, mostly due to lack 
of follow-up, introducing a high risk of selection bias.

Methodological considerations and limitations
In addition to many studies lacking a representative 
study sample, comparison of results across the litera-
ture is further complicated by varying choice of com-
parators, reference standard, abnormality threshold 
levels, and inconsistency in applying accuracy measures 
in accordance to reporting guidelines [13, 29]. Con-
trary to previous research, the main strengths of this 
study were the unselected, consecutive population-wide 
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First reader Standalone AIsens Standalone AIspec

Screen-detected cancers (n = 1268)*

Tumour size

0–10 mm (n = 487)
11–20 mm (n = 574)
21–50 mm (n = 179)
51 + mm (n = 14)
Unknown (n = 14)

390 (80.1); ref.
510 (88.9); ref.
161 (89.9); ref.
11 (78.6); ref.
14 (100.0); ref.

356 (73.1); 0.007
465 (81.0); 0.0001
142 (79.3); 0.007
13 (92.9); 0.33†

7 (50.0); <0.0001†

325 (66.7); <0.0001
436 (76.0); <0.0001
137 (76.5); 0.001
13 (92.9); 0.33†

6 (42.9); <0.0001†

Malignancy grade

Grade 1 (n = 403)
Grade 2 (n = 576)
Grade 3 (n = 192)
Unknown (n = 97)

323 (80.2); ref.
505 (87.7); ref.
180 (93.8); ref.
78 (80.4); ref.

335 (83.1); 0.27
449 (78.0); <0.0001
142 (74.0); <0.0001
57 (58.8); 0.001

303 (75.2); 0.06
427 (74.1); <0.0001
133 (69.3); <0.0001
54 (55.7); 0.0002

TNM stage

Local (I + II) (n = 1253)
Locally advanced (III) (n = 11)
Distant metastasis (IV) (n = 4)

1071 (85.5); ref.
11 (100.0); ref.
4 (100.0); ref.

971 (77.5); <0.0001
8 (72.7); <0.0001†

4 (100.0); >0.99†

906 (72.3); <0.0001
8 (72.7); <0.0001†

3 (75.0); <0.0001†

Lymph node positivity

No (n = 964)
Yes (n = 304)

814 (84.4); ref.
272 (89.5); ref.

743 (77.1); <0.0001
240 (79.0); 0.0004

692 (71.8); <0.0001
225 (74.0); <0.0001

ER positivity

0% (n = 94)
1–9% (n = 47)
10–100% (n = 1120)
Unknown (n = 7)

88 (93.6); ref.
44 (93.6); ref.
948 (84.6); ref.
6 (85.7); ref.

60 (63.8); <0.0001
28 (59.6); 0.001
890 (79.5); 0.001
5 (71.4); >0.99

56 (59.6); <0.0001
24 (51.1); 0.0001
832 (74.3); <0.0001
5 (71.4); >0.99

HER2 status

Negative (n = 1127)
Positive (n = 130)
Unknown (n = 11)

959 (85.1); ref.
118 (90.8); ref.
9 (81.8); ref.

869 (77.1); <0.0001
108 (83.1); 0.09
6 (54.6); 0.38

809 (71.8); <0.0001
102 (78.5); 0.005
6 (54.6); 0.38

Interval cancers (n = 562)*

Tumour size

0–10 mm (n = 90)
11–20 mm (n = 216)
21–50 mm (n = 201)
51 + mm (n = 35)
Unknown (n = 20)

9 (10.0); ref.
11 (5.1); ref.
13 (6.5); ref.
6 (17.1); ref.
0 (0.0); ref.

23 (25.6); 0.004
48 (22.2); <0.0001
52 (25.9); <0.0001
13 (37.1); 0.04
3 (15.0); <0.0001†

17 (18.9); 0.12
39 (18.1); <0.0001
40 (19.9); <0.0001
10 (28.6); 0.22
3 (15.0); <0.0001†

Malignancy grade

Grade 1 (n = 104)
Grade 2 (n = 239)
Grade 3 (n = 166)
Unknown (n = 53)

8 (7.7); ref.
15 (6.3); ref.
13 (7.8); ref.
3 (5.7); ref.

24 (23.1); 0.003
77 (32.2); <0.0001
32 (19.3); 0.001
6 (11.3); 0.45

21 (20.2); 0.01
60 (25.1); <0.0001
24 (14.5); 0.04
4 (7.6); >0.99

TNM stage

Local (I + II) (n = 508)
Locally advanced (III) (n = 33)
Distant metastasis (IV) (n = 16)
Unknown (n = 5)

34 (6.7); ref.
4 (12.1); ref.
0 (0.0); ref.
1 (20.0); ref.

129 (25.4); <0.0001
6 (18.2); 0.69
3 (18.8); <0.0001†

1 (20.0); >0.99†

100 (19.7); <0.0001
5 (15.2); >0.99
3 (18.8); <0.0001†

1 (20.0); >0.99†

Lymph node positivity

No (n = 376)
Yes (n = 186)

26 (6.9); ref.
13 (7.0); ref.

83 (22.1); <0.0001
56 (30.1); <0.0001

67 (17.8); <0.0001
42 (22.6); <0.0001

ER positivity

0% (n = 113)
1–9% (n = 51)
10–100% (n = 394)
Unknown (n = 4)

8 (7.1); ref.
2 (3.9); ref.
29 (7.4); ref.
0 (0.0); ref.

15 (13.3); 0.07
10 (19.6); 0.02
113 (28.7); <0.0001
1 (25.0); <0.0001†

11 (9.7); 0.58
9 (17.7); 0.04
88 (22.3); <0.0001
1 (25.0) < 0.0001†

Table 4  Detection rates across cancer subgroups for screen-detected cancers and interval cancers in the Standalone AI scenario
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cohort, availability of high-quality follow-up data with a 
low exclusion rate, and subspecialised breast radiologists 
as comparators, thereby representing a more reliable 
real-life population and reference standard. By simulating 
the arbitration decision to match the arbitrator’s accu-
racy, when original arbitrations were absent, we could 
achieve more realistic estimates of the accuracy out-
comes in the AI-integrated screening scenario, although 
this did not take into account how AI implementation 
can alter radiologists’ behaviour or decisions in a clinical 
setting. It should be stressed that standalone applications 
of AI, as evaluated in this study, are for now not clinically 
possible nor justified due to legal and ethical limitations 
among others.

Our work did have several limitations. The chosen AI 
score cut-off points were derived based on the sample in 
the current study which could lead to loss of generalis-
ability to other screening populations with a differing 
screening setting and workflow, diverse ethnic groups, 
and imaging vendors among others. For instance, the 
image data in the study were derived from only one 
mammography vendor, limiting the generalisability of 
results to mammograms acquired from other sources. 
Hence, differences or changes in a screening site’s techni-
cal setup or other factors affecting image output should 
be considered when deciding on a relevant AI threshold 
in relation to AI deployment in clinical practice. This 
could prospectively be resolved by having a local valida-
tion dataset or procedure in case of any such changes or 
variations in external or internal factors related to the AI 
system, through which a site-based adaptive strategy for 
threshold selection can be devised.

Most other limitations were related to the retrospective 
nature of this study, among which is the lack of diagnos-
tic work-up on cases recalled by the AI system but not by 
radiologists. If these were true positive but not detected 
within the same screening round, the accuracy of the AI 
system would be underestimated. Conversely, recalls of 
cases without cancer at screening but with an interval 
cancer developing before the next round would count 
as true positives, and since exact AI cancer-suspected 
areas were not evaluated for false positive markings, AI 
accuracy could have been overestimated. Hence, abnor-
mal AI predictions could be clinically significant cancers, 

overdiagnosed cancers, or false positives. The magni-
tude of such potential prediction misclassifications and 
thereby bias skewing the accuracy estimates is difficult to 
assess in mammography screening without a gold stan-
dard for all participants, such as MRI or other imaging 
along with biopsy, as it would be unnecessary and unethi-
cal to subject all women to comprehensive testing. Our 
findings of a higher detection rate of interval cancers and 
higher accuracy in both scenarios, when including next-
round screen-detected and long-term cancers (Supple-
mentary eTable 5), could indicate a tendency towards an 
underestimation of AI accuracy due to the current defini-
tion of the reference standard and the lack of a gold stan-
dard in mammography screening. However, the number 
of true positive AI-detected cancers might be limited in 
view of findings in a previous study showing that only 
58% of AI-marked interval cancers, which were consid-
ered missed by radiologists or had minimal radiographic 
malignancy signs (i.e. false negatives), were correctly 
located and could potentially be detected at screen-
ing [30]. This study used an older version of the same 
AI system as the current study but at a threshold score 
of 9.01 compared to 9.57 and 9.71 for AIsens and AIspec, 
respectively. Furthermore, the majority of interval can-
cers have been reported to be comprised of true or occult 
interval cancers [31], which even with AI-prompts would 
not be expected to be detected at screening or diagnos-
tic work-up. These findings relating to interval cancers 
should not be less valid for next-round screen-detected 
and long-term cancers, and in particular cancers with a 
short doubling time, such as grade 3 tumours, making it 
unlikely for these to have been detected with an AI posi-
tive assessment. The reported results on interval can-
cers which were missed by human readers but detected 
by or with the AI system (Supplementary eTables 2–3), 
especially those diagnosed ≥ 12 months after screening, 
should therefore be interpreted with caution in light of 
the radiological and biological characteristics of interval 
cancers.

What further contributes to the uncertainty around 
estimates in accuracy studies of this type is the intrin-
sic verification bias due to different reference standards 
depending on the screening decision outcome [32]. The 
choice of management to confirm disease status was, for 

First reader Standalone AIsens Standalone AIspec

HER2 status

Negative (n = 454)
Positive (n = 95)
Unknown (n = 13)

33 (7.3); ref.
5 (5.3); ref.
1 (7.7); ref.

117 (25.8); <0.0001
20 (21.1); 0.0003
2 (15.4); 0.26†

93 (20.5); <0.0001
14 (14.7); 0.04
2 (15.4); 0.26†

Data are n (%); p value. The cancer detection rate is reported as the number of detected cancers out of the number of true cancers for the subgroup in the same row. 
TNM = tumour, node, metastasis. ER = estrogen receptor. HER2 = human epidermal growth factor receptor 2. AIsens=artificial intelligence score cut-off point matched 
at mean first reader sensitivity. AIspec=artificial intelligence score cut-off point matched at mean first reader specificity. *Reported for invasive cancers only. †Exact 
binomial test used instead of McNemar’s test due to small discordant cells

Table 4  (continued) 
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instance, correlated with the readers’ screen decisions, 
likely introducing a systematic bias favouring the accu-
racy of the radiologists.

While our study design reinforces the reliability and 
generalisability of the findings in this study, we recognise 
that more accurate quantification of the actual detection 
accuracy of AI requires prospective studies which have 
the advantage of estimating the effect of AI-integrated 
screening on detection accuracy and workload. This is 
further emphasised considering that the workload reduc-
tion achieved in this study for Integrated AIsens through 
decreasing human screen reads with > 48% would to 
some degree be counterbalanced by the found increase 
in recall rate of almost 25% (Supplementary eTable 4). 
Only with Integrated AIspec, which showed a stable recall 
rate, AI-integrated screening could be considered feasible 
enough to ensure actual alleviation of workforce pres-
sures, stressing the importance of selecting an appro-
priate AI threshold value. Well-designed randomised 
controlled trials are warranted to elucidate the impli-
cations of clinical implementation of AI as one of two 
readers in mammography screening, the choice of a clini-
cally relevant threshold, as well as the effects on cancer 
detection, workflow, and radiologist interpretation and 
behaviour. The first two prospective studies reported 
only recently short-term results of population-based AI-
integrated screening with positive screening outcome in 
terms of cancer detection rate and workload reduction, 
providing a promising outlook for safe AI deployment 
within mammography screening [33, 34].

Conclusions
In conclusion, findings of this retrospective and pop-
ulation-wide mammography screening accuracy study 
suggest that an AI system with an appropriate thresh-
old could be feasible as a replacement of the first reader 
in double reading with arbitration. The spectrum of 
detected cancers differed significantly across multiple 
cancer subgroups with a general tendency of lower accu-
racy for screen-detected cancers and higher accuracy 
for interval cancers. Discrepancies in cancers detected 
by the AI system and radiologists could be harnessed 
to improve detection accuracy of particular subtypes of 
interval cancers by applying AI for decision support in 
double reading.
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